Аспирационные системы: виды, устройство, критерии выбора установки. Что такое система аспирации воздуха и где она применяется? Потери давления в системе аспирации

Аспирационные системы: виды, устройство, критерии выбора установки. Что такое система аспирации воздуха и где она применяется? Потери давления в системе аспирации
Аспирационные системы: виды, устройство, критерии выбора установки. Что такое система аспирации воздуха и где она применяется? Потери давления в системе аспирации

Производственные процессы нередко сопровождаются выделением пылеобразных элементов или газов, которые загрязняют воздух в помещении. Проблему помогут решить аспирационные системы, спроектированные и монтированные в соответствии с нормативными требованиями.

Разберемся, как работают и где применяют такие устройства, какие бывают виды воздухоочистительных комплексов. Обозначим главные рабочие узлы, опишем нормы проектирования и правила установки аспирационных систем.

Загрязнение воздуха – неизбежная часть многих производственных процессов. Чтобы соблюсти установленные санитарные нормы чистоты воздуха, используют процессы аспирации. С их помощью можно эффективно удалять пыль, грязь, волокна и другие подобные примеси.

Аспирация представляет собой засасывание, которое осуществляется путем создания в непосредственной близости от источника загрязнений области пониженного давления.

Чтобы создавать такие системы, необходимы серьезные специальные знания и практический опыт. Хотя работа средств аспирации тесно связана с функционированием , не всякий специалист по вентиляции справится с проектированием и монтажом оборудования этого типа.

Для достижения максимальной эффективности комбинируют методы вентилирования и аспирации. Вентиляционная система в производственном помещении должна быть оборудована , чтобы обеспечить постоянное поступление свежего воздуха снаружи.

Аспирация широко применяется в таких областях промышленности:

  • дробильное производство;
  • обработка древесины;
  • изготовление потребительской продукции;
  • прочие процессы, которые сопровождаются выделением большого количества вредных для вдыхания веществ.

Обеспечить безопасность сотрудников стандартными средствами защиты удается далеко не всегда, и аспирация может стать единственной возможностью наладить безопасный производственный процесс в цеху.

Аспирационные установки предназначены для эффективного и быстрого удаления из воздуха различных мелких загрязнений, которые образуются в процессе промышленного производства

Удаление загрязнений с помощью систем этого типа выполняется по специальным воздуховодам, которые имеют большой угол наклона. Такая позиция позволяет предотвратить появление так называемых зон застаивания.

Мобильные вентиляционно-аспирационные установки просты в монтаже и эксплуатации, они прекрасно подходят для небольших предприятий или даже для домашней мастерской

Показателем эффективности работы такой системы считают степень невыбивания, т.е. соотношения количества загрязнений, которые были удалены, к массе вредных веществ, не попавших в систему.

Различают два типа систем аспирации:

  • модульные системы – стационарное устройство;
  • моноблоки – мобильные установки.

Кроме того, аспирационные системы классифицируют по уровню напора:

  • низконапорные – менее 7,5 кПа;
  • средненапорные – 7,5-30 кПа;
  • высоконапорные – свыше 30 кПа.

Комплектация аспирационной системы модульного и моноблочного типа отличается.

В горячих цехах подогрев поступающего снаружи воздуха не нужен, достаточно сделать проем в стене и закрыть его заслонкой.

Выводы и полезное видео по теме

Здесь представлен обзор распаковки и монтажа мобильной системы аспирации RIKON DC3000 для деревообрабатывающей промышленности:

В этом ролике продемонстрирована стационарная система аспирации, используемая при производстве мебели:

Системы аспирации – современный и надежный способ очистки воздуха в промышленных помещениях от опасных загрязнений. Если конструкция правильно спроектирована и смонтирована без ошибок, она продемонстрирует высокую эффективность при минимальных затратах.

Есть, что дополнить, или возникли вопросы по теме аспирационных систем? Пожалуйста, оставляйте комментарии к публикации. Форма для связи находится в нижнем блоке.

Система аспирации воздуха чистит от промышленных загрязнений внутреннее пространство сборочных лакокрасочных и производственных цехов. Проще говоря: система аспирации – это одна из разновидностей «промышленного» фильтра, ориентированного на утилизацию сварочной гари, лакокрасочных аэрозолей, масляных взвесей и прочих отходов производства.

И если руководствоваться техникой безопасности или здравым смыслом, то без аспирации в производственном помещении находиться просто невозможно.

