Эйнштейн биография и его открытия. Как зовут Эйнштейна? Кто такой Эйнштейн

Эйнштейн биография и его открытия. Как зовут Эйнштейна? Кто такой Эйнштейн
Эйнштейн биография и его открытия. Как зовут Эйнштейна? Кто такой Эйнштейн
Альберт Эйнштейн – ученый-легенда, совершивший небывалый переворот в науке созданием знаменитой теории относительности, автор многих других открытий в теоретической физике, Нобелевский лауреат и непоколебимый пацифист с загадочной биографией.

Он занял третью позицию в списке 100 великих евреев всех времен, уступив лидерство только Моисею и Иисусу. Многие его считают идолом эпохи, человеком столетия, ставят в один ряд с такими гениями как Максвелл и Ньютон. Но некоторые обличители лишают его ореола, называют разрекламированным научным плагиатором и мошенником, утверждая, что ряд положений его вышеупомянутой теории были высказаны ранее другими выдающимися представителями пантеона науки.

Детство и юность

Будущий физик-теоретик появился на свет 14 марта 1879 года в г. Ульме под Мюнхеном. Его мать Паулина была домохозяйкой, дочкой успешного торговца зерном. Отец Герман, напротив, оказался не слишком блестящим коммерсантом. Семье не раз приходилось переезжать из-за разорений его предприятий, в частности, в 1880-м в Мюнхен. В этом городе у мальчика появилась сестренка Майя.


Первенец родился с большой и деформированной головой. Родители долго опасались, что сын будет отставать в психическом развитии. Он рос замкнутым, до семи лет не разговаривал, только повторял за другими людьми одни и те же фразы. Позже он заговорил, но не произносил фразы сразу вслух, а предварительно их воспроизводил одними губами. Причем если его требования отказывались выполнять, он ужасно злился, в бешенстве кривил лицо, швырял подвернувшиеся под руку предметы. Однажды в момент такого припадка он чуть не покалечил сестру. Так что семья считала мальчика умственно отсталым. Современные ученые предполагают, что таким образом мог проявляться синдром Аспергера.

В 6 лет Альберт стал заниматься музыкой и всю взрослую жизнь был влюблен в скрипку, но в детские годы учился из-под палки. Под фортепианный аккомпанемент строгой матери он играл Моцарта и Бетховена. Ряд биографов ученого считает, что именно тиранка Паулина посеяла в душе Эйнштейна скептическое отношение к женскому полу.

В школе будущий гений учился плохо. Поступив в 10 лет в гимназию, он вел себя непочтительно и дерзко, предпочитал заниматься самообразованием, а не посещать скучные уроки. Особенно его удручало изучение древнегреческого языка. Даже по математике у него долгое время стояло 2, хотя интерес к которым у него проснулся уже в те годы и начался с того, что отец презентовал ему компас. Альберт был потрясен тем, что таинственные силы заставляли стрелку сохранять неизменное направление.


Не последнюю роль в становлении личности Альберта сыграл друг их семьи студент Макс Талмуд и его дядя Якоб. Они приносили смышленому мальчишке интересные учебники, предлагали решать интригующие головоломки. В частности, подросток зачитывался трактатом Евклида «Начала». Кроме этого, знакомство с философским трудом Канта «Критика чистого разума» заставило его, крайне религиозного с детства, задуматься над вопросом о существовании бога и о природе войн.


После очередного краха отцовского бизнеса в 1894 году семейство перебрались в пригород Милана Павию. Спустя год Альберт присоединился к ним, так и не окончив мюнхенскую гимназию. Он рассчитывал поступить в политехникум Цюриха и стать учителем, однако вступительные испытания провалил. В результате ему довелось провести год в школе Аарау и только после получения аттестата в 1896-м стать студентом цюрихского учебного заведения.

Путь к науке

В 1900 году способный, но проблемный студент, позволявший себе спорить с профессорами, окончил учебу с прекрасными результатами. Продолжить научную деятельность в альма-матер ему не предложили из-за его неуживчивого характера и бесконечных пропусков занятий. Затем в течение двух лет он не мог отыскать работу по специальности, пребывал в отчаянном материальном положении. Из-за стресса и нищеты у него открылась языва.


Ситуацию спас его бывший однокурсник и будущий известный ученый Марсель Гроссман, который в 1902 году помог Альберту устроиться в Бюро патентования изобретений в Берне. По роду деятельности талантливый молодой специалист имел возможность знакомиться с множеством интересных патентных заявок, что, по мнению ряда критиков, и позволило ему со временем на основе чужих идей разрабатывать собственные теоретические положения. Вскоре он женился на бывшей однокурснице (подробней см. в разделе «Личная жизнь») Милеве Марич.

В 1905-м Эйнштейн опубликовал ряд работ, ставших фундаментом для теорий относительности, квантовой и броуновского движения. Они имели огромный общественный резонанс, изменив представления людей об окружающем мире. В частности, им был обоснован потрясающий факт более медленного течения времени в движущихся координатах. Это означало, что астронавт, отправившийся на удаленную планету со скоростью выше скорости света, вернется домой более молодым по сравнению со сверстниками, находившимися на земле.


Спустя год ученый вывел свою знаменитую формулу Е=mc2, получил степень доктора в родном университете и с 1909 года начал там преподавать. За это открытие в 1910-м Эйнштейн впервые был номинирован на Нобелевскую премию, но победителем не стал. В течение следующих десяти лет члены комитета оставались непреклонными и продолжали отвергать его кандидатуру на престижную награду. Главным аргументом их решения было отсутствие экспериментального подтверждения справедливости формулы.


