Биотехнология наука будущего. Четыре биотехнологии будущего. Какие прорывы в медицине нас ожидают

Биотехнология наука будущего. Четыре биотехнологии будущего. Какие прорывы в медицине нас ожидают
Биотехнология наука будущего. Четыре биотехнологии будущего. Какие прорывы в медицине нас ожидают

Биотехнологии, несмотря на весь пафос и инновационность названия – одна из наиболее древних отраслей, появившаяся тогда, когда само понятие науки еще не было устоявшимся. При этом, безо всяких сомнений, сегодня биотехнологии в широком смысле данного понятия, являются одним из наиболее перспективных и многообещающих направлений изучения возможностей использования живых организмов.

Фактически же человечество впервые столкнулось в биотехнологиями (в самом простом и широком понимании) в тот же момент, когда они столкнулись с “биотой” – то есть биологически активным населением самых разнообразных сущностей на нашей планете: при выпечке хлеба, пивоварении (в обоих случаях это дрожжевые культуры) и при самых первых, робких, шагах в селекции тех растений, которые помогали прокормиться.

Конечно, осознанное и планомерное развитие биотехнологий началось позже, фактически – не так давно по меркам науки, в конце XVII века, когда было открыто существование микроорганизмов. Огромную роль в этом открытии сыграл петербургский академик К. С. Кирхгов, который открыл явление биологического катализа и пытался биокаталитическим путем получить сахар из доступного отечественного сырья (в первую очередь – свеклы). А термину “биотехнологии” мы обязаны венгерскому инженеру Карлу Эреки, которые впервые использовал его в своих работах в 1917 году. Большая заслуга в первоначальном становлении биотехнологий, как направлению науки биологии, также отдается и одному из самых известнейших микробиологов – Луи Пастеру, благодаря открытиям которого никто более не сомневался в том, что биотехнологии являются самостоятельным научным направлением.

Первый же патент в области биотехнологий был выдан в 1891 году в США – японский биохимик Дз. Такамине открыл методику использования ферментных препаратов в промышленных целях: применять диастазу для осахаривания растительных отходов.

В XX веке развитие биотехнологий обрело новый вид и множество направлений – в частности, они начали оказывать влияние на другие отрасли и области хозяйственно-экономической деятельности человека. Стоит сказать лишь, что активное развитие бродильной и микробиологической промышленности дало нам сотни, если не тысячи, методик и препаратов, существенно улучшающих жизнь каждого человека: стало возможным производство антибиотиков, пищевых концентратов, а также осуществление контроля за ферментацией продуктов растительного и животного происхождения, что безумно важно для обеспечения продовольствием.

Выделение и очищение до приемлемого уровня первого антибиотика – пенициллина, стало возможным лишь в 1940 году, одновременно выведя всю отрасль биотехнологий на совершенно новый уровень и ставя новые задачи, такие как: поиск и отработка технологий производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня безопасности при приеме лекарственных препаратов пациентом и так далее.

В сегодняшнем мире биотехнологии уже фактически неразрывно связаны с инжинерией (в том числе и генной), энергетикой, медициной, сельским хозяйством, экологией и многими другими отраслями и научными направлениями мысли.

За последние 100 лет, благодаря безудержному прогрессу во всех направлениях, спектр задач и методики их решения в биотехнологиях значительно поменялись. В основе т.н. “новой” биотехнологии лежат уже очень продвинутые и высокотехнологичные методы генной и клеточной инжинерии, с помощью которых проводится множество сложных операций, в том числе – воссоздание из отдельных фрагментов клеток их жизнеспособных копий.

На стыке биотехнологии и других научных областей могут рождаться самые интересные и неожиданные решений, позволяющие глубже узнавать и использовать потенциал самых разнообразных живых организмов. Как следствие, мы больше узнаем о тех процессах, с помощью которых мы получаем:

– Материалы и композиты
– Топливо и способы синтеза
– Лекарственные препараты и вакцины
– Методы диагностики и профилактики заболеваний, в том числе генетически обусловленных
– Не говоря о процессах старения, являющихся в некотором смысле “философским камнем” мира биотехнологий, есть множество абсолютно приземленных и, простите, “простых” перспектив применения в реальной жизни с её практикой.

В первую очередь здесь, конечно, неоправданно нелюбимые необразованным читателем/зрителем/слушателем “генно-модифицированные организмы”, пресловутый “ГМО”. На самом деле человечество, с того самого мгновения, как оно сменило кочевничество на оседлый образ жизни и начало обрабатывать землю и разводить скот, занималось созданием “генно-модифицированных” культур в сельском хозяйстве. Без этого у нас бы не было урожая в принципе, так как условия биоценоза (то есть устойчивого развития организмов) просто не позволили бы вырастить ни корову, ни пшеницу. И именно поэтому биотехнологии в области растительных культур могут решить множество проблем, от голода и обеспечения продуктами, до улучшения качества жизни всех людей вследствие гармонизации уровней питательности самых разнообразных продуктов растительного происхождения.


Не нужно думать, что биотехнологии сегодня достигли пика собственного развития – такое мнение было бы в корне неверно. Происходит дальнейшая фрагментация “биотехнологий” на емкие направления, занимающиеся собственными прикладными задачами. К примеру, в России была принята “Комплексная программа развития биотехнологий”, в рамках которой планируется создание глобально конкурентноспособного секта биоэкономики и предприятий, работающих в этой области. При этом ожидается, что к 2020 году объем этого сектора составил не менее 1% ВВП, а к 2030 – не менее 3% ВВП Российской Федерации. Это не просто амбициозные планы, это суровая реальность, которой необходимо соответствовать.

На какие отрасли могут оказать влияние биотехнологии в самом ближайшем будущем? Почти на все, ведь мы видим дальнейшую интеграцию различных научных и прикладных областей друг с другом.

Возьмем для примера космическую отрасль, которая уже сегодня активно работает с микроорганизмами, применяя настоящие биотехнологические методы. К примеру, благодаря отправке различных видов микроорганизмов на МКС, мы знаем, что огромное число бактерий устойчиво к жесткому космическому излучению самых разнообразных спектров и волн. Более того, мы обнаружили на Земле микроорганизмы, находящиеся в состоянии анабиоза (грубо говоря: “спячки”), которые вышли из него только будучи облучены космическими лучами. Они микроорганизмы просто не могли образоваться на нашей планете, они были занесены к нам в процессе формирования Солнечной системы с других космических объектов нашей галактики.

Как еще биотехнологии могут повлиять на освоение людьми ближайшего к нам космоса? Представьте себе даже простую исследовательскую экспедицию к другим планетам в пределах нашей локальной группы – например, к Марсу. Помимо психологической устойчивости экипажа такой экспедиции (а полет будет длится минимально год при текущем уровне развития ракетных и других видов двигателей, пригодных для межпланетного сообщения), ей понадобится приличный запас продовольствия и топлива. Даже сейчас на МКС невозможно доставить годовой запас продовольствия для группы из 3-5 космонавтов – это слишком тяжело и потребуется несколько ракет-носителей. Что уж говорить о долгосрочной космической миссии, в рамках которой возможности пополнения запасов “по-дороге” просто не будет.

Поэтому и потребуется наладить бесперебойное выращивание пищи на месте – только такая схема обеспечит безопасность и миссии полета, и колонизации. С этим согласны и ученые “Национальной лаборатории им. Беркли” в США, которые и предлагают, как-раз, прибегнуть к использованию последних достижений в области синтетической биологии. Что это значит?

Исследователи подсчитали, что для экспедиции на Марс продолжительностью примерно около двух с половиной лет, использование современных методов, применяемых в биотехнологиях, позволит в два с половиной раза сократить потребность в горючем топливе и на ⅓ – в продовольствии. В докладе исследователи отметили, что последние разработки на стыке биологии и нанотехнологий также помогут в строительстве жилых модулей. Непосредственно на другой планете, будь то Марс или какая-то другая. Все необходимые для этого материалы можно синтезировать прямо на месте, а строительные блоки получат по технологии многослойной 3D-печати.

Естественно, есть у биотехнологий и многочисленные “противовесы” и сдерживающие факторы, первыми из которых идут социально-этические и религиозные предпосылки. Человек может, фактически, использовать возможности живых организмов для решения самых разнообразных задач в бесконечном цикле, но, на практике, лишь до определенного момента – некоторой черты, переходить которую “нельзя”. В первую очередь это касается полного клонирования живых организмов (вспомним овечку “Долли” и все то, что о ней говорилось). Сегодня это запрещено в большинстве развитых стран, а людям, которые вопреки всему готовы этим заниматься, приходится искать и финансирование, и условия для работы там, где они не нарушают никаких законов – например, в нейтральных водах мирового океана (которые не контролируются национальными законами ни одной страны).

При этом, конечно, никто сегодня не исключает того факта, что в будущем полное клонирование человека станет возможным. Как это простимулирует всю отрасль биотехнологий и какие новые наукоемкие направления работы в ней появятся вслед за этим событием – покажет будущее.

Это что касается общего развития биотехнологий, как большой научной и промышленной отрасли на стыке технологий и биологии. А на какие профессии и сферы занятости влияют широкие “биотехнологии”, как понятия? На самом деле, их множество. Попробуем перечислить лишь наиболее интересные и перспективные.


Это специалист по замещению существующих и формально устаревающих решений в различных отраслях новыми методиками из области биотехнологий (например биотопливо вместо дизельного топлива, или органические строительные материалы вместо цемента, бетона и стали).


Это специалист по планированию, проектированию и созданию технологий замкнутого цикла с участием генетически модифицированных организмов и микроорганизмов (биоректоры, системы производства еды в городских условиях).


Это специалист, занимающийся проектированием городов нового типа, с использованием последних достижений в области биотехнологий, в том числе чистых биологических энергоресурсов и систем контроля загрязнения окружающей среды.


Это специалист по созданию новых лекарственных биопрепаратов с заданными свойствами, которые смогуз аменить искуственно синтезированные лекарства.



Это специалист по обустройству и обслуживанию агропромышленных хозяйств на крышах и стенах небоскребов и жилых домов, то есть в условиях городской застройки. Здесь могут быть как продукты питания, так и разведение домашнего скота.


Это специалист, применяющий свойства и организацию живой природы и живых организмов (в том числе и человека) для создания автоматизированных систем и усовершенствования вычислительной техники. Например, распределенные вычислительные сети на базе микроорганизмов уже сегодня решают специфические задачи, не подвластные компьютерному моделированию.

Почему биотехнологии?
Человечество входит в третье тысячелетие с громадными знаниями в области наук о жизни и колоссальным потенциалом их практического использования.
Достижения в области физико-химической биологии и биотехнологии заложили основы новой медицины. Стремительно развиваются новые методы диагностики труднодиагностируемых заболеваний и устойчивых к воздействию антибиотиков микроорганизмов. Фармакология получила множество ранее недоступных возможностей благодаря открытию новых генов и их белковых продуктов, что ведет к возникновению нового поколения лекарств с высокой избирательностью действия и малой токсичностью.
В последнее десятилетие отрасль привлекает все более пристальное внимание инвесторов по всему миру, а согласно прогнозам экспертов, биотехнологии способствующие улучшению человеческой жизни или самого организма, способны стать одним из наиболее динамично развивающихся и прибыльных бизнесов XXI века.
Основные тенденции на мировом рынке биотехнологий:
Адресная доставка лекарственных средств. Мировой рынок наномедицины,
достижения которой позволяют достичь существенных успехов в разработке систем
адресной доставки лекарственных средств, растет на 12,3% в год. Его объем составит 178 млрд долларов к 2019 году. Наиболее перспективными областями применения
наномедицины являются лечение онкологических и сердечнососудистых заболеваний.
Одной из тенденций современной медицины является активное внедрение биологических полимеров, способных длительно выполнять необходимые функции или разлагаться на простые метаболиты и выводиться организмом за установленный срок без вреда для человека, что зачастую сопровождается образованием новых тканей. Глобальное старение населения и растущее число хирургических вмешательств для замены тканей и органов создают основу для устойчивого долгосрочного роста спроса на биосовместимые и биодеградируемые медицинские материалы. По оценке аналитической компании GIA, объем этого рынка достигнет 106,7 млрд долларов к 2020 году.
Текущее состояние инновационной инфраструктуры в секторе
биотехнологий в России:
По итогам 2011–2013 годов в России в целом сформировался «инновационный лифт» - система созданных государством институтов развития, поддерживающих инновационные проекты на различных стадиях: от предпосевной и посевной до момента расширения и реструктуризации. Основными структурными элементами «инновационного лифта» выступают ОАО «РВК», ОАО «Роснано», Фонд «Сколково», Внешэкономбанк (ВЭБ), Российский банк поддержки малого и среднего предпринимательства (МСП Банк), Фонд содействия развитию малых форм предприятий
в научно-технической сфере («Фонд Бортника»), Российский фонд технологического развития (РФТР). Дополняют систему активно создаваемые региональные венчурные фонды, общественные организации («ОПОРА РОССИИ»), Российская ассоциация венчурного инвестирования, а также специализированная торговая площадка Московской биржи для высокотехнологичных компаний
«Рынок инноваций и инвестиций». В области биотехнологий особая роль отводится Кластеру биомедицинских технологий Инновационного центра «Сколково». Так, в рамках «Сколково» компании не только могут получить финансовые ресурсы в форме грантов, но также имеют доступ к упрощенным таможенным процедурам, менторской поддержке профессионалов, дискуссионным площадкам.
И в заключении хотелось бы подвести итог:
Если мы хотим оставаться цивилизованной страной, то мы обязаны развивать собственную биотехнологическую промышленность. Это выгодно, перспективно и приоритетно, что подтверждает и наблюдаемая тенденция роста интереса со стороны российского частного капитала к созданию фармацевтических и биотехнологических производств.
Институты развития уделяют этому сектору все больше внимания в своих инвестиционных стратегиях. Важная роль в развитии отрасли отводится Технологическим платформам («Медицина будущего», «Биотех 2030», «Биоэнергетика»), и площадкам для развития биотехнологий (www.ivao.com) которые призваны стать связующим звеном между бизнесом и наукой. Провозглашенная политика импортозамещения постепенно начинает приносить свои плоды. Так, многие крупнейшие биофармацевтические компании локализовали свое производство в кластерах Калужской, Ярославской области, в Санкт-Петербурге. Отечественные компании при поддержке Министерства промышленности и торговли создают аналоги зарубежных биопрепаратов. С ожидаемым истечением сроков патентной защиты на многие лекарства, в перспективе в России может появиться конкурентоспособный сектор биоаналогов (биосимиляров).