Конструкция системы аспирации воздуха

Любая аспирационная система состоит из трех основных узлов:

  • Вентилятора, который генерирует вытяжное усилие.
  • Системы фильтров, которая собирает промышленные отходы,
  • Блока емкостей, куда «складируется» вся отобранная из воздуха «грязь».

В качестве вентилятора в системах аспирации используется особая установка типа «Циклон», которая генерирует и вытяжное и центробежное усилие. При этом вытяжку воздуха обеспечивает одноименное усилие, а центробежная сила производит первичную, «черновую» очистку, прижимая частицы «грязи» к внутренним стенкам корпуса «Циклона».

В качестве фильтрационных узлов в таких установках используются и внешние кассеты – крышные фильтры, и внутренние рукавные фильтры. Причем рукавные элементы оборудуются системой импульсной очистки, обеспечивающей «стекание» накопленной «грязи» в бункеры.

Кроме того, воздуховоды для систем аспирации деревообрабатывающих предприятий комплектуются еще и уловителями стружки – особыми фильтрами, «собирающими» крупные промышленные отходы. Ведь рукавные фильтры используются лишь для тонкой очистки – они улавливают частицы калибром более одного микрометра.

Подобная комплектация, предполагающая оборудование циклонов и воздуховодов кассетами и системами первичной очистки и фильтрами тонкой доочистки, гарантирует сбор около 99,9 процентов промышленных выбросов даже на самом экологически неблагополучном предприятии.

Однако каждое производство «генерирует» свой тип промышленных отходов, частички которых имеют определенную плотность, массу и агрегатное состояние. Поэтому для успешной работы установки в каждом конкретном случае необходимо индивидуальное проектирование аспирации, базирующееся на физических и химических характеристиках «отходов».

Типовые системы аспирации воздуха

Несмотря на исключительно индивидуальные эксплуатационные характеристики, которыми обладают буквально все схемы аспирации, конструкции подобного рода, все же, можно классифицировать по типу компоновки. И этот метод сортировки позволяет выделить следующие разновидности аспираторов:


Кроме того, все системы аспирации можно классифицировать еще и по принципу отвода отфильтрованного потока. И согласно этому принципу сортировки все установки разделяются на:

  • Прямоточные аспираторы, сбрасывающие вытяжной поток за пределы обслуживаемого помещения, цеха или строения.
  • Рециркуляционные аспираторы, которые только фильтруют вытяжной поток, после чего он подается в приточную сеть вентиляции цеха.

С точки зрения безопасности оптимальным вариантом конструкции является прямоточная установка, удаляющие отходы за пределы цеха. А с позиции энергетической эффективности наиболее привлекательным вариантом конструкции является рециркуляционный аспиратор – он возвращает в помещение отфильтрованный и теплый воздух, помогая экономить на отоплении или кондиционировании пространства.

Расчет аспирационных систем

При составлении проекта установки аспирации расчетные работы ведется по следующей схеме:

  • Вначале определяются справочные нормы расхода воздуха. Причем справочные нормы нужно спроецировать на объемы конкретного помещения, принимая во внимание потери давления в каждой точке аспирации.
  • На следующем этапе определяют скорость воздухообмена, достаточную для аспирации частичек промышленных отходов определенного типа. Причем для определения скорости используются все те же справочники.
  • Далее, по предполагаемой концентрации отходов определяют производительность систем фильтрации, делая поправку на пиковые выбросы. Для этого достаточно увеличить справочные показатели на 5-10 процентов.
  • В финале определяют диаметры воздуховодов, напорную силу вентиляторов, расположение каналов и прочего оборудования.

При этом во время расчетов необходимо принимать во внимание не только справочные характеристики, но и индивидуальные параметры, такие как температура и влажность воздуха, продолжительность смены и прочее.

В итоге расчетные работы, проводимые с учетом индивидуальных потребностей заказчика, усложняются практически на порядок. Поэтому за такие работы берутся только самые опытные проектно-конструкторские бюро.

При этом доверяться новичкам или непрофессионалам в данном случае не стоит – вы можете потерять не только оборудование, но и рабочих, после чего предприятие могут закрыть по решению суда, а ответственных лиц, принимавших решение о вводе в эксплуатацию сомнительного оборудования, ждут еще большие неприятности.

Аспирационные системы используют в самых разных отраслях промышленности, там, где воздух загрязняется мусором, пылью и вредными веществами. Современное деревообрабатывающее, пищевое, химическое производство невозможно представить без такого оборудования, как эффективная, современная и надежная система аспирации.

