Что такое площадь треугольника определение. Как найти площадь треугольника

Что такое площадь треугольника определение. Как найти площадь треугольника
Что такое площадь треугольника определение. Как найти площадь треугольника

Формул для вычисления площади треугольника в интернете можно найти свыше 10. Немало из них применяется в задачах с известными сторонами и углами треугольника. Однако есть ряд сложных примеров где по условию задания известны только одна сторона и углы треугольника, или радиус описанной или вписанной окружности и еще одна характеристика. В таких случаях простую формулу применить не удастся.

Приведенные ниже формулы позволят решить 95 процентов задач в которых требуется найти площадь треугольника.
Перейдем к рассмотрению распространенных формул площади.
Рассмотрим треугольник изображен на рисунке ниже

На рисунке и далее в формулах введены классические обозначения всех его характеристик
a,b,c – стороны треугольника,
R – радиус описанной окружности,
r – радиус вписанной окружности,
h[b],h[a],h[c] – высоты, проведенные в соответствии со сторонами a,b,c.
alpha, beta,hamma – углы возле вершин.

Основные формулы площади треугольника

1. Площадь равна половине произведения стороны треугольника на высоту опущенной к этой стороне. На языке формул это определение можно записать так

Таким образом, если известна сторона и высота - то площадь найдет каждый школьник.
Кстати, из этой формулы можно вывести одну полезную зависимость между высотами

2. Если учесть, что высота треугольника через соседнюю сторону выражается зависимостью

То с первой формулы площади следуют однотипные вторые



Внимательно посмотрите на формулы - их легко запомнить, поскольку в произведении фигурирует две стороны и угол между ними. Если правильно обозначить стороны и углы треугольника (как на рисунке выше) то получим две стороны a,b и угол связан с третьей С (hamma).

3. Для углов треугольника справедливо соотношение

Зависимость позволяет применять в вычислениях следующие формулы площади треугольника



Примеры на эту зависимость встречаются крайне редко, но помнить что есть такая формула Вы должны.

4. Если известна сторона и два прилегающих угла то площадь находится по формуле

5. Формула площади через сторону и котангенс прилегающих углов следующая

Перестановкой индексов можете получить зависимости для других сторон.

6. Приведенная ниже формула площади используется в задачах когда вершины треугольника заданы на плоскости координатами . В этом случае площадь равна половине определителя взятого по модулю.



7. Формула Герона применяют в примерах с известными сторонами треугольника.
Сначала находят полупериметр треугольника

А затем определяют площадь по формуле

или

Ее довольно часто используют в коде программ калькуляторов.

8. Если известны все высоты треугольника то площадь определяют по формуле

Она сложна для вычисления на калькуляторе, однако в пакетах MathCad, Mathematica, Maple площадь находится на «раз два ».

9. Следующие формулы используют известны радиусы вписанных и описанных окружностей.

В частности, если известно радиус и стороны треугольника, или его периметр то площадь вычисляется согласно формуле

10. В примерах где задано стороны и радиус или диаметр описанной окружности площадь находят по формуле

11. Следующая формула определяет площадь треугольника через сторону и углы треугольника.

Ну и напоследок - частные случаи:
Площадь прямоугольного треугольника с катетами a и b равна половине их произведения

Формула площади равностороннего (правильного) треугольника =

= одной четвертой произведения квадрату стороны на корень из тройки.

Школьная программа предусматривает обучение детей геометрии с раннего возраста. Одно из самых базовых знаний этой области - это нахождение площади различных фигур. В этой статье мы постараемся привести все возможные способы получения этой величины, от простейших до самых сложных.

Основа

Первая формула, которую изучают дети в школе, предусматривает нахождение площади треугольника через длину его высоты и основания. Высота - это отрезок, проведённый из вершины треугольника под прямым углом к противолежащей стороне, которая будет являться основанием. Как найти площадь треугольника по этим величинам?

Если V - высота, а O - основание, тогда площадь S=V*O:2.