Медицинские биотехнологии, использующие живые системы и их продукты, принципиально меняют подход к разработке лекарственных средств и увеличивают шансы победить или вообще предотвратить трудноизлечимые заболевания.

Клиническая картина мира

Инвестиции в медицинcкие разработки постоянно растут. Мировые расходы на R&D в области Life Science, по данным Industrial Research Institute (IRI), за последние десять лет увеличились втрое и составили $169,3 млрд в 2016 году. Причем 85% ресурсов приходится на биофармацевтический сектор. По затратам на R&D медицина является лидером наряду с ICT (Information and Communication Technology — $204,5 млрд в 2016 году).


Однако доля расходов на исследования в общих тратах частного и государственного секторов на здравоохранение даже в развитых странах сравнительно невелика. В США — лидере среди стран по вложениям в R&D — их доля в 2016 году составляла 4,9% от общих расходов на здравоохранение, оцениваемых в $3,2 трлн. В России — 1,8% от общих расходов в $9,7 млрд, или 544 млрд руб.

Потребности медицины определяет клиническая картина мира. В XXI веке она складывается из сердечно-сосудистых и онкологических заболеваний, старческих недугов, наследственных и даже орфанных (редких) болезней разной этиологии. Кроме того, наука по-прежнему ищет способы борьбы с масштабными вирусными инфекциями, не поддающимися классической вакцинации (гриппом, ВИЧ-инфекцией), и новыми экзотическими — ТОРС, Эбола, Зика.

В первую очередь фармкомпании и государство вкладывают средства туда, где гарантирован успех в лечении и возврат вложенных средств. «Выбор актуальных направлений в медицине базируется на потенциале конечного продукта с точки зрения его эффективности, на запросе потребителя, которым может выступать государство как представитель пациентов, а также интересе частных компаний и инвесторов в реализации прорывных проектов с высокой окупаемостью», — отмечает генеральный директор компании Future Biotech Денис Курек.

В частности, основные силы российских разработчиков по заказу государства брошены на создание эффективного и доступного лекарства от рака — второй после заболеваний сердечно-сосудистой системы причины смертности в России. Ежегодный объем госзакупок на лечение онкозаболеваний превышает 60 млрд руб. — такие данные приводят в DSM Group. «Аудитория у болезни широкая, стоимость препаратов высока. Отдача от инвестиций в разработку лекарства от онкозаболеваний происходит довольно быстро», — говорит эксперт фармацевтического рынка, генеральный директор DSM Group Сергей Шуляк.

Достижения последних лет в области биологии, химии, иммунологии, клеточной биологии и других науках позволяют сделать рывок в области прикладного их применения в практической медицине. Рождаясь на стыке этих наук, медицинские биотехнологии в ближайшие 20 лет могут удивить человечество не меньше, чем, например, информационные технологии.

Иммунотерапия

Одной из самых перспективных технологий создания современных лекарств от онкологических и аутоиммунных заболеваний является биосинтез моноклональных антител (МКА). Близкие по своей структуре к человеческим иммуноглобулинам — белкам крови, являющимся одним из основных механизмов защиты организма от инфекционных заболеваний, МКА низкотоксичны и более безопасны по сравнению с традиционной химиотерапией.

Первый импортный иммунотерапевтический препарат ипилимумаб (TM Yervoy) нового поколения, который является моноклональным антителом, способным связывать и подавлять защиту клеток метастатической меланомы (рака кожи), был выведен на рынок в 2014 году компанией Bristol-Myers Squibb. Компания Biocad планирует в 2018-2019 годах выпуск в России препарата, действующего по тому же принципу, но более широкого спектра действия. Об этом ранее заявляла министр здравоохранения РФ Вероника Скворцова.

Сегодня стоимость лекарства в России — около 100 тыс. руб. за упаковку. Курс лечения с поддерживающим ипилимумаб препаратом того же класса и той же компании — ниволумабом (TM Opdivo) обойдется в два раза дороже. Импортные препараты пока монополисты нового рынка. Российские разработки призваны снизить стоимость жизненно важных лекарств. Программа «Фарма-2020» субсидирует разработки в этой области (см. диаграмму). В частности, первый российский препарат на основе МКА — ритуксимаб — Biocad выпустила в 2014 году в результате государственно-частного партнерства на средства федерального бюджета.

Стимулирование отрасли (с 2015 года препараты российского производства имеют существенные преференции в госзакупках ЛС) позволило российским технологиям серьезно продвинуться в создании лекарств нового поколения и потеснить препараты импортного производства. По данным DSM Group, в 2015 году в госзакупках по программе «Семь нозологий» доля препаратов российского производства выросла с 3 до почти 20%. В рамках этой программы наиболее дорогие лекарства для семи редких заболеваний, включая злокачественные новообразования кроветворной и лимфоидной тканей, централизованно закупаются на средства федерального бюджета. За последние два года значительно выросли объемы закупок, в том числе отечественных противоопухолевых препаратов, по государственной программе льготного лекарственного обеспечения (ОНЛС).

Вакцины против аутоиммунных заболеваний

Антицитокиновая терапия — последнее слово в лечении аутоиммунных заболеваний, при которых некоторые иммунные клетки, призванные защищать организм, начинают его убивать. Однако в ее современном виде у этой технологии есть очевидные недостатки — организм не всех больных на нее отвечает, нет надежных биомаркеров, которые позволили бы предсказать успех этой очень дорогой терапии.

Дальнейшее развитие метода, по словам научного руководителя Федерального исследовательского центра фундаментальной основы биотехнологии РАН, завкафедрой биотехнологии биологического факультета МГУ им. М.В. Ломоносова академика Константина Скрябина, связывают с созданием препаратов на основе биспецифических, как их называют, антител с заданными свойствами, или бинарных вакцин. Это биоконструкции на основе антител, образно говоря, с двумя руками. Одной антитело держится за поверхность «сошедшей с ума» иммунной клетки, а второй, как хоккейный вратарь в ловушку, ловит выделяющиеся из клетки вредные цитокины и нейтрализует их.

На рынке они появятся, вероятно, не раньше середины 2020-х годов. Создание таких лекарств — путь долгий и дорогой.

Предметом исследования являются не только сами антитела, но и мишени — деструктивная клетка или вещество, которое активирует ее деятельность и которое нужно нейтрализовать. «Определение мишени — важная часть инновации в создании лекарства», — говорит Константин Скрябин.

«Нужно понимать, о какой «сошедшей с ума» патологической клетке идет речь и с помощью какой мишени эту клетку можно отличить от здоровых клеток. Главное — это наличие адекватной мишени, открытой фундаментальными биологами, исследователями», — согласен медицинский директор Национальной иммунобиологической компании (входит в госкорпорацию «Ростех») Александр Власов.

Выращивание тканей

Существующие технологии уже позволяют выращивать ткани и даже целые органы за счет ресурсов самого организма (аутологичных клеток, широко известные стволовые клетки — их разновидность). Но главная проблема в том, что для клеточного строительства нужен матрикс — каркас, который в идеале по окончании строительства должен замениться восстановленной тканью и бесследно исчезнуть.

Разработка МГУ предлагает в качестве такого каркаса для наращивания ткани фиброин (белок) шелка тутового шелкопряда. До сих пор на рынке матриксов конкурировали синтетические биоразлагаемые полимеры, но использование природных материалов выглядит более перспективным. Первые результаты биопротезирования тонкого кишечника у крыс обнадеживают, что эта технология будет востребованной.

«Чтобы выращивать новые ткани и органы, например кожу или тонкий кишечник, клетки должны образовывать нужную структуру конкретного органа. Белок шелка тутового шелкопряда позволяет структурировать ткань», — отмечает Константин Скрябин. По его мнению, технология имеет большое будущее.

Генная инженерия

Наука не только научилась читать геном человека со всей наследственной информацией, но и нашла способ его редактировать, что открывает новые возможности для лечения онкологии, вируса иммунодефицита человека и моногенных заболеваний. Лидирует по использованию редактирования генома терапия ВИЧ-инфекции с шестью зарегистрированными на сегодняшний день клиническими исследованиями. «Перспективы применения редактирования генома безграничны. В области трансплантации органов и тканей, например, особое место занимают разработки по преодолению межвидовой гисто-

совместимости. «Отредактированные» животные, например свиньи, с учетом физиологии и архитектоники органов и тканей могут быть универсальными донорами для человека», — отмечают авторы доклада «Редактирование генома и возможности генной терапии в онкологии» фонда «Сколково».

Мировые медтехнологии, по словам академика Скрябина, перешли к превентивным мерам в отношении трудноизлечимых заболеваний. В начале 2000-х годов чтение генома обошлось в $3 млрд, сейчас технология позволяет это сделать за $1 тыс. Одна из американских компаний, специализирующаяся на этой услуге, анонсировала возможность получать всю генетическую информацию человека в течение двух часов по цене, не превышающей $100.

Результатом поиска на протяжении последних 20 лет подхода к проведению неинвазивной диагностики генетических заболеваний плода стала возможность на раннем сроке — уже после десятой недели беременности — определять свободные фрагменты ДНК из клеток плода в крови матери. Достаточно забора крови матери. В Европе сделано уже 400 тыс. анализов с использованием фетального материала, циркулирующего в материнском кровотоке, в Китае — 500 тыс. В России проведены пока только первые пять тысяч анализов. В стране нет зарегистрированного необходимого оборудования, иностранные аналоги очень дороги, поэтому услуга недоступна в повседневной медицинской практике. Кроме того, по словам Константина Скрябина, государственная система обязательного медицинского страхования (ОМС) оплачивает стандартные методики пренатальной диагностики, так называемого прокола — забора необходимых материалов околоплодной жидкости с проникновением инструментов в полость матки.

По словам исполнительного директора кластера биомедицинских технологий фонда «Сколково» Кирилла Каема, будущее за Big Data в медицине: «Собрав данные по большим популяциям населения, можно полностью изменить парадигму здоровья. Эти данные будут давать вероятностный прогноз о рисках и позволят заниматься профилактикой не только в традиционном виде, а делать конкретные вмешательства, которые позволят остановить развитие заболеваний».

Александр Власов ждет перспективных решений в области продления жизни и комфортного старения от западных специалистов. Фундаментальных исследований вопросов старения, по его словам, в нашей стране пока мало.

Биотехнологии – медицине будущего

Новый выпуск журнала «НАУКА из первых рук» вышел «по следам» всероссийской конференции с международным участием «Биотехнология – медицине будущего», состоявшейся в новосибирском Академгородке в июле 2017 г. Среди организаторов научного форума – Институт химической биологии и фундаментальной медицины и Институт цитологии и генетики СО РАН, а также Новосибирский национальный исследовательский государственный университет, где биомедицинские исследования ведутся в рамках стратегической академической единицы «Синтетическая биология», объединяющей ряд российских и зарубежных участников, в первую очередь институты СО РАН биологического профиля. В первой, вводной статье выпуска ее авторы дают обзор самых актуальных направлений и перспективных результатов исследований, связанных с разработкой и внедрением в практическую медицину новых генно-инженерных, клеточных, тканевых, иммунобиологических и цифровых технологий, часть из которых детально представлена в других статьях номера

Стремительное развитие биологической науки, обусловленное появлением высокопроизводительных приборов и созданием методов манипулирования информационными биополимерами и клетками, подготовило фундамент для развития медицины будущего. В результате исследований последних лет были разработаны эффективные диагностические методы, появились возможности для рационального конструирования противовирусных, противобактериальных и противоопухолевых препаратов, средств генотерапии и геномного редактирования. Современные биомедицинские технологии все в большей степени начинают влиять на экономику и определять качество жизни людей.

К настоящему времени детально исследованы строение и функции основных биологических молекул и разработаны методы синтеза белков и нуклеиновых кислот. Эти биополимеры по своей природе являются «интеллектуальными» материалами, так как способны высокоспецифично «узнавать» и воздействовать на определенные биологические мишени. Путем направленного «программирования» таких макромолекул можно создавать рецепторные молекулярные конструкции для аналитических систем, а также лекарственные препараты, избирательно воздействующие на конкретные генетические программы или белки.

«Интеллектуальные препараты», созданные методами синтетической биологии, открывают возможности для таргетной (целенаправленной) терапии аутоиммунных, онкологических, наследственных и инфекционных заболеваний. Это дает основание говорить о внедрении в медицинскую практику подходов персонализированной медицины, ориентированной на лечение конкретного человека.

С помощью современных медицинских технологий и фармпрепаратов сегодня удается излечивать многие болезни, представлявшие в прошлом огромную медицинскую проблему. Но с развитием практической медицины и ростом продолжительности жизни все более актуальной становится задача здравоохранения в самом прямом смысле этого слова: не просто бороться с болезнями, но поддерживать имеющееся здоровье, чтобы человек мог вести активный образ жизни и оставаться полноценным членом общества до глубокой старости.