Также она является обязательным элементом в металлообработке, металлургии, горнодобывающей промышленности. Требования к экологическому состоянию производства постоянно возрастают, поэтому требуются все более совершенные аспирационные системы. Без использования этого оборудования было бы невозможно не только находиться внутри производственного помещения, но и на улице вблизи многих промышленных предприятий.

Типы систем

В настоящее время на предприятиях производят расчет и монтаж аспирационных систем моноблочного или модульного типа.

  1. Моноблочная конструкция. Моноблочная система является абсолютно автономной и мобильной. Ее устанавливают рядом с оборудованием, которое нуждается в сборе отходов. Составные части моноблочной системы - вентилятор, фильтр, емкость для отходов.
  2. Модульная конструкция. Модульные аспирационные системы - сложные конструкции, изготавливаемые по индивидуальному заказу под конкретные требования заказчика. В их состав могут входить воздуховоды для систем аспирации, вентиляторы низкого давления, сепараторы. Такие конструкции могут работать как в пределах одного цеха, так и проектироваться для большого завода.

Также аспирационные системы делятся на прямоточные и рециркуляционные. Разница в том, что первые после захвата грязного воздуха очищают его и выбрасывают в атмосферу, а вторые после очистки возвращают воздух обратно в цех.

Перед монтажом аспирационных комплексов проводят их разработку, которая обязательно включает в себя составление плоскостной схемы исходя из требуемой мощности. При правильном расчете система может не только очистить цех от пыли и вредных веществ, но и вернуть в него теплый и чистый воздух, тем самым снизив расходы на отопление.

Основные компоненты системы

  • Циклон. Использует центробежную силу для того чтобы убрать из воздуха твердые частички пыли. Частички прижимаются к стенкам, затем оседают в выгрузном отверстии.
  • Крышные фильтры. Представляют собой блок фильтров и приемную камеру. Очищают воздух, затем возвращают его внутрь помещения. Эти насадки ставят на наружные бункеры и используют вместо уличных циклонов.
  • Уловители пыли и стружки. Применяются на предприятиях, которые занимаются деревообработкой.
  • Фильтрованные рукава. Внутри этих рукавов выделяются твердая составляющая воздушно-пыльной массы, иными словами воздух отделяется от загрязнений.

Применение рукавных фильтров - очень эффективный способ очистки, благодаря которому улавливается до 99.9% частиц, размер которых больше 1 мкм. А из-за использования импульсной очистки фильтров работает она максимально эффективно, что позволяет экономить электроэнергию.

Монтаж установок аспирации не требует изменения технологических процессов. Поскольку очистные конструкции делаются на заказ, они приспосабливаются к существующим техпроцессам и вписываются в существующее технологическое оборудование, применяемое, например, при деревообработке. Именно благодаря точному расчету и привязке к конкретным условиям достигается высокая эффективность работы.

Отходы удаляются из специальных бункеров с помощью контейнеров, мешков или пневмотранспорта.

Разработкой и монтажом очистных комплексов занимаются многие компании. При выборе фирмы внимательно изучите предложения, основываясь не только на рекламных материалах. Только подробный разговор о характеристиках оборудования со специалистами может помочь сделать вывод о добросовестности поставщика.

Расчет системы

Для того чтобы работа аспирационной системы была эффективной необходимо сделать правильный ее расчет. Поскольку дело это непростое, то заниматься этим должны специалисты с большим опытом.

Если расчеты сделаны неверно, то система не будет нормально работать, а на переделку уйдет много средств. Поэтому чтобы не рисковать временем и деньгами лучше доверить это дело специалистам, для которых проектирование систем аспирации и пневмотранспорта – основная работа.

При расчетах необходимо учесть массу факторов. Рассмотрим лишь некоторые из них.

  • Определяем расход воздуха и потери давления в каждой точке аспирации. Все это можно узнать в справочной литературе. После определения всех расходов проводят расчет - нужно их суммировать и разделить на объем помещения.
  • Из справочной литературы нужно взять сведения о скорости воздуха в аспирационной системе для разных материалов.
  • Определяется тип пылеуловителя. Это можно сделать, имея данные о пропускной производительности конкретного пылеулавливающего устройства. Чтобы рассчитать производительность нужно сложить расход воздуха во всех точках аспирации и увеличить полученное значение на 5 процентов.
  • Рассчитать диаметры воздуховодов. Делается это с помощью таблицы с учетом скорости движения воздуха и его расхода. Диаметр определяется индивидуально для каждого участка.