Другой вариант получения искомой величины требует от нас знания длин двух сторон, а также величины угла между ними. Если у нас L и M - длины сторон, а Q - угол между ними, тогда вы можете получить площадь по формуле S=(L*M*sin(Q))/2.

Формула Герона

Кроме всех прочих ответов на вопрос о том, как вычислить площадь треугольника, есть формула, позволяющая получить необходимое нам значение, зная исключительно длины сторон. То есть, если нам известны длины всех сторон, то нам нет необходимости проводить высоту и вычислять её длину. Мы можем воспользоваться, так называемой формулой Герона.

Если M, N, L - это длины сторон, тогда мы можем найти площадь треугольника, следующим образом. P=(M+N+L)/2, тогда необходимая нам величина S 2 =P*(P-M)*(P-L)*(P-N). В итоге, нам останется только вычислить корень.

Для прямоугольного треугольника формула Герона немного упрощается. Если M, L -это катеты, тогда S=(P-M)*(P-L).

Окружности

Другой способ, с помощью которого можно найти площадь треугольника, предусматривает использование вписанных и описанных окружностей. Чтобы получить необходимую нам величину с помощью вписанной окружности, нам потребуется узнать её радиус. Обозначим его "r". Тогда формула, по которой мы будем проводить вычисления, примет следующий вид: S=r*P, где P - это половина от суммы длин всех сторон.

В прямоугольном треугольнике эта формула немного преобразуется. Конечно, вы можете использовать и указанную выше, однако лучше взять для вычислений другое выражение. S=E*W, где E и W - это длины отрезков, на которые делится гипотенуза, точкой касания окружности.

Говоря об описанной окружности, найти площадь треугольника, также не составит труда. Введя обозначение R, как радиус описанной окружности, можно получить следующую формулу, необходимую для вычисления искомой величины: S= (M*N*L):(4*R). Где три первые величины - это стороны треугольника.

Говоря о равностороннем треугольнике, за счет ряда простейших математических преобразований можно получить немого изменённые формулы:

S=(3 1/2 *M 2)/4;

S=(3*3 1/2 *R 2)/4;

S=3*3 1/2 *r 2 .

Во всяком случае, любая формула, позволяющая найти площадь треугольника, может быть изменена в соответствии с данными поставленной задачи. Так что все написанные выражения не являются абсолютами. При решении задач поразмышляйте, чтобы найти наиболее подходящий способ решения.

Координаты

При изучении координатных осей задачи, стоящие перед учениками, усложняются. Однако не настолько, чтобы впадать в панику. Для того чтобы найти площадь треугольника по координатам вершин, вы можете воспользоваться всё той же, но немного изменённой формулой Герона. Для координат она приобретает следующий вид:

S=((x 2 -x 1) 2 *(y 2 -y 1) 2 *(z 2 -z 1) 2) 1/2 .

Впрочем, никто не запрещает, используя координаты, вычислить длины сторон треугольника и затем, по формулам, которые были написаны выше, посчитать площадь. Для преобразования координат в длину пользуйтесь следующей формулой:

l=((x 2 -x 1) 2 +(y 2 -y 1) 2) 1/2 .

Примечания

В статье использовались стандартные обозначения величин, которые применяются в условиях большинства задач. При этом степень "1/2" означает, что вам необходимо извлечь корень из всего выражения под скобками.

При выборе формулы будьте внимательнее. Некоторые из них теряют свою актуальность в зависимости от начальных условий. Например, формула описанной окружности. Она способна высчитать вам результат в любом случае, однако может быть такая ситуация, когда треугольника с заданными параметрами может вообще не существовать.

Если вы сидите дома и делаете домашнее задание, тогда можете воспользоваться онлайн-калькулятором. Многие сайты предоставляют возможность вычисления различных величин по заданным параметрам, причем не суть важно, каким именно. Вы просто можете вписать начальные данные в поля, и компьютер (сайт) посчитает за вас результат. Таким образом, вы сможете избежать ошибок, допущенных по невнимательности.