БУДЕМ ЗДОРОВЫ! Современные методы геномного секвенирования широко внедряются в медицину, и в ближайшем будущем все пациенты будут иметь генетические паспорта. Сведения о наследственных особенностях пациента – ​основа прогностической персонализированной медицины. Предупрежденный, как известно, вооружен. Человек, осведомленный о возможных рисках, может организовать свою жизнь таким образом, чтобы не допустить развития заболевания. Это касается и образа жизни, и выбора продуктов питания и терапевтических препаратов.
При условии постоянного отслеживания набора маркеров, сигнализирующих об отклонениях в работе организма, можно вовремя провести их коррекцию. Уже сейчас существует множество методов мониторинга состояния организма: например, с помощью датчиков, следящих за работой сердечно-сосудистой системы и качеством сна или устройств, анализирующих газообразные продукты в выдыхаемом человеком воздухе. Огромные возможности открываются в связи с развитием малоинвазивных технологий жидкостной биопсии и технологий анализа белков и пептидов, циркулирующих в кровотоке. На ранних стадиях болезни корректировать состояние организма во многих случаях можно «мягкими» методами: меняя характер питания, используя добавочные микроэлементы, витамины и пробиотики. В последнее время особое внимание уделяется возможностям корректировки отклонений в составе кишечной микрофлоры человека, которые ассоциированы с развитием большого числа патологических состояний.

Такую задачу можно решить, обеспечив постоянный эффективный контроль за состоянием организма, который позволил бы избегать действия неблагоприятных факторов и предупреждать развитие заболевания, выявляя патологический процесс на самом раннем этапе, и ликвидировать саму причину возникновения болезни.

В этом смысле основную задачу медицины будущего можно сформулировать как «управление здоровьем». Сделать это вполне реально, если иметь полную информацию о наследственности человека и обеспечить мониторинг ключевых показателей состояния организма.

«Умная» диагностика

Для управления здоровьем необходимо иметь эффективные и простые малоинвазивные методы ранней диагностики заболеваний и определения индивидуальной чувствительности к терапевтическим препаратам, а также факторам внешней среды. Например, должны быть решены (и уже решаются) такие задачи, как создание систем для генной диагностики и выявления возбудителей инфекционных заболеваний человека, разработка методов количественного определения белков и нуклеиновых кислот – ​маркеров заболеваний.

Отдельно стоит выделить создание методов ранней неинвазивной диагностики (жидкостная биопсия ) опухолевых заболеваний, основанных на анализе внеклеточной ДНК и РНК. Источником таких нуклеиновых кислот служат как погибшие, так и живые клетки. В норме их концентрация относительно низка, но обычно возрастает при стрессе и развитии патологических процессов. При возникновении злокачественной опухоли в кровоток попадают нуклеиновые кислоты, выделяемые раковыми клетками, и такие характерные циркулирующие РНК и ДНК могут служить маркерами заболевания.

Сейчас на основе подобных маркеров разрабатываются подходы к ранней диагностике рака, методы прогнозирования риска его развития, а также оценки степени тяжести течения болезни и эффективности терапии. Например, в Институте химической биологии и фундаментальной медицины СО РАН было показано, что при раке предстательной железы повышается степень метилирования определенных участков ДНК. Был разработан метод, позволяющий выделить из образцов крови циркулирующую ДНК и проанализировать характер ее метилирования. Этот способ может стать основой точной неинвазивной диагностики рака простаты, которой на сегодня не существует.

Важным источником информации о состоянии здоровья могут служить так называемые некодирующие РНК , т. е. те РНК, которые не являются матрицей для синтеза белков. За последние годы было установлено, что в клетках образуется множество различных некодирующих РНК, участвующих в регуляции самых разных процессов на уровне клеток и целого организма. Изучение спектра микроРНК и длинных некодирующих РНК при различных состояниях открывает широкие возможности для быстрой и эффективной диагностики. В Институте молекулярной и клеточной биологии СО РАН (ИМКБ СО РАН, Новосибирск) и ИХБФМ СО РАН идентифицирован ряд микроРНК – ​перспективных маркеров опухолевых заболеваний.

УЗНАТЬ ВРАГА В ЛИЦО Современные технологии с применением биологических микрочипов позволяют быстро и эффективно идентифицировать возбудителей ряда болезней (туберкулеза, СПИДа, гепатитов В и С, сибирской язвы, инфекций новорожденных), фиксировать наличие определенных биотоксинов, определять хромосомные транслокации при лейкозах, регистрировать белковые маркеры онкозаболеваний, определять генетическую предрасположенность к болезням и индивидуальную чувствительность к некоторым типам терапии. Технологии также можно использовать для генетической идентификации личности при проведении судебно-генетических экспертиз и формирования баз данных ДНК.
ИХБФМ СО РАН участвовал в реализации двух крупных международных проектов по разработке олигонуклеотидных микрочипов, финансировавшихся американской Программой сотрудничества в области биотехнологий Департамента здравоохранения США (Biotechnology Engagement Program, US Department of Health and Human Services , BTEP/DHHS). В рамках первого проекта с участием специалистов ИМБ им. В. А. Энгельгардта созданы микрочипы, позволяющие точно идентифицировать различные штаммы вирусов оспы и герпеса. Были разработаны два варианта конструкции микрочипов (на стеклянной подложке и с гелевыми спотами), а также портативный флуоресцентный детектор для их анализа. В рамках второго проекта был создан универсальный микрочип для типирования вируса гриппа А, позволяющий достоверно различать 30 подтипов этого вируса на основе определения двух поверхностных белков вируса – ​гемагглютинина и нейраминидазы

С помощью современных технологий секвенирования РНК и ДНК может быть создана платформа для диагностики и прогноза онкологических заболеваний человека на основе анализа содержания микроРНК и генотипирования, т. е. установления конкретных генетических вариантов того или иного гена, а также для определения профилей экспрессии (активности) генов. Такой подход предполагает возможность быстрого и одновременного проведения множества анализов с помощью современных устройств – ​биологических микрочипов .

Биочипы представляют собой миниатюрные приборы для параллельного анализа специфических биологических макромолекул. Идея создания подобных устройств родилась в Институте молекулярной биологии им. В. А. Энгельгардта Российской академии наук (Москва) еще в конце 1980-х гг. За короткое время биочиповые технологии выделились в самостоятельную область анализа с огромным спектром практических приложений, от исследования фундаментальных проблем молекулярной биологии и молекулярной эволюции до выявления лекарственно устойчивых штаммов бактерий.

Сегодня в ИМБ РАН производятся и используются в медицинской практике оригинальные тест-системы для идентификации возбудителей ряда социально значимых инфекций, в том числе таких как туберкулез, с одновременным выявлением их резистентности к антимикробным препаратам; тест-системы для оценки индивидуальной переносимости препаратов группы цитостатиков и многое другое.

Мировой лидер «биочипостроения» – ​американская компания Affymetrix Inc . – ​производит биочипы с высокой плотностью молекулярных зондов, основываясь на фотолитографических технологиях, использующихся для получения полупроводниковых микросхем. На одном таком чипе на площади менее 2 см 2 могут располагаться миллионы точек-спотов размером в несколько микрон. Каждая подобная точка содержит несколько миллионов одинаковых олигонуклеотидов, ковалентно связанных с поверхностью микрочипа

Развитие биоаналитических диагностических методов требует постоянного повышения чувствительности  – ​способности давать достоверный сигнал при регистрации малых количеств детектируемого вещества. Биосенсоры  – ​это новое поколение устройств, позволяющих специфично анализировать содержание различных маркеров заболеваний в образцах сложного состава, что особенно важно при диагностике заболеваний.

ИХБФМ СО РАН в сотрудничестве с новосибирским Институтом физики полупроводников СО РАН разрабатывает микробиосенсоры на основе полевых транзисторов , являющихся одними из самых чувствительных аналитических устройств. Такой биосенсор позволяет в реальном времени отслеживать взаимодействие биомолекул. Его составной частью является одна из таких взаимодействующих молекул, которая играет роль молекулярного зонда. Зонд захватывает из анализируемого раствора молекулярную мишень, по наличию которой можно судить о конкретных характеристиках здоровья пациента.

«Комплементарное» лекарство

Расшифровка геномов человека и возбудителей различных инфекций открыла дорогу для разработки радикальных подходов к терапии болезней путем направленного воздействия на их первопричину – ​генетические программы, ответственные за развитие патологических процессов. Глубокое понимание механизма возникновения заболевания, в который вовлечены нуклеиновые кислоты, дает возможность сконструировать терапевтические нуклеиновые кислоты, восполняющие утраченную функцию либо блокирующие возникшую патологию.

Двуцепочечные молекулы нуклеиновых кислот, ДНК и РНК, формируются благодаря взаимодействию пар нуклеотидов, способных к взаимному узнаванию и образованию комплексов за счет формирования водородных связей. Это свойство называется «комплементарностью»

Такое воздействие может быть осуществлено с помощью фрагментов нуклеиновых кислот – ​синтетических олигонуклеотидов , способных избирательно взаимодействовать с определенными нуклеотидными последовательностями в составе генов-мишеней по принципу комплементарности . Сама идея использовать олигонуклеотиды для направленного воздействия на гены была впервые выдвинута в лаборатории природных полимеров (впоследствии – ​отдел биохимии) Новосибирского института биоорганической химии СО РАН (ныне – ​Институт химической биологии и фундаментальной медицины СО РАН). В Новосибирске были созданы и первые препараты ген-направленного действия для избирательной инактивации вирусных и некоторых клеточных РНК.

Подобные ген-направленные терапевтические препараты сегодня активно разрабатываются на основе нуклеиновых кислот, их аналогов и конъюгатов (антисмысловых олигонуклеотидов, интерферирующих РНК, аптамеров, систем геномного редактирования). Исследования последних лет показали, что на основе антисмысловых олигонуклеотидов можно получить широкий спектр биологически активных веществ, действующих на различные генетические структуры и запускающих процессы, приводящие к временному «выключению» генов либо изменению генетических программ – ​появлению мутаций . Было доказано, что с помощью подобных соединений можно подавить функционирование определенных матричных РНК живой клетки, воздействуя на синтез белков, а также защитить клетки от вирусной инфекции.

«ЛЕЧИМ» БЕЛОК Регуляция экспрессии генов под действием «антисмысловых» олигонуклеотидов возможна на различных уровнях. Так, олигонуклеотиды, комплементарные последовательности матричной РНК, подавляют экспрессию генов на стадии трансляции, т. е. синтеза белка. Но терапевтические нуклеиновые кислоты могут вмешиваться и в другие молекулярно-биологические процессы, например, исправлять нарушения в процессе сплайсинга при созревании мРНК. При одном из таких нарушений в клетках синтезируется «неправильный» дистрофин – ​белок, являющийся важным структурным компонентом мышечной ткани. Это приводит к возникновению тяжелого заболевания – ​миодистрофии Дюшенна. В ИХБФМ СО РАН разработаны терапевтические олигонуклеотиды для лечения этого заболевания, и уже подана заявка на соответствующий патент.

Сегодня антисмысловые олигонуклеотиды и РНК, подавляющие функции мРНК и вирусных РНК, применяются не только в биологических исследованиях. Ведутся испытания ряда противовирусных и противовоспалительных препаратов, созданных на основе искусственных аналогов олигонуклеотидов, а некоторые из них уже начинают внедряться в клиническую практику.

Лаборатория биомедицинской химии ИХБФМ СО РАН, работающая в этом направлении, была создана в 2013 г. благодаря научному мегагранту Правительства РФ. Ее организатором стал профессор Йельского университета, Нобелевский лауреат С. Альтман. В лаборатории ведутся исследования физико-химических и биологических свойств новых перспективных искусственных олигонуклеотидов, на основе которых разрабатываются РНК-направленные противобактериальные и противовирусные препараты.

В рамках проекта, руководимого С. Альтманом, было выполнено масштабное систематическое исследование воздействия различных искусственных аналогов олигонуклеотидов на патогенные микроорганизмы: синегнойную палочку, сальмонеллу, золотистый стафилококк, а также вирус гриппа. Были определены гены-мишени, воздействием на которые можно наиболее эффективно подавить эти патогены; проводится оценка технологических и терапевтических характеристик самых действующих аналогов олигонуклеотидов, в том числе проявляющих антибактериальную и противовирусную активность.

В ИХБФМ СО РАН впервые в мире были синтезированы фосфорилгуанидиновые производные олигонуклеотидов. Эти новые соединения электронейтральны, устойчивы в биологических средах и прочно связываются с РНК- и ДНК-мишенями в широком диапазоне условий. Благодаря спектру уникальных свойств они перспективны для применения в качестве терапевтических агентов, а также могут быть использованы для повышения эффективности средств диагностики, основанных на биочиповых технологиях.

Среди коммерческих фирм лидером в создании терапевтических нуклеиновых кислот является американская компания Ionis Pharmaceuticals, Inc . (США). После многолетних клинических исследований были введены в медицинскую практику антисмысловые препараты: Kynamro  – ​снижающий уровень «плохого» холестерина, Alicaforsen  – ​для лечения язвенного колита и Spinraza  – ​для терапии дистрофии Дюшенна. Препараты Ionis против ряда других заболеваний проходят клинические испытания. Лидер в создании терапевтических интерферирующих РНК – ​компания Alnylam Pharmaceuticals  – ​также проводит клинические испытания целой серии препаратов для лечения тяжелых заболеваний (таких как наследственный амилоидоз, тяжелые формы гиперхолестеролемии, гемофилия), эффективные методы терапии которых в настоящее время отсутствуют

«Антисмысловое» воздействие на матричные РНК не ограничивается простым блокированием сплайсинга (процесса «созревания» РНК) или синтеза белка. Более эффективным является ферментативное разрезание мРНК, спровоцированное связыванием терапевтического олигонуклеотида с мишенью. При этом олигонуклеотид – ​индуктор расщепления – ​может в дальнейшем связаться с другой молекулой РНК и повторить свое действие. В ИХБФМ СО РАН исследовали действие олигонуклеотидов, образующих при связывании с мРНК комплексы, которые могут служить субстратами фермента РНКазы Р. Этот фермент и сам представляет собой РНК с каталитическими свойствами (рибозим ).