Даже этот небольшой список факторов говорит о сложности расчета аспирационной системы. Есть и более сложные показатели, с расчетом которых справится только человек со специализированным высшим образованием и опытом работы.

Аспирация просто необходима в условиях современного производства. Он позволяет соответствовать экологическим требованиям и сохранить здоровье персонала.

В помощь инженерам, занимающимся проектированием и расчетом вентиляции, создано множество программ. Компьютер не только подсчитает все требуемые параметры, но и сделает чертежи вентиляции. О самых удобных и простых решениях, а также о том, на чем основывается алгоритм их работы, читайте далее.

Программа для расчета вентиляции Vent-Calc

Программа для проектирования Vent-Calc одна из самых функциональных и доступных. Алгоритм ее работы основан на формулах Альтшуля. Гидравлические расчеты воздуховодов делаются по методике, взятой из «Справочника проектировщика» под редакцией Староверова. Одинаково хорошо справляется с расчетом естественной и принудительной вентиляции.

Функции программы для вентиляции Vent-Calc :

  • Расчет воздуховодов с учетом температуры и скорости движения потоков, расхода воздуха;
  • Расчет воздуховодов гидравлический;
  • Расчет местных сопротивлений (сужений, отводов, расширений и развилок) каналов помещений. Высчитываются коэффициенты сопротивления на различных участках системы, потери давления в Паскалях, программа подбирает вентиляционное оборудование. Чтобы удостовериться в правильности расчетов, прилагаются таблицы ВСН 353-86. Во время работы программа для вентиляции отсылает пользователя к требуемым формулам и таблицам;
  • Подходит для расчета естественной вентиляции помещения. Определяется оптимальное сечение вентканала, обеспечивающее превалирование тяги над сопротивлением воздуха при заданном расходе воздуха;
  • Подсчитывает мощность нагрева калорифером или любым другим типом подогревателя воздуха.

Эта программа для расчета систем вентиляции очень хороша для учащихся, только проходящих курс вентиляции в университете. Еще одно преимущество – это ее бесплатное распространение.

Последняя редакция программы для проектирования вентиляции Vent-Calc позволяет за кратчайшие сроки рассчитать аэродинамическое сопротивление системы и другие показатели, необходимые для предварительного подбора оборудования. Для этого необходимы следующие показатели:

  • длина основного воздуховода помещения;
  • расход воздуха в начале системы;
  • расход воздуха в конце системы.

Вручную такой расчет достаточно трудоемок и осуществляется поэтапно. Поэтому программа для расчета Vent-Calc облегчит и ускорит работу проектировщиков, специалистов по продаже климатической техники и квалифицированных монтажников.

Программа для проектирования инженерных систем MagiCAD

Это программа для проектирования систем вентиляции, отопления, водоснабжения и канализации, электросетей. MagiCAD рассчитывает и делает необходимые чертежи.

Будет полезна строителям, проектировщикам, чертежникам и менеджерам по продаже оборудования.

Функции MagiCAD:

  • все виды расчетов для вентиляционных систем(приточные и вытяжные);
  • изображение в 2D;
  • изображение в 3D;
  • широчайшая база данных оборудования европейских производителей;
  • создание всей необходимой проектной документации, в том числе спецификаций;
  • возможность обмена данными с иными программами для рисования вентиляции;
  • совместимость с ADT и AutoCAD.

Графика MagiCAD основана на базе AutoCAD и фактически является ее дополнением. Программа создана финскими разработчиками, которые максимально упростили ее использование. Поэтому инженер, знакомый с AutoCAD без труда разберется с дочерней программой для расчета вентиляции и других инженерных систем MagiCAD. Удобство использования достигается разделением ядра на модули: Вентиляция, Трубопроводы, Электричество и Помещение.

Специалисту не нужно прочерчивать сложные воздухораспределительные сети, фитинги и повороты. Уже готовые элементы составляются подобно конструктору. Не нужна даже линейка. Основная работа проектировщика – правильно скомпоновать существующие узлы для получения оптимального результата. Все данные о проекте присутствуют тут же. Заглянув в электронный чертеж, можно получить необходимые сведения о работе будущей вентиляции, например, о сечении воздуховодов и скорости воздушного потока в них.

Программой для расчетов вентиляционных систем MagiCAD пользуются десятки крупных проектных бюро скандинавских стран и многие проектные организации стран СНГ.