Надеемся наша статья ответила все ваши вопросы касательно вычисления площади самых разных треугольников, и вам не придётся искать допонительную информацию в другом месте. Удачи с учебой!

Чтобы определить площадь треугольника, можно пользоваться разными формулами. Из всех способов самый легкий и часто применяемый - это умножение высоты на длину основания с последующим делением полученного результата на два. Однако данный метод далеко не единственный. Ниже вы сможете прочесть, как найти площадь треугольника, используя разные формулы.

Отдельно мы рассмотрим способы вычисления площади специфических видов треугольника - прямоугольного, равнобедренного и равностороннего. Каждую формулу мы сопровождаем коротким пояснением, которое поможет вам понять ее суть.

Универсальные способы нахождения площади треугольника

В приведенных ниже формулах используются специальные обозначения. Мы расшифруем каждое из них:

  • a, b, c – длины трех сторон рассматриваемой нами фигуры;
  • r – радиус окружности, которая может быть вписана в наш треугольник;
  • R – радиус той окружности, которая может быть описана вокруг него;
  • α - величина угла, образованного сторонами b и с;
  • β - величина угла между a и c;
  • γ - величина угла, образованного сторонами а и b;
  • h – высота нашего треугольника, опущенная из угла α на сторону а;
  • p – половина суммы сторон a, b и с.

Логически понятно, почему можно находить площадь треугольника этим способом. Треугольник легко достраивается до параллелограмма, в котором одна сторона треугольника будет выполнять роль диагонали. Площадь параллелограмма находится умножением длины одной из его сторон на значение высоты, проведенной к ней. Диагональ разделяет этот условный параллелограмм на 2 одинаковых треугольника. Следовательно, совершенно очевидно, что площадь нашего исходного треугольника должна равняться половине площади этого вспомогательного параллелограмма.

S=½ a · b·sin γ

Согласно этой формуле, площадь треугольника находится умножением длин двух его сторон, то есть а и b, на синус образованного ими угла. Эта формула логически выводится из предыдущей. Если опустить высоту из угла β на сторону b, то, согласно свойствам прямоугольного треугольника, при умножении длины стороны a на синус угла γ получаем высоту треугольника, то есть h.

Площадь рассматриваемой фигуры находим путем умножения половины радиуса окружности, которую в него можно вписать, на его периметр. Иными словами, находим произведение полупериметра на радиус упомянутой окружности.

S= a · b · с/4R

Согласно данной формуле, необходимую нам величину можно найти путем деления произведения сторон фигуры на 4 радиуса окружности, вокруг нее описанной.

Эти формулы универсальны, так как дают возможность определить площадь любого треугольника (разностороннего, равнобедренного, равностороннего, прямоугольного). Можно это сделать и при помощи более сложных вычислений, на которых мы подробно останавливаться не станем.

Площади треугольников со специфическими свойствами

Как найти площадь прямоугольного треугольника? Особенностью этой фигуры является то, что две ее стороны одновременно являются ее высотами. Если а и b являются катетами, а с становится гипотенузой, то площадь находим так:

Как найти площадь равнобедренного треугольника? В нем две стороны с длиной а и одна сторона с длиной b. Следовательно, его площадь определить можно путем деления на 2 произведения квадрата стороны а на синус угла γ.

Как найти площадь равностороннего треугольника? В нем длина всех сторон равняется а, а величина всех углов - α. Его высота равна половине произведения длины стороны а на корень квадратный из 3. Чтобы найти площадь правильного треугольника, нужно квадрат стороны а умножить на корень квадратный из 3 и разделить на 4.

Из противоположной вершины) и разделите полученное произведение на два. В виде данное выглядит следующим образом:

S = ½ * а * h,

где:
S – площадь треугольника,
а – длина его стороны,
h – высота, опущенной на эту сторону.

Длина стороны и высота должны быть представлены в одинаковых единицах измерения. При этом площадь треугольника получится в соответствующих « » единицах.

Пример.
На одну из сторон разностороннего треугольника длиной 20 см, опущен перпендикуляр из противоположной вершины длиной 10 см.
Требуется площадь треугольника.
Решение.
S = ½ * 20 * 10 = 100 (см²).