Чрезвычайно мощным средством подавления активности генов оказались не только антисмысловые нуклеотиды, но и двуцепочечные РНК, действующие по механизму РНК-интерференции . Суть этого явления в том, что, попадая в клетку, длинные дцРНК разрезаются на короткие фрагменты (так называемые малые интерферирующие РНК , siPНК), комплементарные определенному участку матричной РНК. Связываясь с такой мРНК, siPНК запускают действие ферментативного механизма, разрушающего молекулу-мишень.

Использование этого механизма открывает новые возможности для создания широкого спектра высокоэффективных нетоксичных препаратов для подавления экспрессии практически любых, в том числе вирусных, генов. В ИХБФМ СО РАН на основе малых интерферирующих РНК сконструированы перспективные противоопухолевые препараты, показавшие хорошие результаты в экспериментах на животных. Одна из интересных находок – ​двуцепочечные РНК оригинального строения, стимулирующие в организме производство интерферона , эффективно подавляющие процесс метастазирования опухолей. Хорошее проникновение препарата в клетки обеспечивают носители – ​новые катионные липосомы (липидные пузырьки), разработанные совместно со специалистами Московского государственного университета тонких химических технологий имени М. В. Ломоносова.

Новые роли нуклеиновых кислот

Разработка метода полимеразной цепной реакции, позволяющего в неограниченных количествах размножать нуклеиновые кислоты – ​ДНК и РНК, и появление технологий молекулярной селекции нуклеиновых кислот сделали возможным создание искусственных РНК и ДНК с заданными свойствами. Молекулы нуклеиновых кислот, избирательно связывающие определенные вещества, называются аптамерами . На их основе могут быть получены препараты, блокирующие функции любых белков: ферментов, рецепторов или регуляторов активности генов. В настоящее время получены уже тысячи самых разных аптамеров, находящих широкое применение в медицине и технике.

Один из мировых лидеров в этой области – ​американская компания Soma Logic Inc . – ​создает так называемые сомамеры , которые селективно отбирают из библиотек химически модифицированных нуклеиновых кислот по уровню сродства к тем или иным мишеням. Модификации по азотистому основанию придают таким аптамерам дополнительную «белковоподобную» функциональность, что обеспечивает высокую стабильность их комплексам с мишенями. Кроме того, это увеличивает вероятность успешного отбора сомамеров к тем соединениям, к которым подобрать обычные аптамеры не удалось.

Развитие синтетической биологии происходит на базе революционного прорыва в области олигонуклеотидного синтеза. Синтез искусственных генов стал возможным благодаря созданию высокопроизводительных синтезаторов генов, в которых использованы микро- и нанофлюидные системы. Сегодня созданы приборы, позволяющие быстро «собирать» искусственные гены и/или бактериальные и вирусные геномы, аналоги которых в природе отсутствуют.
Примером развития микрочиповых технологий могут служить американская фирма LC Sciences и немецкая Febit Gmbh . Биочиповый реактор производства LC Sciences с использованием стандартных реагентов для олигонуклеотидного синтеза позволяет одновременно синтезировать 4-8 тыс. разных олигонуклеотидов. Микрочиповый реактор фирмы Febit Gmbh состоит из 8 независимых фрагментов, на каждом из которых одновременно синтезируется до 15 тыс. разных олигонуклеотидов. За сутки таким образом можно получить до полумиллиона олигонуклеотидов – ​строительных блоков будущих генов

Среди аптамеров, имеющих сродство к клинически значимым мишеням, к настоящему времени имеются кандидаты на терапевтические препараты, достигшие третьей, ключевой фазы клинических испытаний. Один из них – ​Macugen  – ​уже используется в клинической практике для терапии заболеваний сетчатки глаза; препарат для лечения возрастной макулярной дегенерации сетчатки Fovista успешно заканчивает испытания. И на очереди множество подобных препаратов.

Но терапия – ​это не единственное предназначение аптамеров: они вызывают огромный интерес у биоаналитиков в качестве распознающих молекул при создании аптамерных биосенсоров .

В ИХБФМ совместно с Институтом биофизики СО РАН (Красноярск) разрабатываются биолюминесцентные аптасенсоры с переключаемой структурой. Получены аптамеры, которые играют роль репортерного блока сенсора, к Са 2+ -активируемому фотопротеину обелину , представляющему собой удобную биолюминесцентную метку. Этот сенсор способен «улавливать» молекулы лишь определенных белков, которые необходимо детектировать в образце. В настоящее время по этой схеме конструируются переключаемые биосенсоры к модифицированным белкам крови, служащим маркерами диабета.

Новым объектом среди терапевтических нуклеиновых кислот является и сама матричная (информационная) РНК. Компания Moderna Therapeutics (США) сейчас проводит масштабные клинические исследования мРНК. При попадании в клетку мРНК действуют в ней как ее собственные. В результате клетка получает возможность производить белки, которые могут предотвратить или остановить развитие заболевания. Большая часть таких потенциальных терапевтических препаратов направлена против инфекционных (вирус гриппа, вирус Зика, цитомегаловирус и др.) и онкологических заболеваний.

Белки как лекарство

Огромные успехи синтетической биологии за последние годы отразились и в разработке технологий производства терапевтических белков, уже широко применяющихся в клинике. В первую очередь это относится к противоопухолевым антителам, с помощью которых стала возможной эффективная терапия целого ряда онкологических заболеваний.

Сейчас появляются все новые противоопухолевые белковые препараты. Примером может служить препарат лактаптин , созданный в ИХБФМ СО РАН на основе фрагмента одного из основных белков молока человека. Исследователи обнаружили, что этот пептид индуцирует апоптоз («самоубийство») клеток стандартной опухолевой клеточной культуры – ​аденокарциномы молочной железы человека. С использованием методов генной инженерии был получен ряд структурных аналогов лактаптина, из которых был выбран наиболее эффективный.

Испытания на лабораторных животных подтвердили безопасность препарата и его противоопухолевую и антиметастатическую активность в отношении ряда опухолей человека. Уже разработана технология получения лактаптина в субстанции и лекарственной форме, изготовлены первые экспериментальные партии препарата.

Терапевтические антитела все шире применяются и для лечения вирусных инфекций. Специалистам ИХБФМ СО РАН удалось генно-инженерными методами создать гуманизированное антитело против вируса клещевого энцефалита. Препарат прошел все доклинические испытания, доказав свою высокую эффективность. Оказалось, что защитные свойства искусственного антитела в сто раз выше, чем коммерческого препарата антител, получаемого из сыворотки доноров.

Вторжение в наследственность

Открытия последних лет расширили возможности генотерапии, которые до недавнего времени представлялась фантастикой. Технологии геномного редактирования , основанные на применении РНК-белковой системы CRISPR/Cas, способны распознавать определенные последовательности ДНК и вносить в них разрывы. При «ремонте» (репарации ) таких нарушений можно исправлять мутации, ответственные за заболевания, или вводить в терапевтических целях новые генетические элементы.

Редактирование генов открывает перспективы радикального решения проблемы генетических заболеваний путем модификации генома при использовании экстракорпорального оплодотворения . Принципиальная возможность направленного изменения генов эмбриона человека уже доказана экспериментально, и создание технологии, обеспечивающей появление на свет детей, свободных от наследственных заболеваний, задача ближайшего будущего.

С помощью геномного редактирования можно не только «исправлять» гены: этот подход можно использовать для борьбы с вирусными инфекциями, не поддающимися обычной терапии. Речь идет о вирусах, встраивающих свой геном в клеточные структуры организма, где он оказывается недоступным для современных противовирусных препаратов. К таким вирусам относятся ВИЧ‑1, вирусы гепатита В, папилломавирусы, полиомавирусы и ряд других. Системы геномного редактирования могут инактивировать вирусную ДНК внутри клетки, разрезав ее на безопасные фрагменты либо внеся в нее инактивирующие мутации.

Очевидно, что применение системы CRISPR/Cas в качестве средства коррекции мутаций человека станет возможным лишь после ее усовершенствования с целью обеспечения высокого уровня специфичности и проведения широкого спектра испытаний. Кроме того, для успешной борьбы с опасными вирусными инфекциями необходимо решить проблему эффективной доставки терапевтических агентов в целевые клетки.

Сначала была клетка – ​стволовая

Одним из наиболее быстро развивающихся направлений в медицине является клеточная терапия . В ведущих странах уже проходят клинические испытания клеточных технологий, разработанных для лечения аутоиммунных, аллергических, онкологических и хронических вирусных заболеваний.

В России пионерные работы по созданию средств терапии на основе стволовых клеток и клеточных вакцин были выполнены в Институте фундаментальной и клинической иммунологии СО РАН (Новосибирск). В результате исследований были разработаны методы лечения онкологических заболеваний, гепатита В и аутоиммунных заболеваний, которые уже начали применяться в клинике в экспериментальном режиме.

Чрезвычайно актуальными в наши дни стали проекты создания банков культур клеток пациентов с наследственными и онкологическими заболеваниями для тестирования фармакологических препаратов. В Новосибирском научном центре такой проект уже реализуется межинститутским коллективом под руководством проф. С. М. Закияна. Новосибирские специалисты отработали технологии внесения мутаций в культивируемые клетки человека, в результате чего были получены клеточные модели таких заболеваний, как боковой амиотрофический склероз, болезнь Альцгеймера, спинальная мышечная атрофия, синдром удлиненного интервала QT и гипертрофическая кардиомиопатия.

Разработка методов получения из обычных соматических клеток плюрипотентных стволовых , способных превратиться в любую клетку взрослого организма, привела и к появлению клеточной инженерии, позволяющей восстанавливать пораженные структуры организма. Удивительно быстро развиваются технологии получения трехмерных структур для клеточной и тканевой инженерии на основе биоразрушаемых полимеров: протезов сосудов, трехмерных матриксов для выращивания хрящевой ткани и конструирования искусственных органов.

Так, специалисты ИХБФМ СО РАН и Национального медицинского исследовательского центра им. Е. Н. Мешалкина (Новосибирск) разработали технологию создания протезов сосудов и сердечных клапанов методом электроспиннинга . С помощью этой технологии из раствора полимера можно получить волокна толщиной от десятков нанометров до нескольких микрон. В результате серии экспериментов удалось отобрать изделия с выдающимися физическими характеристиками, которые сейчас успешно проходят доклинические испытания. Благодаря высокой био- и гемосовместимости такие протезы со временем замещаются собственными тканями организма.

Микробиом как объект и субъект терапии

К настоящему времени хорошо изучены и расшифрованы геномы многих микроорганизмов, поражающих человека. Ведутся исследования и сложных микробиологических сообществ, постоянно связанных с человеком, – ​микробиомов .

Существенный вклад в эту область исследований внесли и отечественные ученые. Так, специалисты ГНЦ ВБ «Вектор» (Кольцово, Новосибирская обл.) впервые в мире расшифровали геномы вирусов Марбург и натуральной оспы, а ученые ИХБФМ СО РАН – ​геномы вируса клещевого энцефалита, возбудителей клещевого боррелиоза, распространенных на территории РФ. Также были изучены микробные сообщества, ассоциированные с различными видами опасных для человека клещей.

В развитых странах сегодня активно ведутся работы, направленные на создание средств регуляции микробиома организма человека, в первую очередь его пищеварительного тракта. Как оказалось, от состава микробиома кишечника в огромной степени зависит состояние здоровья. Методы воздействия на микробиом уже существуют: например, обогащение его новыми терапевтическими бактериями, использование пробиотиков , благоприятствующих размножению полезных бактерий, а также прием бактериофагов (вирусов бактерий), избирательно убивающих «вредные» микроорганизмы.

В последнее время работы по созданию средств терапии на основе бактериофагов активизировались во всем мире в связи с проблемой распространения лекарственно-устойчивых бактерий. Россия – ​одна из немногих стран, где применение бактериофагов в медицине разрешено. В РФ существует промышленное производство препаратов, разработанных еще в советское время, и чтобы получать более эффективные бактериофаги, необходимо их совершенствовать, и эта задача может быть решена методами синтетической биологии.

Решением ее занимаются в ряде научно-исследовательских организаций РФ, в том числе в ИХБФМ СО РАН. В институте охарактеризованы промышленно производимые в РФ фаговые препараты, расшифрованы геномы ряда бактериофагов, а также создана их коллекция, в которую вошли и уникальные вирусы, перспективные для применения в медицине. В клинике института отрабатываются механизмы оказания персонализированной помощи больным, страдающим от бактериальных инфекций, вызванных лекарственно-устойчивыми микроорганизмами. Последние возникают при лечении диабетической стопы, а также в результате пролежней или послеоперационных осложнений. Разрабатываются и методы коррекции нарушений состава микробиома человека.

Совершенно новые возможности использования вирусов открываются в связи с созданием технологий получения интеллектуальных систем высокоизбирательного действия на определенные клетки. Речь идет об онколитических вирусах , способных поражать только опухолевые клетки. В экспериментальном режиме несколько таких вирусов уже применяются в Китае и США. Работы в этой области ведутся и в России, в них принимают участие специалисты из московских и новосибирских научно-исследовательских организаций: ИМБ РАН, ГНЦ ВБ «Вектор», Новосибирского государственного университета и ИХБФМ СО РАН.