Программа расчета естественной вентиляции и аспирации GIDRV 3.093

Программа GIDRV 3.093 создана для расчета систем вентиляции с принудительной и естественной тягой. Представляет собой многозадачную форму с набором закладок: «Характеристики схемы», «Этажи», «Участки», «Местные сопротивления», «Расчетная таблица».

Функции программы для расчета естественной вентиляции GIDRV 3.093:

  • контрольный расчет параметров вытяжного воздуховода естественной вентиляции;
  • расчет нового и контрольный расчет воздушных каналов для аспирации;
  • расчет новых и контрольные расчеты приточных и вытяжных воздуховодов для систем с принудительной тягой.

Получив результаты, можно изменить исходные параметры на любых участках воздуховодов и сделать новую схему. С помощью этой программы для расчета естественной вентиляции можно подбирать любые комбинации, добиваясь оптимальных показателей работы.

Схемы с пояснениями (характеристики каналов, сопротивления системы, результаты подсчетов) хранятся в едином файле. Переключение и работа с различными вариантами расчетов очень удобны и просты.

Автоматически выявляются участки с избыточным напором и предоставляются варианты решения проблемы (сужать сечение, использовать диафрагмы, шибера, дроссели).

Программа расчетов естественной вентиляции снабжена функцией расчетов дросселирующих механизмов, выдающей несколько лучших вариантов и обозначив наиболее подходящий.

В процессе расчетов естественной вентиляции обнаруживает самые перегруженные участки системы. Показывает давление по каждому участку, потери и их причины (сопротивление трубы, трение).

Все расчеты можно распечатать, включая таблицы.

Платная, но для ознакомления доступна демо-версия.

Программа расчета противодымной вентиляции Fans 400

Программа Fans 400 создана для расчета противодымной вентиляции помещений. С ее помощью можно определить показатели системы удаления дыма из холлов, коридоров и вестибюлей. Программа для расчета противодымной вентиляции помогает подобрать мощность вентиляторов и другого специального оборудования.

Fans 400 создана для инженеров-проектировщиков, пожарных инспекторов и студентов профильных специальностей.

Использование для расчетов противодымной вентиляции не вызовет сложностей у пользователя любого уровня подготовки. Она распространяется бесплатно. Для корректной работы программы к компьютеру необходимо подключить принтер.

Программа подбора воздуховодов Ducter 2.5

Эта программа подбора вентиляционного оборудования высчитывает диаметры сечений воздуховодов. Пользователь вводит максимальные значения скорости потока в воздуховодах, перепады высот при расчетах естественной вентиляции или КМС отрезка. На основании этих сведений программа подбирает вентиляционное оборудование стандартного диаметра согласно ВСН 353-86 линейно. Таким образом, окончательное решение по диаметру остается за специалистом.

Если необходим воздуховод нестандартных параметров, программа тоже поможет: вводится один параметр, остальные подбираются. Шаг подбора устанавливается в настройках.

Задаются показатели давления и температуры воздуха, если рассчитывается система кондиционирования. Есть возможность получения данных о давлении на каждом участке, вводя его длину и суммарный коэффициент сопротивления. Учитывается материал будущего воздуховода.

Можно задать один из нескольких вариантов отображения размеров каждого участка.

Версии программы от Ducter 3 и выше для подбора оборудования помогут полностью просчитать всю систему вентиляции.

Программа для рисования вентиляции «SVENT»

Программа SVENT разработана для рисования вентиляции помещений на компьютерах под управлением Windows.

Функции SVENT:

  • аэродинамический расчет систем принудительной и вытяжной вентиляции;
  • программа для чертежей вентиляции в аксонометрии, использует элементы AutoCAD;
  • составляет спецификации.

Производит 2 типа расчетов:

  • Автоматически предлагает сечение прямоугольной или круглой формы на основании введенных данных о скоростях возле вентиляторов и на концах воздуховодов;
  • Расчет системы с введенными данными о сечениях и потерях давления.

Программа расчета работает с любыми типами воздуховодов (круглые, прямоугольные и нестандартной формы). Можно дополнять базу данных воздуховодов необходимыми образцами.

База узлов работает на схемах расчетов коэффициентов местных сопротивлений из ВСН 353-86, Справочника проектировщика под редакцией Староверова И.Г. и нескольких других источников. Ее тоже можно дополнять.