Если известны длины двух любых сторон разностороннего треугольника и угол между ними, то воспользуйтесь формулой:

S = ½ * а * b * sinγ,

где: а, b – длины двух произвольных сторон, а γ – угла между ними.

На практике, например, при измерении земельных участков, использование вышеприведенных формул иногда затруднительно, так как требует дополнительных построений и измерения углов.

Если вам известны длины всех трех сторон разностороннего треугольника, то воспользуйтесь формулой Герона:

S = √(p(p-a)(p-b)(p-c)),

a, b, c – длины сторон треугольника,
р – полупериметр: p = (a+b+c)/2.

Если кроме длин всех сторон известен радиус вписанной в треугольник окружности, то воспользуйтесь следующей компактной формулой:

где: r – радиус вписанной окружности (р – полупериметр).

Для вычисления площади разностороннего треугольника описанной окружности и длины его сторон, используйте формулу:

где: R – радиус описанной окружности.

Если известна длина одной из сторон треугольника и трех углов (в принципе, достаточно двух – величина третьего вычисляется из равенства суммы трех углов треугольника - 180º), то воспользуйтесь формулой:

S = (a² * sinβ * sinγ)/2sinα,

где α – величина противолежащего стороне а угла;
β, γ – величины остальных двух углов треугольника.

Потребность в нахождении различных элементов, в том числе и площади треугольника , появилась за много веков до нашей эры у ученых астрономов Древней Греции. Площадь треугольника можно вычислить различными способами, используя разные формулы. Способ вычисления зависит от того, какие элементы треугольника известны.

Инструкция

Если из условия нам известны значения двух сторон b, c и угол ими образованный?, то площадь треугольника ABC находится по формуле:
S = (bcsin?)/2.

Если из условия нам известны значения двух сторон a, b и не образованный ими угол?, то площадь треугольника ABC находится следующим образом:
Находим угол?, sin? = bsin?/a, далее по таблице определяем сам угол.
Находим угол?, ? = 180°-?-?.
Находим саму площадь S = (absin?)/2.

Если из условия нам известны значения только трех сторон треугольника a, b и c, то площадь треугольника ABC находится по формуле:
S = v(p(p-a)(p-b)(p-c)) , где p – полупериметр p = (a+b+c)/2

Если из условия задачи нам известны высота треугольника h и сторона к которой опущена эта высота, то площадь треугольника ABC по формуле:
S = ah(a)/2 = bh(b)/2 = ch(c)/2.

Если нам известны значения сторон треугольника a, b, c и радиус описанной около данного треугольника R, то площадь этого треугольника ABC определяется по формуле:
S = abc/4R.
Если известны три стороны a, b, c и радиус вписанной в , то площадь треугольника ABC находится по формуле:
S = pr, где p – полупериметр, p = (a+b+c)/2.

Если ABC – равносторонний, то площадь находится по формуле:
S = (a^2v3)/4.
Если треугольник ABC – равнобедренный, то площадь определяется по формуле:
S = (cv(4a^2-c^2))/4, где с – треугольника .
Если треугольник ABC – прямоугольный, то площадь определяется по формуле:
S = ab/2, где a и b – катеты треугольника .
Если треугольник ABC – прямоугольный равнобедренный, то площадь определяется по формуле:
S = c^2/4 = a^2/2, где с – гипотенуза треугольника , a=b – катет.

Видео по теме

Источники:

  • как измерить площадь треугольника

Совет 3: Как найти площадь треугольника, если известен угол

Знания лишь одного параметра (величины угла) не достаточно для нахождения площади треугольника . Если же есть какие-либо дополнительные размеры, то для определения площади можно выбрать одну из формул, в которых в качестве одной из известных переменных используется и величина угла. Несколько таких формул, применяемых наиболее часто, приведено ниже.

Инструкция

Если кроме величины угла (γ), образованного двумя сторонами треугольника , известны и длины этих сторон (A и B), то площадь (S) фигуры можно определить, как половину от произведения длин сторон на синус этого известного угла: S=½×A×B×sin(γ).