Быстрое развитие синтетической биологии дает основание ожидать в ближайшие годы важных открытий и появления новых биомедицинских технологий, которые избавят человечество от многих проблем и позволят реально управлять здоровьем, а не только лечить наследственные и «благоприобретенные» заболевания.

Фронт исследований в этой области чрезвычайно широк. Уже сейчас доступные гаджеты представляют собой не просто игрушки, но реально полезные приборы, ежедневно обеспечивающие человека информацией, необходимой для контроля и поддержания здоровья. Новые технологии быстрого углубленного обследования дают возможность предсказать или своевременно обнаружить развитие болезни, а персонализированные препараты на основе «умных» информационных биополимеров позволят радикально решить проблемы борьбы с инфекционными и генетическими заболеваниями в самом ближайшем будущем.

Литература

Брызгунова О. Е., Лактионов П. П. Внеклеточные нуклеиновые кислоты мочи: источники, состав, использование в диагностике // Acta Naturae. 2015. Т. 7. № 3(26). С. 54-60.

Власов В. В., еще две фамилии и др. Комплементарные здоровью. Прошлое, настоящее и будущее антисмысловых технологий // НАУКА из первых рук. 2014. T. 55. № 1. С. 38-49.

Власов В. В., Воробьев П. Е., Пышный Д. В. и др. Правда о фаготерапии, или памятка врачу и пациенту // НАУКА из первых рук. 2016. Т. 70. № 4. С. 58-65.

Власов В. В., Закиян С. М., Медведев С. П. «Редакторы геномов». От «цинковых пальцев» до CRISPR // НАУКА из первых рук. 2014. Т. 56. № 2. С. 44-53.

Лифшиц Г. И., Слепухина А. А., Субботовская А. И. и др. Измерение параметров гемостаза: приборная база и перспективы развития // Медицинская техника. 2016. Т. 298. № 4. С. 48-52.

Рихтер В. А. Женское молоко – источник потенциального лекарства от рака // НАУКА из первых рук. 2013. Т. 52. № 4. С. 26-31.

Kupryushkin M. S., Pyshnyi D. V., Stetsenko D. A. Phosphoryl guanidines: a new type of nucleic Acid analogues // Acta Naturae. 2014. V. 6. № 4(23). P. 116-118.

Nasedkina T. V., Guseva N. A., Gra O. A. et al. Diagnostic microarrays in hematologic oncology: applications of high- and low-density arrays // Mol Diagn Ther. 2009. V. 13. N. 2. P. 91-102.

Ponomaryova A. A., Morozkin E. S., Rykova E. Y. et al. Dynamic changes in circulating miRNA levels in response to antitumor therapy of lung cancer // Experimental Lung Research. 2016. V. 42 N. 2. P. 95-102.

Vorobyeva M., Vorobjev P. and Venyaminova A. Multivalent Aptamers: Versatile Tools for Diagnostic and Therapeutic Applications // Molecules. 2016. V. 21 N. 12. P. 1612-1633.

Естествознание — и продукт цивилизации, и условие ее развития. С помощью науки человек развивает материальное производство, совершенствует общественные отношения, воспитывает и обучает новые поколения людей, лечит свое тело. Прогресс естествознания и техники значительно изменяет образ жизни, повышает благосостояние человека, совершенствует условия быта людей. Благодаря знанию законов природы человек может изменить и приспособить природные вещи и процессы так, чтобы они удовлетворяли его потребностям.

17.1. Экологический кризис и пути его разрешения

17.1.1. Естествознание как революционизирующая сила цивилизации.

Естествознание — один из важнейших двигателей общественного прогресса. Будучи основным фактором материального производства, естествознание выступает мощной революционизирующей силой. Великие научные открытия (и тесно связанные с ними технические изобретения) всегда оказывали колоссальное (и подчас совершенно неожиданное) воздействие на судьбы человеческой истории. Такими были, например, открытия в XVII в. законов механики, позволившие создать всю машинную технологию цивилизации; открытие в XIX в. электромагнитного поля и создание электротехники, радиотехники, а затем и радиоэлектроники; создание в XX в. теории атомного ядра, а вслед за ним открытие средств высвобождения ядерной энергии; раскрытие в середине XX в. молекулярной биологией природы наследственности (структуры ДНК) и появившиеся благодаря этому возможности генной инженерии по управлению наследственностью; и др. Большая часть современной материальной цивилизации была бы невозможна без участия в ее создании научных теорий, научно-конструкторских разработок, предсказанных наукой технологий и др.

Однако у современных людей наука вызывает не только восхищение и преклонение, но и опасения. Часто можно услышать, что наука приносит человеку не только блага, но и несчастья. Загрязнение атмосферы, катастрофы на атомных электростанциях, повышение радиоактивного фона в результате испытаний ядерного оружия, «озонная дыра» над планетой, исчезновение многих видов растений и животных — эти и другие экологические проблемы люди склонны объяснять самим фактом существования науки. Но дело не в науке, а в том, в чьих руках она находится, какие социальные интересы за ней стоят, какие общественные и государственные структуры направляют ее развитие.

Нарастание глобальных проблем человечества повышает ответственность ученых за судьбы человечества. Вопрос об исторических судьбах и роли науки в ее отношении к человеку, перспективах его развития никогда так остро не обсуждался, как в настоящее время, в условиях нарастания глобального кризиса цивилизации. Старая проблема гуманистического содержания познавательной деятельности («проблема Руссо») приобрела новое конкретно-историческое выражение: может ли человек (и если может, то в какой степени) рассчитывать на науку в решении глобальных проблем современности? Способна ли наука помочь человеку избавиться от того зла, которое несет в себе современная цивилизация, технологизируя его образ жизни?

Наука — это социальный институт, и он теснейшим образом связан с развитием всего общества. Сложность, противоречивость современной ситуации в том, что наука безусловно причастна к порождению глобальных, прежде всего экологических, проблем цивилизации (не сама по себе, а как зависимая от других структур часть общества); в то же время без науки, без дальнейшего ее развития решение этих проблем в принципе невозможно. Это значит, что роль науки в истории человечества постоянно возрастает, поэтому умаление роли науки, естествознания в настоящее время чрезвычайно опасно — оно обезоруживает человечество перед нарастанием глобальных проблем современности. К сожалению, такое умаление подчас имеет место, оно представлено определенными умонастроениями, тенденциями в системе духовной культуры.

17.1.2. Сущность современного экологического кризиса.

Экология — цикл научных отраслей, изучающих взаимоотношения организмов между собой и с окружающей средой. В этот цикл входят: общая экология, изучающая основные принципы строения и функционирования различных надорганизменных систем — популяций, биоценозов, биогеоценозов и биосферы (см. 13.2), частные экологии, изучающие конкретные биоценозы или биогео-ценозы (например, экология млекопитающих, гидробиология, агроэкология и др.). В 1970-х гг. в цикле экологических наук выделилась экология человека, или социальная экология, изучающая закономерности взаимодействия человеческого общества и окружающей среды. Современная экология — сложная междисциплинарная и комплексная система познания, включающая в себя методы, понятия и принципы как естествознания (биологических, геологических, химических, физических наук), математики, так и социально-гуманитарного знания, философии.

Начиная со средины XX в. рост потребностей человека и его производственной активности привел к тому, что масштабы возможного воздействия человека на природу стали соизмеримыми с масштабами глобальных природных процессов. В результате труда человека создаются каналы и новые моря, исчезают болота и пустыни, перемещаются огромные массы ископаемых пород, синтезируются новые химические материалы. Преобразующая деятельность современного человека распространяется даже на дно океана и космическое пространство. Однако все возрастающее влияние человека на окружающую среду порождает сложные проблемы в его взаимоотношениях с природой. Неконтролируемая и непредсказуемая деятельность человека стала оказывать отрицательное воздействие на ход природных процессов, вызывать резко негативные необратимые изменения как окружающей среды, так и биологической природы самого человека. Это касается буквально всей среды — атмосферы, гидросферы, недр, плодородного слоя; гибнут животные и растения, разрушаются и исчезают биоценозы и биогеоценозы; растет заболеваемость людей. При этом неуклонно увеличивается численность населения земного шара . Вывод напрашивается сам собой: человечество неумолимо идет к экологической катастрофе — истощению энергетических, минеральных и земельных ресурсов, гибели биосферы, а возможно, и самой человеческой цивилизации. Поэтому возникла необходимость защиты среды обитания человека от его же воздействия на нее.

1 По прогнозам, к 2010 г. она составит 11 млрд человек, а примерно в 2025 г., согласно новейшим синергетическим математическим моделям, ожидается «режим с обострением», когда рост населения (пропорциональный не числу численности, а квадрату численности) резко устремится к бесконечности. Конечно, в реальности он не будет бесконечным, но в любом случае, если не будут приняты какие-то меры, глобальная демографическая ситуация может полностью выйти из-под контроля.

Итак, современная цивилизация находится в состоянии глубочайшего экологического кризиса. Это не первый экологический кризис в истории человечества (см. 2.1.1), но он может стать последним.

17.1.3. Основные черты современного экологического кризиса.

Охарактеризуем основные кризисные направления развития экологической ситуации.

Исчезновение растительных и животных видов, видового многообразия, генофонда флоры и фауны Земли, причем животные и растения исчезают, как правило, не в результате их непосредственного истребления человеком, а вследствие изменения среды обитания. С начала 1980-х гг. ежедневно вымирает один вид животных, а еженедельно — один вид растений. Вымирание угрожает тысячам видов животных и растений. Под угрозой исчезновения находится каждый четвертый вид земноводных, каждый десятый вид высших растений. А каждый из видов является неповторимым, уникальным результатом эволюции, протекавшей много миллионов лет.

Человечество обязано сохранить и передать потомкам биологическое разнообразие Земли, и не только потому, что природа прекрасна и восхищает нас своим великолепием. Есть еще более значимое основание: сохранение биологического разнообразия является непременным условием жизни самого человека на Земле, поскольку устойчивость биосферы тем выше, чем больше составляющих ее видов.

Исчезновение лесов (особенно тропических) со скоростью несколько десятков гектаров в минуту. Это влечет за собой, в частности, эрозию почв (почвы — продукт сложного и длительного взаимодействия живой и косной материи), уничтожение верхнего плодородного слоя земли, опустынивание Земли, которое происходит со скоростью 44 га/мин.

Кроме того, леса — главные поставщики кислорода в атмосферу посредством фотосинтеза. В настоящее время баланс прихода и расхода кислорода отрицательный. За последние 100 лет концентрация кислорода в воздухе снизилась с 20,948 до 20,8%, а в городах даже ниже 20%. Уже 1/4 суши лишена естественного растительного покрова. Большие площади коренных биогеоценозов заменены вторичными, более упрощенными и однообразными, с заметно пониженной продуктивностью. Растительная биомасса глобально уменьшилась примерно на 7%.

Под сильным сельскохозяйственным воздействием находится около 50% поверхности суши, причем каждый год не менее 300 тыс. гектаров сельскохозяйственных земель поглощается урбанизацией. Площадь пашни в расчете на одного человека из года в год сокращается (даже без учета роста населения).

Истощение природных ресурсов. Ежегодно из недр Земли извлекается более 100 млрд т различных пород. Для жизнедеятельности одного человека в современной цивилизации в год необходимо 200 т различных твердых веществ, которые он с помощью 800 т воды и 1000 Вт энергии превращает в продукты своего потребления. При этом человечество живет за счет не только эксплуатации ресурсов современной биосферы, но и невозобновляемых продуктов былых биосфер (нефть, уголь, газ, руды и т.п.). По самым оптимистическим оценкам, существующих запасов таких природных ресурсов человечеству хватит ненадолго: нефти примерно на 30 лет; природного газа на 50 лет; угля на 100 лет и т.д. Но и возобновляемые природные ресурсы (например, древесина) становятся невозобновляемыми, поскольку условия их воспроизводства коренным образом изменяются, они доводятся до крайнего истощения или полного уничтожения, т.е. все природные ресурсы на Земле конечны.

Непрерывный и бурный рост энергетических затрат человечества. Расход энергии (в ккал/сутки) на одного человека в первобытном обществе был примерно 4000, в феодальном обществе — около 12 000, в индустриальной цивилизации — 70 000, а в развитых постиндустриальных странах достигает 250 000 (т.е. выше в 60 раз и более, чем у наших палеолитических предков) и продолжает возрастать. Однако этот процесс не может продолжаться долго: атмосфера Земли разогревается, что может иметь самые непредсказуемые неблагоприятные последствия (климатические, географические, геологические и др.).

Загрязнение атмосферы, воды, почвы. Источником загрязнения атмосферы являются прежде всего предприятия черной и цветной металлургии, тепловые электростанции, автомобильный транспорт, сжигание мусора, отходов и др. Их выбросы в атмосферу содержат оксиды углерода, азота и серы, углеводороды, соединения металлов, пыль. Ежегодно в атмосферу выбрасывается около 20 млрд т СО2; 300 млн т СО2; 50 млн т оксидов азота; 150 млн т SO2; 4—5 млн т Н2S и других вредных газов; более 400 млн т частиц сажи, пыли, золы.