Программа для рисования вентиляции CADvent

Эта программа для рисования вентиляции создана на базе мощной и сложной AutoCAD. Вместе с развитием AutoCAD видоизменяется и совершенствуется CADvent, добавляются новые возможности. Это профессиональные программы для черчения вентиляции, расчетов и презентаций, созданные для инженеров, работающих в области проектирования и разработок систем вентиляции, кондиционирования и отопления.

Функции CADvent:

  • расчет сечения воздуховодов;
  • расчет потерь давления;
  • акустический расчет;
  • создание 2D чертежа с необходимыми обозначениями;
  • 3D моделирование;
  • спецификация по элементам, которую можно перенести в MS excel;
  • создание презентаций.

Программа CADvent предоставляет возможность изменять любые изменения в уже готовый проект, изменять расчетные параметры, добавлять новые элементы. Ее можно комбинировать с программами DIMsilencer (программа для подбора шумоглушителя в системе вентиляции) и DIMcomfort (подбирает распределители воздуха, учитывая скорость движения потока и шум в местах нахождения людей).

Пользователи отмечают удобство пользования, но не хватает русификации, а также возможности создать аксонометрическую проекцию.

Еще об одной программе под названием Комфорт-В смотрите видеоролик.

В одну аспирационную сеть объединяется оборудование:
-работающее одновременно;
-близко расположенное;
-с одинаковой пылью, или близкой по качеству и свойствам;
-с одинаковой или с небольшой разницей температуры воздуха.
Оптимальное количество точек отсоса - не более шести, но можно больше.
Если в какой-либо машине режим воздушного потока периодически изменяется, т. е. регулируется в соответствии с технологическим процессом, то для неё проектируется отдельная вентиляционная установка; или с очень небольшим количеством дополнительных, "попутных" точек отсоса (одна - две с малым расходом).

Примеры компоновки аспирационных установок - на странице .

Определить расход воздуха на аспирацию и потери давления (сопротивление) для каждой аспирируемой машины, ёмкости, точки. Данные взять из паспортной документации оборудования или по "нормам на аспирацию" в справочной литературе. Можно использовать данные аналогичных проектов.
Расход воздуха можно определить по размерам всасывающего патрубка или аспирационного отверстия в корпусе машины, если патрубок и отверстие сделаны заводом-изготовителем и (или) по размерам проектной организации.
Если поступающий продукт эжектирует в оборудование какое-то дополнительное количество воздуха (например, двигаясь с большой скоростью по самотечной трубе), то этот дополнительный объём следует прибавить к нормативному, определив его тоже по нормам, или методами расчёта, применительными к данному конкретному питающему устройству и продукту.
Если с отводящимся продуктом из оборудования уносится некоторое количество воздуха, его также следует определить, и вычесть из расхода воздуха на аспирацию.

Излишнее эжектирование или унос воздуха можно уменьшить, если в схему питающего, отводящего устройств включить элементы для снижения скорости движения материала, продукта; повысить степень заполнения продуктом проходного сечения устройства (трубы).
Эжектирование, унос воздуха совсем незначительны и даже отсутствуют, если:
-проходное сечение питателя, отвода полностью заполнено продуктом;
-продукт поступает из постоянно заполненной ёмкости;
-в подводящей, отводящей конструкции установлено герметизирующее устройство (шлюзовой затвор, клапан и т. п.).
Если какое-либо оборудование периодически заполняется из другого большими разовыми порциями за короткое время, то между ними надо установить воздуховод свободного перетекания вытесняемого воздуха и распределения избыточных давлений, которые возникают внутри корпусов и ёмкостей в момент разгрузки-выгрузки. Переточный воздуховод - большого диаметра, вертикальный или сильнонаклонный, без горизонтальных участков.

Все расходы сложить, и разделить на объём помещения - нормальный воздухообмен для различных предприятий разный, но обычно находится в пределах 1 - 3 обмена в час. Более высокие воздухообмены применяют при расчёте общеобменной приточно-вытяжной вентиляции для удаления вредных выделений, примесей, запахов из воздуха помещений.
Для снижения повышенного вакуума в закрытом помещении следует предусмотреть приток наружного воздуха к аспирируемому оборудованию или в это помещение.

Надёжно транспортирующая скорость воздуха для различных видов пыли и сыпучих материалов принимается по рекомендациям отраслевых указаний. Можно использовать информацию тематической литературы, данные аналогичных проектов, параметры действующих аспирационных и пневмотранспортных установок предприятия.
Скорость воздуха в материалопроводах пневмотранспорта:
V = k(10,5 + 0,57·V вит) м/сек, где V вит - скорость витания частиц продукта, k - коэффициент запаса, учитывает колебания нагрузки на пневмотранспортёр. Расчёт пневмотранспортной установки рассмотрен на странице . Если считать, что нагрузка в воздуховоде аспирации постоянна, то и коэффициент запаса должен быть равен 1. Для некоторых материалов витания и пневмотранспортирования приведены в разделе "Расчёт аспирации" каталога "Чертежи, схемы, рисунки сайта".