Площадь треугольника - формулы и примеры решения задач

Ниже приведены формулы нахождения площади произвольного треугольника которые подойдут для нахождения площади любого треугольника, независимо от его свойств, углов или размеров. Формулы представлены в виде картинки, здесь же приведены пояснения по применению или обоснованию их правильности. Также на отдельном рисунке указаны соответствия буквенных обозначений в формулах и графических обозначений на чертеже.

Примечание . Если же треугольник обладает особыми свойствами (равнобедренный, прямоугольный, равносторонний), можно использовать формулы, приведенные ниже, а также дополнительно специальные, верные только для треугольников с данными свойствами, формулы:

  • "Формулы площади равностороннего треугольника"

Формулы площади треугольника

Пояснения к формулам :
a, b, c - длины сторон треугольника, площадь которого мы хотим найти
r - радиус вписанной в треугольник окружности
R - радиус описанной вокруг треугольника окружности
h - высота треугольника, опущенная на сторону
p - полупериметр треугольника, 1/2 суммы его сторон (периметра)
α - угол, противолежащий стороне a треугольника
β - угол, противолежащий стороне b треугольника
γ - угол, противолежащий стороне c треугольника
h a , h b , h c - высота треугольника, опущенная на сторону a , b , c

Обратите внимание, что приведенные обозначения соответствуют рисунку, который находится выше, чтобы при решении реальной задачи по геометрии Вам визуально было легче подставить в нужные места формулы правильные значения.

  • Площадь треугольника равна половине произведения высоты треугольника на длину стороны на которую эта высота опущена (Формула 1). Правильность этой формулы можно понять логически. Высота, опущенная на основание, разобьет произвольный треугольник на два прямоугольных. Если достроить каждый из них до прямоугольника с размерами b и h, то, очевидно, площадь данных треугольников будет равна ровно половине площади прямоугольника (Sпр = bh)
  • Площадь треугольника равна половине произведения двух его сторон на синус угла между ними (Формула 2) (см. пример решения задачи с использованием этой формулы ниже). Несмотря на то, что она кажется непохожей на предыдущую, она легко может быть в нее преобразована. Если из угла B опустить высоту на сторону b, окажется, что произведение стороны a на синус угла γ по свойствам синуса в прямоугольном треугольнике равно проведенной нами высоте треугольника, что и даст нам предыдущую формулу
  • Площадь произвольного треугольника может быть найдена через произведение половины радиуса вписанной в него окружности на сумму длин всех его сторон (Формула 3), проще говоря, нужно полупериметр треугольника умножить на радиус вписанной окружности (так легче запомнить)
  • Площадь произвольного треугольника можно найти, разделив произведение всех его сторон на 4 радиуса описанной вокруг него окружности (Формула 4)
  • Формула 5 представляет собой нахождение площади треугольника через длины его сторон и его полупериметр (половину суммы всех его сторон)
  • Формула Герона (6) - это представление той же самой формулы без использования понятия полупериметра, только через длины сторон
  • Площадь произвольного треугольника равна произведению квадрата стороны треугольника на синусы прилежащих к этой стороне углов деленного на двойной синус противолежащего этой стороне угла (Формула 7)
  • Площадь произвольного треугольника можно найти как произведение двух квадратов описанной вокруг него окружности на синусы каждого из его углов. (Формула 8)
  • Если известна длина одной стороны и величины двух прилежащих к ней углов, то площадь треугольника может быть найдена как квадрат этой стороны, деленный на двойную сумму котангенсов этих углов (Формула 9)
  • Если известна только длина каждой из высот треугольника (Формула 10), то площадь такого треугольника обратно пропорциональна длинам этих высот, как по Формуле Герона
  • Формула 11 позволяет вычислить площадь треугольника по координатам его вершин , которые заданы в виде значений (x;y) для каждой из вершин. Обратите внимание, что получившееся значение необходимо взять по модулю, так как координаты отдельных (или даже всех) вершин могут находиться в области отрицательных значений

Примечание . Далее приведены примеры решения задач по геометрии на нахождение площади треугольника. Если Вам необходимо решить задачу по геометрии, похожей на которую здесь нет - пишите об этом в форуме. В решениях вместо символа "квадратный корень" может применяться функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение . Иногда для простых подкоренных выражений может использоваться символ

Задача. Найти площадь по двум сторонам и углу между ними

Стороны треугольника равны 5 и 6 см. Угол между ними составляет 60 градусов. Найдите площадь треугольника .