В природе за счет жизнедеятельности растений и животных происходит непрерывный круговорот углерода. В ходе его углерод из органических соединений постоянно переходит в неорганические, и наоборот. На круговорот углерода существенное влияние оказывает сжигание топлива. При этом в атмосферу выбрасывается такое огромное количество углекислого газа и пыли, что это может привести к изменению климата на Земле. Углекислый газ атмосферы свободно пропускает на Землю излучение Солнца, но задерживает излучение Земли, результатом чего является так называемый парниковый эффект — слой углекислого газа играет ту же роль, что стекло в теплице. Поэтому увеличение содержания СО2 в атмосфере (в настоящее время на 0,3% в год) может стать причиной потепления на Земле, привести к таянию полярных льдов и вызвать катастрофическое повышение уровня Мирового океана на 4—8 м.

Увеличение содержания в атмосфере SO2 обусловливает образование «кислотных дождей», вызывающих рост кислотности водоемов, гибель их обитателей. Под губительным действием оксидов серы и азота разрушаются строительные материалы, памятники архитектуры. Из-за переноса воздушных масс на большие расстояния (трансграничные переносы) опасное повышение кислотности водоемов распространяется на большие площади.

Выхлопные газы автотранспорта наносят огромный урон жизнедеятельности животных и растений. Составные части выхлопных газов автомобилей — оксид углерода, оксиды азота, оксид серы, соединения свинца, ртути и др. Оксид углерода СО (угарный газ) взаимодействует с гемоглобином крови в 200 раз активнее кислорода и снижает способность крови быть переносчиком кислорода. Поэтому даже при незначительных концентрациях в воздухе угарный газ оказывает вредное воздействие на здоровье (вызывает головную боль, снижает умственную деятельность). Оксид серы вызывает спазмы дыхательных путей, оксиды азота —

общую слабость, головокружение, тошноту. Содержащиеся в выхлопных газах соединения свинца — очень токсичного элемента — действуют на ферментные системы и обмен веществ, свинец накапливается в пресной воде. Один из опаснейших загрязнителей — ртуть, накапливаясь в организме, она отрицательно действует на нервную систему.

Загрязнение гидросферы. Вода широко, хотя и не повсеместно, распространена на нашей планете. (Общий запас воды около 1,4 1018 т. Основная масса воды сосредоточена в морях и океанах. На долю пресной воды приходится только 2%.) В природных условиях осуществляется постоянный круговорот воды, сопровождающийся процессами ее очистки. Вода выносит огромные массы растворенных веществ в моря и океаны, где происходят сложные химические и биохимические процессы, способствующие самоочищению водоемов.

Вместе с тем вода широко применяется во всех областях хозяйства и в быту. В связи с развитием промышленности, ростом городов расход воды постоянно увеличивается. Одновременно усиливается загрязнение воды промышленными и бытовыми отходами: ежегодно в водоемы сбрасывается около 600 млрд т промышленных и бытовых стоков, свыше 10 млн т нефти и нефтепродуктов. Это приводит к нарушению естественного самоочищения водоемов. Промышленные сточные воды, содержащие ядовитые вещества, в частности соединения токсичных металлов, а также растворенные в сточных водах минеральные удобрения, смываемые с поверхности почвы, наносят огромный урон живым организмам в водоемах. Кроме того, удобрения (особенно нитраты, фосфаты) вызывают бурное разрастание водорослей, засоряют водоемы и способствуют их гибели. Загрязняются не только поверхностные и подземные воды суши, но даже Мировой океан (ядовитыми и радиоактивными веществами, солями тяжелых металлов, сложно-органическими соединениями, мусором, отходами и т.п.).

Радиоактивное загрязнение окружающей среды в результате ядерных испытаний, аварий на предприятиях ядерной энергетики (Чернобыльская катастрофа 1986 г.), накопления радиоактивных отходов.

Все эти негативные тенденции, а также безответственное и неправильное использование достижений цивилизации оказывают губительное влияние на организм человека и создают еще один комплекс экологических проблем—медико-генетический. Учащаются известные ранее заболевания и появляются совершенно новые, ранее не известные. Сложился целый комплекс «болезней цивилизации», порожденных научно-техническим прогрессом (возрастание темпа жизни, количества стрессовых ситуаций, гиподинамия, нарушение питания, злоупотребление фармацевтическими препаратами и др.) и экологическим кризисом (особенно загрязнением среды мутагенными факторами); глобальной проблемой становится наркомания.

Масштабы загрязнения природной среды настолько велики, что естественные процессы метаболизма и разбавляющая деятельность атмосферы и гидросферы не в состоянии нейтрализовать вредное воздействие производственной деятельности человека. В результате способность к саморегуляции складывавшихся миллионы лет (в ходе эволюции) систем биосферы подрывается, а сама биосфера разрушается. Если этот процесс не остановить, то биосфера просто умрет. А вместе с ней исчезнет и человечество.

К сожалению, в массовом, обыденном сознании нет достаточного понимания остроты сложившейся ситуации. Люди по-прежнему живут и действуют в убеждении, что природная среда неограниченна и неисчерпаема. Они удовлетворяются своим временным благополучием, ближайшими целями и немедленным благом, а возникшие экологические угрозы не воспринимают всерьез, относя их в далекое будущее. Люди мало задумываются о том, в каких природных условиях будут жить их потомки (причем даже не далекие, а уже внуки и правнуки), и позволят ли эти условия вообще выжить человеку. Жертвовать своими потребностями человечество мало расположено. (Это нередко относится и к тем, кто принимает государственные решения.) Такой эгоистический путь ведет к экологической катастрофе и гибели цивилизации.

17.1.4. Принципы и пути преодоления экологического кризиса.

Таким образом, перед человечеством остро встала проблема сознательного и целенаправленного регулирования обмена веществом и энергией между обществом и биосферой, выработки стратегии охраны природы, а значит, и самого человека. Такое регулирование может осуществляться на основе следующих принципов.

Человечество развивается до тех пор, пока сохраняется равновесие между предметно-материальным преобразованием им природной среды и восстановлением этой среды (естественным и искусственным). Нарушение равновесия неизбежно ведет к гибели человечества.

Период неконтролируемого взаимодействия общества и природной среды заканчивается . Охрана природы исторически неизбежна; ценность природы выше эгоистических и корпоративных интересов и носит характер абсолютного императива; охрана природы — это прежде всего охрана самого человека; не будет биосферы — не будет человечества.

1 Количественные границы, за которыми начинается разрушение биосферы, экологи определяют следующим образом: «Грубо говоря, можно изменить лик планеты на 100% на одной сотой части Земли, на 10% на ее десятой части или на I % глобально. За этим пределом лежит неминуемая деструкция биосферы» (Реймерс Н.Ф. Экология. Теории, законы, правила и гипотезы. М., 1994. С. 209).

От безоглядной эксплуатации природной среды нужно перейти к очень осторожному изменению среды жизни человека, к двусторонней адаптации (коэволюции) и, возможно, к абсолютным экологическим ограничениям. Выживание человека — доминанта экономики и политики.

Экологическое в конечном счете оказывается и наиболее экономичным. Чем рациональнее подход к природных ресурсам, тем меньше вложений потребуется для восстановления баланса между человечеством и природой. У наших потомков «поле возможностей» рационального решения экологических проблем будет уже, степеней свободы меньше, чем у нас.

Принцип необходимости разнообразия природы: только многообразная и разнообразная биосфера устойчива и высокопродуктивна.

Идея В.И. Вернадского о превращении биосферы в ноосферу означает, что разум человека будет играть решающую роль в развитии системы взаимодействий общества и природы, прежде всего — в управлении самим человеком, его потребностями. При этом всегда нужно иметь в виду: природные системы настолько сложны, что заранее предсказать и предвидеть все последствия их преобразования, по существу, невозможно, многие из них лежат за пределами современных знаний . Кроме того, каждый компонент биосферы потенциально полезен; трудно, а подчас и просто невозможно предвидеть то значение, которое он будет иметь для человечества в будущем.

1 О масштабах системной сложности биосферы свидетельствуют такие оценки: расчет параметров биосферы требует операций с величинами, количество которых колеблется в пределах от 1050 до 101000; для решения простейшей из таких задач на ЭВМ (с быстродействием 1010 операций в секунду), при условии, что будет привлечено 1010 ЭВМ (грандиозное количество!), понадобится в простейшем варианте 1030 с, т.е. 3 1021 лет, тогда как жизнь на Земле существует всего 3 109 лет. Разница в 12 порядков впечатляет, не правда ли?

Попытки решить экологические проблемы за счет выселения людей в Космос, которые у нас в стране (родине идеи и практики освоения Космоса, К.Э. Циолковского и Ю.А. Гагарина) одно время были очень популярны, — продолжают традиции экстенсивного подхода к этим проблемам. При всей их внешней привлекательности они утопичны и должны быть отнесены к разряду фантастики.

Научно-технологические разработки позволяют выделить следующие пути, методы, средства разрешения или по крайней мере смягчения экологического кризиса:

Создавать эффективные очистные сооружения, развивать безотходные (замкнутые) и малоотходные технологии ;

2 Это возможно, в частности, на пути создания территориально-промышленных комплексов с предприятиями, взаимосвязанными принципами безотходной технологии в масштабах всего экономического района.

Переходить на циклическое использование ресурсов, прежде всего водных;
+ разрабатывать технологии комплексной переработки сырья;
+ не допускать перепроизводства энергии, которое может дестабилизировать геофизические системы на Земле;
+ резко ограничивать извлечение химических веществ из недр планеты, выброс и загрязнение среды обитания;
+ снижать материалоемкость готовой продукции: количество природного вещества в усредненной единице общественного продукта необходимо уменьшать (миниатюризация изделий, разработка и применение ресурсосберегающих технологий и т.п.);

Увеличивать скорость оборота вовлекаемых природных ресурсов, особенно на фоне развития безотходных технологий;
+ исключить из производства ядохимикаты, способные накапливаться в организмах животных и растений;
+ проводить лесонасаждения, совершенствовать использование лесополос (они увеличивают снегозадержание, здесь птицы строят гнезда, что в свою очередь способствует уничтожению вредителей сельскохозяйственных культур и др.);
+ расширять сеть заповедников, охраняемых природных территорий;
+ создавать центры разведения исчезающих животных и растений с их последующим возвращением в естественные места обитания;
+ развивать биологические методы защиты сельскохозяйственных культур и лесов, экологические биотехнологии (см. 17.2.3);
+ разрабатывать методы планирования роста народонаселения;
+ совершенствовать правовое регулирование охраны природы;
+ развивать международное экологическое сотрудничество, разрабатывать правовые основы международной глобальной экополитики;
+ формировать экологическое сознание, системы экологического образования и воспитания.

Отметим еще одно обстоятельство. Отстаивание экологических принципов в борьбе с технократическими и прагматическими установками и ценностями требует коллективной воли, а нередко и личного мужества.

Политики, экономисты, инженеры, хозяйственники и т.д. — все будут просить вас быть «разумными», «подходить с ответственностью» и идти на компромиссы. Вы обнаружите, что вам противостоят люди -часто умные, приятные, благонамеренные люди, которые хотят всего лишь продолжать действовать так, как вполне можно было действовать в последние два столетия. Помните всегда: эти люди ваши противники. Какими бы благими ни были их намерения, они невольно несут угрозу вам, вашим детям и детям ваших детей. То, что от их деятельности пострадают и они сами, и их потомки, не делает их менее опасными для всего мира .

1 Биология охраны природы. М., 1983. С. 386.

77.2 Биотехнологии и будущее человечества

17.2.1. Понятие биотехнологии.

В XXI в. биология выступает лидером естествознания. Это обусловлено прежде всего возрастанием ее практических возможностей, ее программирующей ролью в аграрной, медицинской, экологической и других сферах деятельности, способностью решать важнейшие проблемы жизнедеятельности человека, в конечном счете даже определять судьбы человечества (в связи с перспективами биотехнологий, генной инженерии) и т.п. Одной из важнейших форм связи современной биологии с практикой являются биотехнологии.

Биотехнологии — технологические процессы, реализуемые с использованием биологических систем — живых организмов и компонентов живой клетки. Другими словами, биотехнологии связаны с тем, что возникло биогенным путем. Биотехнологии основаны на последних достижениях многих отраслей современной науки: биохимии и биофизики, вирусологии, физико-химии ферментов, микробиологии, молекулярной биологии, генетической инженерии, селекционной генетики, химии антибиотиков, иммунологии и др.

1 См.: Биотехнология. М., 1984; Сассон А. Биотехнология: свершения и надежды. М., 1987.

Сам термин «биотехнология» новый: он получил распространение в 1970-е гг., но человек имел дело с биотехнологиями и в далеком прошлом. Некоторые биотехнологические процессы, основанные на применении микроорганизмов, человек использует еще с древнейших времен: в хлебопечении, в приготовлении вина и пива, уксуса, сыра, различных способах переработки кож, растительных волокон и т.д. Современные биотехнологии основаны главным образом на культивировании микроорганизмов (бактерий и микроскопических грибов), животных и растительных клеток, методах генной инженерии.

Основными направлениями развития современных биотехнологий являются медицинские биотехнологии, агробиотехнологии и экологические биотехнологии. Новейшим и важнейшим ответвлением биотехнологии является генная инженерия.

17.2.2. Медицинские биотехнологии.

Медицинские биотехнологии подразделяются на диагностические и лечебные. Диагностические медицинские биотехнологии в свою очередь разделяют на химические (определение диагностических веществ и параметров их обмена) и физические (определение особенностей физических процессов организма).

Химические диагностические биотехнологии используются в медицине давно. Но если раньше они сводились к определению в тканях и органах веществ, имеющих диагностическое значение (статический подход), то сейчас развивается и динамический подход, позволяющий определять скорости образования и распада представляющих интерес веществ, активность ферментов, осуществляющих синтез или деградацию этих веществ, и др. Кроме того, современная диагностика разрабатывает методы функционального подхода, с помощью которого можно оценивать влияние функциональных воздействий на изменение диагностических веществ, а следовательно, выявлять резервные возможности организма.