Тип пылеотделителя выбрать с учётом характеристики пыли, планируемой (желаемой) эффективности очистки воздуха, эксплуатационной надёжности, сложности конструкции. Пропускную производительность пылеотделителя определить сложив расходы всех аспирируемых точек и прибавив 5%. Если в сети есть точки временно отключаемые (перекрытые) клапанами, на каждую добавить ещё по 100 м³/час подсоса к общему расходу.
Потери давления (сопротивление) в пылеотделителе принять из его технической характеристики.

Место установки вентилятора и воздухоочистителя выбрать с учётом их габаритов и размеров присоединяемых к ним фасонных деталей воздуховодов. Предусмотреть возможность отвода пыли и отходов, компактность сети воздуховодов, удобство обслуживания и ремонта. Учесть рекомендации по их расположению в сети. Например, всасывающий фильтр устанавливают дальше от машины с самым большим сопротивлением, чтобы создать в нём необходимый вакуум для обратной продувки ткани. Перед входом в циклон, особенно батарейный, должен быть прямой участок длиной не менее двух диаметров воздуховода. Расположение вентилятора предпочтительнее после пылеотделителя по ходу сети, т.е. на очищенном воздухе.
Намечая трассу воздуховодов, предпочтение отдавать вертикальным или сильнонаклонным, если они не нарушают промышленную эстетику. По возможности уменьшать протяжённость горизонтальных участков, количество поворотов (отводов). Избегать участков с запылённым воздухом на нагнетающей стороне вентилятора, особенно в помещениях.

Нарисовать расчётную схему аспирационной сети. Разделить сеть на участки:
-от машин до точек объединения включая тройник;
-от точки объединения до следующего тройника включительно;
-от точки последнего объединения до пылеотделителя (или вентилятора);
-участок между пылеотделителем и вентилятором;
-выхлопной участок с выхлопом.
На схеме указать расходы воздуха и потери давления в аспирируемом оборудовании. Посчитать и указать расходы воздуха на каждом участке. Указать длину каждого участка воздуховодов, включая длину всех его фасонных частей. Указать потери давления (сопротивление) пылеотделителя.

Диаметры воздуховодов каждого участка подобрать по принятой скорости v (м/сек) и расходу воздуха Q (м³/час) в "таблице данных для расчёта круглых стальных воздухопроводов", которая есть в справочной литературе по аспирации. Один из вариантов дан в разделе "Расчёт аспирации" каталога "Чертежи, схемы, рисунки сайта". Из этой же "таблицы" взять динамическое давление Нд (Па) и R - потери давления на 1 метр длины (Па/м) для этого участка. Эти данные нанести на схему или в специальную расчётную таблицу. Для подбора диаметров и расчёта воздуховодов можно пользоваться специальными .

Как правило, технологическое и транспортное оборудование поставляется в комплекте с отсасывающим патрубком. В паспорте оборудования приводятся данные о режиме аспирации.
Размеры и конфигурация отсасывающих патрубков, рекомендуемые входные скорости для различных материалов приведены в справочниках по аспирации и пневмотранспорту.
Площадь сечения входного отверстия патрубка (конфузора, "перехода") вычисляется делением расхода воздуха на входную скорость .
Для уменьшения уноса продукта и пыли, для предотвращения взрывоопасных концентраций в воздуховодах, для снижения пылевой нагрузки на фильтр, входная скорость принимается минимально возможной и зависит от вида пыли и свойств основного продукта. Открытые источники пылевыделения аспирируют верхними или боковыми отсосами. Оптимальный угол сужения конфузора 45 градусов.

На каждом участке определить сумму коэффициентов его местных сопротивлений (фасонных частей): отсасывающий патрубок (конфузор), отводы, расширения-сужения, тройник и т. п. Коэффициенты всех видов сопротивлений известны и легко находятся в нормативных таблицах.
Посчитать потери давления при прохождении воздуха через местные сопротивления: умножив динамическое давление на сумму коэффициентов участка.
Посчитать потери давления на трение воздуха по длине участка: умножив потерю в 1 метре на всю длину участка.
СЛОЖИТЬ: потери давления в аспирируемой машине + потери на местные сопротивления + потери по длине участка. Полученную СУММУ потерь каждого участка нанести на схему и в расчётную таблицу.
Потери давления в участках между тройниками считать от точки объединения (не включая тройник) до следующего объединения включая тройник.