Решение .

Для решения этой задачи используем формулу номер два из теоретической части урока.
Площадь треугольника может быть найдена через длины двух сторон и синус угла межу ними и будет равна
S=1/2 ab sin γ

Поскольку все необходимые данные для решения (согласно формуле) у нас имеются, нам остается только подставить значения из условия задачи в формулу:
S = 1/2 * 5 * 6 * sin 60

В таблице значений тригонометрических функций найдем и подставим в выражение значение синуса 60 градусов . Он будет равен корню из трех на два.
S = 15 √3 / 2

Ответ : 7,5 √3 (в зависимости от требований преподавателя, вероятно, можно оставить и 15 √3/2)

Задача. Найти площадь равностороннего треугольника

Найти площадь равностороннего треугольника со стороной 3см.

Решение .

Площадь треугольника можно найти по формуле Герона:

S = 1/4 sqrt((a + b + c)(b + c - a)(a + c - b)(a + b -c))

Поскольку a = b = c формула площади равностороннего треугольника примет вид:

S = √3 / 4 * a 2

S = √3 / 4 * 3 2

Ответ : 9 √3 / 4.

Задача. Изменение площади при изменении длины сторон

Во сколько раз увеличится площадь треугольника, если стороны увеличить в 4 раза?

Решение .

Поскольку размеры сторон треугольника нам неизвестны, то для решения задачи будем считать, что длины сторон соответственно равны произвольным числам a, b, c. Тогда для того, чтобы ответить на вопрос задачи, найдем площадь данного треугольника, а потом найдем площадь треугольника, стороны которого в четыре раза больше. Соотношение площадей этих треугольников и даст нам ответ на задачу.

Далее приведем текстовое пояснение решения задачи по шагам. Однако, в самом конце, это же самое решение приведено в более удобном для восприятия графическом виде. Желающие могут сразу опуститься вниз решения.

Для решения используем формулу Герона (см. выше в теоретической части урока). Выглядит она следующим образом:

S = 1/4 sqrt((a + b + c)(b + c - a)(a + c - b)(a + b -c))
(см. первую строку рисунка внизу)

Длины сторон произвольного треугольника заданы переменными a, b, c.
Если стороны увеличить в 4 раза, то площадь нового треугольника с составит:

S 2 = 1/4 sqrt((4a + 4b + 4c)(4b + 4c - 4a)(4a + 4c - 4b)(4a + 4b -4c))
(см. вторую строку на рисунке внизу)

Как видно, 4 - общий множитель, который можно вынести за скобки из всех четырех выражений по общим правилам математики.
Тогда

S 2 = 1/4 sqrt(4 * 4 * 4 * 4 (a + b + c)(b + c - a)(a + c - b)(a + b -c)) - на третьей строке рисунка
S 2 = 1/4 sqrt(256 (a + b + c)(b + c - a)(a + c - b)(a + b -c)) - четвертая строка

Из числа 256 прекрасно извлекается квадратный корень, поэтому вынесем его из-под корня
S 2 = 16 * 1/4 sqrt((a + b + c)(b + c - a)(a + c - b)(a + b -c))
S 2 = 4 sqrt((a + b + c)(b + c - a)(a + c - b)(a + b -c))
(см. пятую строку рисунка внизу)

Чтобы ответить на вопрос, заданный в задаче, нам достаточно разделить площадь получившегося треугольника, на площадь первоначального.
Определим соотношения площадей, разделив выражения друг на друга и сократив получившуюся дробь.