В будущем возрастет роль физической диагностики, которая дешевле и быстрее, чем химическая, и состоит в определении физико-химических процессов, лежащих в основе жизнедеятельности клетки, а также физических процессов (тепловых, акустических, электромагнитных и др.) на тканевом уровне, уровне органов и организма в целом. На базе такого рода анализа в рамках биофизики сложных биологических систем будут развиваться новые методы физиотерапии, выяснится смысл многих так называемых нетрадиционных методов лечения, приемов народной медицины и т.д.

Биотехнологии широко используются в фармакологии. В древности для лечения больных применяли животные, растительные и минеральные вещества. Начиная с XIX в. в фармакологии получают распространение синтетические химические препараты, а с середины XX в. и антибиотики — особые химические вещества, которые образуются микроорганизмами и способны оказывать избирательно токсическое воздействие на другие микроорганизмы. В конце XX в. фармакологи обратились к индивидуальным биологически активным соединениям и стали составлять их оптимальные композиции, а также использовать специфические активаторы и ингибиторы определенных ферментов, суть действия которых — в вытеснении патогенной микрофлоры невредной для здоровья людей микрофлорой (использование микробного антагонизма).

Биотехнологии помогают в борьбе современной медицины с сердечно-сосудистыми заболеваниями (прежде всего с атеросклерозом), с онкологическими заболеваниями, с аллергиями как патологическим нарушением иммунитета (способность организма защищать свою целостность и биологическую индивидуальность), старением и вирусными инфекциями (в том числе со СПИДом). Так, развитие иммунологии (науки, изучающей защитные свойства организма) способствует лечению аллергии. При аллергии организм отвечает на воздействие некоторого специфического аллергена чрезмерной реакцией, повреждающей его собственные клетки и ткани в результате отека, воспаления, спазма, нарушений микроциркуляции, гемодинамики и др. Иммунология, изучая клетки, осуществляющие иммунный ответ (иммуноциты), позволяет создавать новые подходы к лечению иммунологических, онкологических и инфекционных заболеваний.

Человек пока не умеет лечить СПИД и плохо лечит вирусные инфекции. Химиотерапия и антибиотики, эффективные в борьбе с бактериальной инфекцией, неэффективны в отношении вирусов (например, возбудителей атипичной пневмонии). Предполагается, что здесь существенный прогресс будет достигнут благодаря развитию иммунологии, молекулярной биологии вирусов, в частности изучению взаимодействия вирусов со специфическими для них клеточными рецепторами.

Биотехнологическими способами производят витамины, диагностические средства для клинических исследований (тест-системы на наркотики, лекарства, гормоны и т.п.), биоразлагаемые пластмассы, антибиотики, биосовместимые материалы. Новая область биоиндустрии — производство пищевых добавок.

17.2.3. Сельскохозяйственные и экологические биотехнологии.

В XX в. произошла «зеленая революция» — за счет использования минеральных удобрений, пестицидов и инсектицидов удалось добиться резкого повышения продуктивности растениеводства. Но сейчас понятны и ее отрицательные последствия, например насыщение продуктов питания нитратами и ядохимикатами. Основная задача современных агробиотехнологий — преодоление отрицательных последствий «зеленой революции», микробиологический синтез средств защиты растений, производства кормов и ферментов для кормопроизводства и др. При этом упор делается на биологи-

ческие методы восстановления плодородия почвы, биологические методы борьбы с вредителями сельскохозяйственных культур, на переход от монокультур к поликультурам (что повышает выход биомассы с единицы площади сельхозугодий), выведение новых высокопродуктивных и обладающих другими полезными свойствами (например, засухоустойчивостью или устойчивостью к засолению) сортов культурных растений.

Продовольственные сельскохозяйственные культуры служат сырьем для пищевой промышленности. Биотехнологии используются при изготовлении пищевых продуктов из растительного и животного сырья, их хранении и кулинарной обработке, при производстве искусственной пищи (искусственной икры, искусственного мяса из сои, бобы которой богаты полноценным белком), при производстве корма для скота из продуктов, полученных из водорослей и микробной биомассы (например, получение кормовой биомассы из микробов, растущих на нефти).

Поскольку микроорганизмы чрезвычайно разнообразны, микробиологическая промышленность на их основе вырабатывает самые разные продукты, например ферментные препараты, находящие широкое применение в производстве пива, спирта и т.д.

Биотехнологии выступают одним из важнейших способов решения экологических проблем. Они применяются для уничтожения загрязнений окружающей среды (например, очистка воды или очистка от нефтяных загрязнений), для восстановления разрушенных биоценозов (тропических лесов, северной тундры), восстановления популяций исчезающих видов или акклиматизации растений и животных в новых местах обитания (см. 17.2.6).

Так, с помощью биотехнологий решается проблема освоения загрязненных территорий устойчивыми к этим загрязнениям видами растений. Например, зимой в городах для борьбы со снежными заносами используются минеральные соли, от которых гибнут многие виды растений. Однако некоторые растения устойчивы к засолению, способны поглощать цинк, кобальт, кадмий, никель и другие металлы из загрязненных почв; конечно, они предпочтительнее в условиях больших городов. Выведение сортов растений с новыми свойствами — одно из направлений экологической биотехнологии.

Важные направления экологических биотехнологий — ресурсная биотехнология (использование биосистем для разработки полезных ископаемых), биотехнологическая (с использованием бактериальных штаммов) переработка промышленных и бытовых отходов, очистка сточных вод, обеззараживание воздуха, генно-инженерные экологические биотехнологии (см. 17.2.6).

17.2.4. Многообразие сфер применения биотехнологий.

Биотехнологии успешно применяются в некоторых «экзотических» отраслях. Так, во многих странах микробная биотехнология используется для повышения нефтеотдачи. Микробиологические технологии исключительно эффективны и при получении цветных и благородных металлов. Если традиционная технология включает в себя обжиг, при котором в атмосферу выбрасывается большое количество вредных серосодержащих газов, то при микробной технологии руда переводится в раствор (микробное окисление), а затем путем электролиза из него получают ценные металлы.

Использование метанотрофных бактерий позволяет снизить концентрацию метана в шахтах. А для отечественной угледобычи проблема шахтного метана всегда была одной из самых острых: по статистике, из-за взрывов метана в шахтах каждый добытый 1 млн т угля уносит жизнь одного шахтера.

Созданные биотехнологическими методами ферментные препараты находят широкое применение в производстве стиральных порошков, в текстильной и кожевенной промышленности.

Космическая биология и медицина изучают закономерности функционирования живых организмов, прежде всего человеческого, в условиях космоса, космического полета, пребывания на других планетах и телах Солнечной системы. Одним из важных направлений в этой области является разработка космических биотехнологий — замкнутых биосистем, предназначенных для функционирования в условиях длительного космического полета. Созданная отечественной наукой система такого рода способна обеспечить жизнедеятельность космонавтов в течение 14 лет. Этого вполне достаточно для реализации космической мечты человечества — полета к ближайшим планетам Солнечной системы, прежде всего к Марсу.

Таким образом, современные биотехнологии исключительно разнообразны. Не случайно XXI в. нередко называют веком биотехнологии. Важнейшим ответвлением биотехнологии, открывающим самые ошеломляющие перспективы перед человечеством, является генная инженерия.

17.2.5. Развитие генной инженерии.

Генная инженерия возникла в 1970-е гг. как раздел молекулярной биологии, связанный с целенаправленным созданием новых комбинаций генетического материала, способного размножаться (в клетке) и синтезировать конечные продукты. Решающую роль в создании новых комбинаций генетического материала играют особые ферменты (рестриктазы, ДНК-лигазы), позволяющие рассекать молекулу ДНК на фрагменты в строго определенных местах, а затем «сшивать» фрагменты ДНК в единое целое. Только после выделения таких ферментов стало практически возможным создание искусственных гибридных генетических структур — рекомбинантных ДНК. Рекомбинантная молекула ДНК содержит искусственный гибридный ген (или набор генов) и «вектор-фрагмент» ДНК, обеспечивающий размножение рекомбинированной ДНК и синтез ее конечных продуктов — белков. Все это уже происходит в клетке-хозяине (бактериальной клетке), куда вводится рекомбинированная ДНК.

Методами генной инженерии сначала были получены трансгенные микроорганизмы, несущие гены бактерии и гены онко-генного вируса обезьяны, а затем — микроорганизмы, несущие в себе гены мушки дрозофилы, кролика, человека и т.д. Впоследствии удалось осуществить микробный (и недорогой) синтез многих биологически активных веществ, присутствующих в тканях животных и растений в весьма низких концентрациях: инсулина, интерферона человека, гормона роста человека, вакцины против гепатита, а также ферментов, гормональных препаратов, клеточных гибридов, синтезирующих антитела желаемой специфичности, и т.п.

Генная инженерия открыла перспективы конструирования новых биологических организмов — трансгенных растений и животных с заранее запланированными свойствами. По сути, непреодолимых природных ограничений для синтеза генов нет (так, существуют программы по созданию трансгенной овцы, покрытой вместо шерсти шелком; трансгенной козы, молоко которой содержит ценный для человека интерферон; трансгенного шпината, который вырабатывает белок, подавляющий ВИЧ-инфекции, и др.). Возникла новая отрасль промышленности — трансгенная биотехнология, занимающаяся конструированием и применением трансгенных организмов. (Сейчас в США функционирует уже около 2500 генно-инженерных фирм.)

В неразрывной связи с разработкой технологий генной инженерии развиваются фундаментальные исследования в молекулярной биологии. Одним из важнейших направлений молекулярной биологии и генной инженерии является изучение геномов растительных и животных видов и разработка способов их реконструкции. Геном — это совокупность генов, характерных для гаплоидного, т.е. одинарного набора хромосом данного вида организмов. В отличие от генотипа геном представляет собой характеристику вида, а не отдельной особи. Общая логика исследования ведет молекулярную биологию от выяснения способов воссоздания генома вида к разработке способов воссоздания генотипа особи.

Огромное значение имеет изучение генома человека. В рамках одного из самых трудоемких и дорогостоящих в истории науки международного проекта «Геном человека» (начат в 1988 г., задействовано несколько тысяч ученых из более чем 20 стран; стоимость — до 9 млрд долл.) была поставлена задача — выяснить последовательность нуклеотидных оснований во всех молекулах ДНК человека и локализовать их, т.е. полностью картировать все гены человека. Ожидается, что затем исследователи определят все функции генов и разработают технологические способы использования этих данных.

К настоящему времени удалось установить, что геном человека состоит из 3 млрд нуклеотидов, 30 млн из которых (около 10% всей хромосомной ДНК) объединяется в 40 тысяч генов. (Можно предложить такую аналогию. Геном человека — это созданный природой грандиозный текст, состоящий из 3 млрд букв, в качестве которых выступают молекулы-нуклеотиды — аденин, гуанин, цитозин и тимин.) В 2003 г. было объявлено о завершении важной части проекта — выявлены последовательности нуклеотидов в 40 тыс. генов человека. (Функции остальных 90% нуклеотидов ДНК не вполне понятны, и сейчас они выясняются.) Интересно, что различия между двумя людьми на уровне ДНК составляют в среднем один нуклеотид на тысячу, они и обусловливают наследственные индивидуальные особенности каждого человека.

В ходе выполнения проекта «Геном человека» разработано много новых методов исследования, большинство из которых в последнее время автоматизировано. Это значительно ускоряет и удешевляет расшифровку ДНК, что является важнейшим условием для их широкого использования в медицинской практике , фармакологии, криминалистике и т.д. Среди этих методов есть и такие, которые позволяют расшифровывать генотип отдельного человека и создавать генные портреты людей . Это дает возможность эффективнее лечить болезни, оценивать способности и возможности каждого человека, выявлять различие между популяциями, оценивать степень приспособленности конкретного человека к той или иной экологической обстановке . По последовательностям ДНК можно устанавливать степень родства людей. Разработан метод «генетической дактилоскопии», который с успехом применяется в криминалистике. Сходные подходы можно использовать в антропологии, палеонтологии, этнографии, археологии.

1 К настоящему времени известно около 10 тыс. различных заболеваний человека, из которых более 3 тыс. — наследственные. Выявлены мутации, отвечающие за такие заболевания, как гипертония, диабет, некоторые виды слепоты и глухоты, злокачественные опухоли; обнаружены гены, ответственные за одну из форм эпилепсии, гигантизм и др.
2 В настоящее время для медицинских целей разрабатываются технологии, позволяющие за одну неделю получить «генетическую карту» человека и записать ее на компакт-диск.
3 С недавних пор остро обсуждается вопрос о конфиденциальности генетической информации о конкретных людях. В некоторых странах приняты законы, ограничивающие распространение такой информации.

Вместе с тем, как говорят специалисты, изучение генома человека прояснило гораздо меньше загадок, чем ожидалось. Удалось только «поставить указатели» для дальнейших исследований. Прочтение генома — это первый этап в понимании его функционирования. Задача следующего — разобраться в том, каковы функции генов, как и какие белки они синтезируют, как функционируют гены по отдельности и как они взаимодействуют между собой; иначе говоря, как работают вместе 3 млрд нуклеотидов. Это, пожалуй, главная проблема биологии XXI в.

17.2.6. Трансгенные организмы: проблема жизни в генетически модифицированном мире.

Уже сейчас молекулярная генетика открывает широкие перспективы для генной инженерии. Одно из таких перспективных направлений — создание трансгенных растений, животных, микроорганизмов, т.е. таких организмов, в собственный генетический материал которых «встроены» чужеродные гены.