Выравнивание давлений.
За главную магистраль принять последовательность участков, создающих наибольшие потери давления по пути движения воздуха.
К потерям давления каждого участка главной магистрали прибавить потери всех предыдущих участков главной магистрали (только главной) и указать эту сумму в точке объединения с боковым.

В каждой точке объединения (тройниках) сравнить потери давления главной магистрали с потерями в присоединяемом боковом участке. Для правильного распределения воздуха эти потери надо сделать одинаковыми. Допустимая разница - 10%. При больших расхождениях следует уменьшить диаметр участка с меньшим сопротивлением (обычно бокового), это повысит в нём скорость (при прежнем расходе!) , динамическое давление и все потери. Пересчитать новое сопротивление бокового участка и снова сравнить с магистральным в точке объединения. Уменьшать диаметр меньше 80 мм нельзя.

Если таким способом не удаётся выровнить давления, то принять вариант с наиболее близкими значениями, а в участок с меньшими потерями давления установить дополнительное местное сопротивление: диафрагму между двумя фланцами, но лучше - регулировочную задвижку. - по таблицам местных сопротивлений или по расчёту.

Выбор вентилятора.
Производительность вентилятора равна производительности пылеотделителя плюс подсос воздуха в герметизирующем устройстве пылеотделителя. Подсосы во всасывающих фильтрах принимают 15% от полезного расхода сети, или по нормам. Подсосы в циклонах учитывают, если они установлены на всасывающей стороне вентилятора: для ЦОЛ, 4БЦш, однорядного УЦ принять 150 м³/час, для двухрядного УЦ - 250 м³/час.
Давление, которое должен развивать вентилятор, равно общему сопротивлению сети по главной магистрали плюс 10% запаса.
Общее сопротивление сети - это сумма потерь давления участков только главной магистрали , включая: сопротивление первой аспирируемой машины, потери давления в воздуховодах каждого участка гл. магистрали, сопротивление пылеотделителя, потери давления на участке между пылеотделителем и вентилятором, потери давления в выхлопном участке и сопротивление выхлопа.

По давлению и расходу из всех номеров и типов пылевых вентиляторов подбирают тот, на аэродинамической характеристике которого пересечение этих параметров даёт точку наибольшего к.п.д. Можно выбирать по каталогам и рекомендациям заводов-изготовителей и торгующих организаций вентиляционной техники и оборудования.
Частоту вращения рабочего колеса вентилятора определяют по его аэродинамической характеристике. Мощность на валу вентилятора (квт): Nв. = (QH)/1000кпд где Q - производительность вентилятора в м³/сек, т. е. м³/час надо разделить на 3600; H - давление вентилятора в Па; кпд - коэффициент полезного действия вентилятора.
Мощность электродвигателя, квт: Nэ = (k·Nв)/n·п где n = 0,98 - кпд подшипников; п - кпд передачи: при посадке рабочего колеса вентилятора на вал электродвигателя п = 1, при передаче через муфту п = 0,98, при клиноремённой передаче п = 0,95. Коэффициент запаса мощности электродвигателя k = 1,15 для электродвигателей мощностью до 5 квт; k = 1,1 для электродвигателей мощностью более 5 квт. Практический пример подбора вентилятора к конкретной аспирационной сети дан на странице "Выбор и расчёт вентилятора".

Таким способом можно рассчитать вентиляционную установку для аспирации или пневмотранспорта пылевидных, мелкосыпучих материалов в низкой концентрации аэросмеси на предприятиях по хранению и переработке зерна, для очистки от примесей и обогащения крупы, на мукомольном и комбикормовом производстве, в деревообрабатывающем для удаления опилок и стружки от станков, в пищевой, текстильной промышленности и других, где есть источники выделения пыли. Низкой концентрацией считается содержание пыли или отходов не более 0,01 кг в 1 кг воздуха. Потери давления в воздуховодах с большей запылённостью рассчитываются .

Отдельные страницы посвящены аспирации приёма, хранения и очистки зерна: расчёт аспирационной установки зерноочистительного отделения, башни или пункта хлебоприёмного предприятия, системы аспирации этажей рабочего здания и силосного корпуса элеватора.