На этом пути получены замечательные результаты. Так, за последние 15 лет прошли полевые испытания около 25 000 различных трансгенных растительных культур, одни из которых устойчивы к вирусам, другие — к гербицидам, третьи — к инсектицидам. Площадь посевов трансгенных гербицидоустойчивых сои, хлопка, кукурузы занимают 28 млн га во всем мире. Стоимость урожая трансгенного зерна 2000 г. оценен в 3 млрд долл. Развита и индустрия трансгенных животных. Они широко используются для научных целей как источник органов для трансплантации, как производители терапевтических белков, для тестирования вакцин и др. Например, в Германии трансгенный бык (по кличке Герман) содержит в своем геноме человеческий ген лактоферина, кодирующий синтез особого белка женского молока, от которого младенцы сладко спят.

Составной частью проектов создания трансгенных организмов являются исследования и разработки в области генной терапии — лечебные процедуры, такие, как введение нужных трансгенов в клетки больного организма, замена больных генов здоровыми, адресная доставка лекарств в пораженные клетки. Трансгены, попадая в клетку, компенсируют ее генетические дефекты, ослабляя или усиливая синтез того или иного белка.

В дальнейшем трансгенные технологии предполагается использовать для решения широкого круга проблем. Так, для решения ряда экологических проблем разрабатывается программа конструирования трансгенных микробов, которые могут: активно поглощать СО2 из атмосферы, а следовательно, снижать парниковый эффект; активно поглощать воду из атмосферы, значит превращать пустыни в плодородные земли; конструировать трансгенные микроорганизмы, повышающие плодородие почв, утилизирующие загрязнители, конвертирующие отходы, ослабляющие проблему дефицита сырья (трансгенные микробы, синтезирующие каучук) и т.п.

Для повышения эффективности сельского хозяйства предполагается создавать трансгенные растения с повышенной пищевой и кормовой ценностью, трансгенные деревья для производства бумаги, для наращивания древесины, трансгенных животных с повышенной продуктивностью биомассы и молока, трансгенные виды ценных пород рыб, в частности лососевых; и др.

Повышение эффективности здравоохранения с помощью трансгенных технологий предполагает, в частности, решение проблем контроля над наследственными заболеваниями (трансгенные вирусы для генной терапии, трансгенные микробы как живые вакцины и др.). Обсуждаются проблемы клонирования (см. 17.2.7) животных (и людей) и даже создания новых форм живого (для нового генетического кода синтезируются новые нуклеотиды и новые аминокислоты), способных осваивать другие планеты (обсуждается проект создания микробов для Марса, способных выделять углекислый газ, что приведет к потеплению марсианского климата).

В лабораторных условиях проведена значительная работа по конструированию трансгенных микробов с самыми разнообразными свойствами. Вместе с тем применение в открытой среде трансгенных микробов пока запрещено правовыми документами из-за неясности последствий, к которым может привести такой в принципе неконтролируемый процесс . К тому же сам мир микроорганизмов изучен крайне слабо: наука знает в лучшем случае около 10% микроорганизмов, а об остальных практически ничего не известно; недостаточно исследованы закономерности взаимодействия микробов между собой, а также микробов и других биологических организмов. Эти и другие обстоятельства обусловливают критическое отношение не только к трансгенным микроорганизмам, но и вообще к трансгенным биоорганизмам, волну протестов против трансгенных биотехнологий — люди не хотят жить в генетически модифицированном мире.

1 Этико-правовые аспекты проекта «Геном человека»: Международные документы и аналитические материалы. М., 1998.

Острейшая дискуссия длится около 25 лет. Высказываются — и вполне обоснованно — опасения, что, если трансгенные микробы и трансгенные растения и животные, не участвовавшие в эволюции наряду с «естественными» организмами, будут свободно выпущены в биосферу, это приведет к таким негативным последствиям, о которых ученые и не подозревают. Уже сейчас можно говорить о неизбежном переносе генов и трансгенных организмов в «обыкновенные», что может поменять генетическую программу животных и человека; об активизации дремлющих патогенных микробов и возникновении эпидемий ранее неизвестных заболеваний растений, животных и человека; о вытеснении природных организмов из их экологических ниш и новом витке экологической катастрофы; о появлении все уничтожающих на своем пути монстров; и т.д. На основе этого делается вывод о необходимости запрета не только генных биотехнологий, но и научных исследований в данной области.

Сторонники дальнейшего развития генной инженерии выдвигают свои аргументы. Они утверждают, что генная инженерия, по сути, занимается тем же (т.е. создает варианты генов), чем миллиарды лет занимается сама природа, создавая и отбирая в ходе эволюции генотипы биологических организмов; перенос генов между различными организмами также существует в природе (особенно между микробами и вирусами), поэтому появление трансгенных организмов в биосфере ничего нового не добавляет. В связи с этим они категорически возражают и против запрета исследований в области молекулярной генетики, и против запрета биотехнологий. Правда, наиболее осторожные из них допускают возможность ограничения или запрета отдельных исследований и технологических разработок по морально-этическим соображениям (например, клонирование человека) или в силу непредсказуемости последствий (исследования трансгенных микробов могут осуществляться лишь в лабораторных условиях, в открытую природу их выпускать рано).

Однако опасения результатов трансгенных технологий являются неопределенными, а выгода, измеряемая многими миллиардами долларов, конкретна и очевидна, и в ряде стран усиливаются настроения, нацеленные на разрешение (при наличии научно-технической экспертизы) полевых исследований трансгенных микроорганизмов. Это говорит о необходимости правового регулирования отношений в области новых генно-инженерных биотехнологий.

17.2.7. Клонирование и его возможности: вымысел и реальность.

В последнее время в средствах массовой информации распространяется много предсказаний, пожеланий, догадок и фантазий о клонировании живых организмов. Особую остроту этим дискуссиям придает обсуждение возможности клонирования человека. Вызывают интерес технологические, этические, философские, юридические, религиозные, психологические аспекты этой проблемы; последствия, которые могут возникнуть при реализации такого способа воспроизводства человека. Как нередко бывает в подобных случаях, стремление к сенсации нередко затемняет сущность проблемы, особенно когда высказываются неспециалисты. И в то же время ее серьезность не вызывает сомнений, поэтому рассмотрим ее детальнее.

Клон — совокупность клеток или организмов, генетически идентичных одной родоначальной клетке. Клонирование — метод создания клонов путем переноса генетического материала из одной (донорской) клетки в другую клетку (энуклеированную яйцеклетку) . При этом следует различать перенос ядра эмбриональной клетки и перенос ядра соматической клетки взрослого организма.

1 Энуклеация — методы, включающие полное удаление ядерного материала из яйцеклетки.

Прежде всего следует отметить, что клоны существуют в природе. Они образуются при бесполовом размножении (партеногенез) микроорганизмов (митоз, простое деление), вегетативном размножении растений. В генетике растений клонирование давно освоено и выяснено, что члены одного клона значительно отличаются по многим признакам; более того, иногда эти различия даже больше, чем в генетически разных популяциях.

Общеизвестный пример естественного клонирования — однояйцевые близнецы, развившиеся из одной яйцеклетки. У человека это всегда младенцы одного пола и всегда удивительно похожие друг на друга. Рождение однояйцевых близнецов возможно потому, что эмбрион млекопитающего (в том числе человека) на самых ранних стадиях (фазе дробления яйца, именуемой бластуляцией) может быть без видимых отрицательных последствий разделен на отдельные бластомеры (у человека по крайней мере до стадии 8 бластомеров), из которых при определенных условиях могут развиться идентичные по своему генотипу особи. Иначе говоря, из одного 8-клеточного эмбриона у человека можно получить до 8 абсолютно идентичных младенцев.(или девочек, или мальчиков). Но и однояйцевые близнецы хотя и очень похожи друг на друга, но далеко не во всем идентичны.

Нынешний клональный бум связан с ответом на вопрос, можно ли не из половой, а из соматической клетки (в отличие от половой клетки она имеет двойной набор хромосом) посредством извлечения из нее ядра и трансплантации его в «обезъядерную» яйцеклетку воссоздать организм? Иначе говоря, вопрос в следующем: рост, развитие и дифференциация эмбриона, онтогенез вызывают необратимые модификации генома в соматических клетках или не вызывают их? Ответ на этот вопрос мог быть получен только на основе экспериментальных исследований.

В XX в. было проведено немало удачных экспериментов по клонированию животных (амфибий, некоторых видов млекопитающих), но все они были выполнены с помощью переноса ядер эмбриональных (недифференцированных или частично дифференцированных) клеток. При этом считалось, что получить клон с использованием ядра соматической (полностью дифференцированной) клетки взрослого организма невозможно. Однако в 1997 г. британские ученые объявили об успешном сенсационном эксперименте: получении живого потомства (овечка Долли) после переноса ядра, взятого из соматической клетки взрослого животного (донорской клетке более 8 лет). Недавно в США (универсистет в Гонолулу) были проведены успешные эксперименты по клонированию на мышах. Таким образом, современная биология доказала, что получение клонов млекопитающих принципиально возможно.

Полученные данные заставили по-новому посмотреть на процесс клеточной дифференциации. Оказалось, что этот процесс обратим и цитоплазматические факторы способны инициировать развитие нового организма на основе генетического материала ядра взрослой, полностью дифференцированной клетки. Можно сказать, «биологические часы» пошли вспять: развитие организма вновь может начинаться из генетического материала взрослой соматической клетки.

В средствах массовой информации заговорили об ошеломляющих перспективах клонирования, в первую очередь для животноводства. От применения технологии клонирования в научных исследованиях ожидается углубление понимания и решение проблем онкологии, учения об онтогенезе, молекулярной генетики, эмбриологии и др. Появление овечки Долли заставило по-новому взглянуть и на проблемы геронтологии (старения).

Особо острые дискуссии развиваются вокруг проблемы клонирования человека. Пока отсутствуют технические возможности клонировать человека. Однако принципиально клонирование человека выглядит вполне выполнимым проектом. И здесь возникает множество уже не только научных и технологических проблем, но и этических, юридических, философских, религиозных.

Вместе с тем ученые очень осторожно относятся к перспективам клонирования, указывают на ограниченности этого метода. В частности, отмечают, что, исходя из закономерностей молекулярной генетики, можно сформулировать ряд предположений.

Во-первых, длительность жизни клонированного организма не будет равна времени жизни нормального организма, сформировавшегося из половых клеток, а в любом случае меньше ее (с учетом возраста донорского организма); так, овечка Долли умерла в 2003 г., прожив чуть более 5 лет, тогда как «естественные» овцы живут 14—15 лет. Ведь хромосомы соматической клетки значительно короче по сравнению с хромосомами половых (зародышевых) клеток.

Во-вторых, клонированный организм будет нести на себе груз генетических мутаций донорской клетки, а значит, ее болезни, признаки старения и т.п. Следовательно, онтогенез клонов не идентичен онтогенезу их родителей: клоны проходят другой, сокращенный и насыщенный болезнями жизненный путь. Можно утверждать, что клонирование не несет омоложения, возврата молодости, бессмертия. Таким образом, метод клонирования нельзя считать абсолютно безопасным для человека.

В-третьих, клонирование не есть копирование. Клон не является точной копией клонированного животного. Значит, человеческие клоны никогда не будут идентичны своим родителям, не говоря уже об их различном жизненном и социально-культурном опыте.

Вообще, что же такое человеческий клон? С одной стороны, он может быть назван ребенком своего родителя. С другой стороны, он же одновременно является и чем-то вроде однояйцевого генетического близнеца своего родителя. Это рождает целый ряд моральных и юридических проблем.

Самые острые среди них следующие: должен ли обладать человеческий клон всеми правами человека и гражданина; кто должен считаться его родителями, раз в его появлении на свет участвуют три особи: донор клетки, донор яйцеклетки и суррогатная мать; нужно ли в связи с этим, а если нужно, то в каком направлении, пересматривать соответствующие разделы конституционного, гражданского, семейного и наследственного права, в частности, какие (родительские) права (и обязанности) имеют «вкладчик генетического материала», донор яйцеклетки, суррогатная мать? Вполне возможно, что юристам придется рассмотреть и вопрос о праве собственности на свою ДНК — ведь клетки могут быть взяты без согласия человека.

Юридическая сторона проблемы запутывается еще больше, если к этому добавить, что, по-видимому, нет принципиальных препятствий клонированию человека от клеток умершего человека. (Кто имеет право распоряжаться генетическим материалом умершего для последующего его клонирования? Может ли индивид, чьи клетки были клонированы после смерти, считаться отцом (матерью)? И т.д.)

Существуют также этические, философские и религиозные аспекты проблемы клонирования: и усложнение смысла личной индивидуальности и неповторимости, и проблема семьи, ее роли в обществе, и вопрос о пределах науки, практического могущества человека, об ущемлении чувств верующих, и опасение, что человеческие клоны «нормальными» людьми не будут восприниматься как люди, и др. Не случайно многие общественные организации заявляют о моральной неприемлемости любых попыток клонирования человека. ООН готовит международное соглашение о запрете клонирования человека.

Но, конечно, процесс познания мира не остановить. Очевидно, что исследования в области эмбриологии и клонирования человека очень важны для медицины, понимания путей достижения здоровья человека. Поэтому они должны проводиться. Непосредственное же клонирование человека (вплоть до обстоятельного уточнения правовых, этических и других аспектов этой проблемы) пока, по-видимому, неприемлемо. Однако сопутствующие научные знания могут быть уже сейчас полезными в решении многих медицинских проблем (лечение бесплодия, клонирование тканей и органов человека для создания банка «запасных частей» для конкретных людей, что позволит обеспечить продление их жизни, и др.). Рано или поздно настанет время, когда генно-инженерные технологии в области принципов клонирования людей войдут в повседневную жизнь.
.