В 1911-м автор революционной работы переехал в Прагу, где в течение года трудился в старейшем учебном заведении Центральной Европы, продолжая свои научные изыскания. Затем он вернулся в Цюрих, а в 1914-м отправился в Берлин. Кроме науки он занимался общественной деятельностью, активно выступал за гражданские права и против войн.

Во время солнечного затмения 1919 г. исследователи нашли подтверждение ряда постулатов спорной теории, и к ее автору пришло всемирное признание. В 1922-м он стал наконец Нобелевским лауреатом, правда, не за теорию, являвшуюся венцом его интеллектуальной деятельности, а за другое открытие – фотоэффекта. Он побывал в Японии, Индии, Китае, США, в ряде европейских государств, где знакомил публику со своими убеждениями и открытиями.

В начале 1930-х профессор-пацифист начал подвергаться преследованиям на фоне роста антисемитских настроений. С приходом к власти Гитлера он эмигрировал за океан, получив место в исследовательском институте Принстона. В 1934-м по приглашению Франклина Рузвельта он побывал в Белом доме, а в 1939-м подписал обращение ученых на имя американского президента о необходимости создания ядерного оружия для противостояния фашистской Германии, о чем впоследствии сожалел.


В 1952-м Израиль (после смерти главы Хаима Вейцмана) предложил гениальному физику занять должность президента. Он отклонил столь лестное предложение, сославшись на отсутствие опыта государственной деятельности.

Личная жизнь Альберта Эйнштейна

Отец теории относительности был чудаком – никогда не носил носков, не любил чистить зубы, однако пользовался успехом у женщин, имел за свою жизнь около десяти любовниц, а женат был дважды.

Первой его любовью стала Мари, дочь профессора Йоста Винтелера, в доме которого он жил во время учебы в Аарау. После отъезда Альберта в Цюрих их роман закончился, но девушка долго переживала их разрыв, усугубивший ее психическое состояние. Впоследствии она попала в больницу для душевнобольных, где и умерла.


Второй избранницей ученого являлась однокурсница, блестящий математик и физик, Милева Марич. Они обвенчались в 1903 году в Берне. Девушка была внешне неказиста и прихрамывала. Родители Альберта недоумевали, зачем он выбрал в жены дурнушку, на что физик отвечал: «Ну и что! Слышали бы вы ее вокал».

Документальный фильм, посвященный Альберту Эйнштейну

Правда, страстная любовь гения к ней очень скоро остыла. Он представил ей список унизительных условий совместной жизни, фактически превращавших возлюбленную в домработницу и научного секретаря. Более того, он убедил жену отдать их годовалую дочь Лизерль, родившуюся в 1902-м и отвлекавшую мужчину от научной деятельности, в другую семью, где малышка вскоре умерла от скарлатины и ненадлежащего ухода.

В 1904-м у пары появился сын Ганс Альберт, в 1910-м – Эдуард, заболевший впоследствии шизофренией и отправленный отцом навсегда в психиатрическую лечебницу. Старший сын рос угрюмым и нелюдимым, повзрослев, отказался заниматься теоретической физикой, невзлюбив отца за его отношение к матери и брату. Семья распалась из-за измен Альберта в 1914-м, он уехал в Берлин. В качестве откупных при разводе Альберт отдал Марич 32 тысячи долларов – приз за открытие фотоэффекта.


После развода физик женился на своей двоюродной сестре Эльзе, которая воспитывала двух дочерей от предыдущего брака – младшую Марго и девушку на выданье по имени Ильзе. Вначале Эйнштейн испытывал нежные чувства именно к последней, но получив отказ, остановился на ее матери.

В отличие от первой супруги, кузина была женщиной недалекой и смотрела сквозь пальцы на измены супруга. Альберт обожал представительниц слабого пола, и в него были влюблены многие красавицы, включая Марго. Также ученый страстно увлекался парусным спортом. Ему нравилось ходить на яхте в одиночку. В музыке и литературе он был консерватором – любил классику.

Смерть

Гений-чудак с трубкой и всклокоченной шевелюрой был невероятно популярен. Его именем называли улицы, башни, телескопы, кратер на Луне, квазар. В 1955-м его состояние здоровья сильно ухудшилось. Он попал в клинику, в ожидании кончины был спокойным и умиротворенным.


Накануне смерти, наступившей 18 апреля от разрыва аорты, он уничтожил рукопись своего последнего исследования. Что его заставило это сделать – по сей день остается загадкой.

После вскрытия тела учёного патологоанатом Томас Харви сделал интересное наблюдение. В левом полушарии мозга Эйнштейна наблюдалось аномальное количество глиальных клеток, «питающих» нейроны. А, как известно, левое полушарие отвечает за логику и «точные науки». Также, несмотря на преклонный возраст гения, в его мозгу практически не было дегенеративных изменений, свойственных пожилым людям.


Среди известных ныне живущих потомков Альберта Эйнштейна – его правнуки Томас, Пол, Эдуард и Мира Эйнштейн. Томас – врач, заведует клиникой в Лос-Анджелесе. Пол играет на скрипке. Эдуард (которого все называют просто Тед) в свое время бросил старшую школу и построил успешный бизнес – у него мебельный магазин. Мира работает в сфере телемаркетинга и в свободное время играет на музыкальных инструментах.


Биография

Альберт Эйнштейн (нем. Albert Einstein, МФА [ˈalbɐt ˈaɪ̯nʃtaɪ̯n] (i); 14 марта 1879, Ульм, Вюртемберг, Германия - 18 апреля 1955, Принстон, Нью-Джерси, США) - физик-теоретик, один из основателей современной теоретической физики, лауреат Нобелевской премии по физике 1921 года, общественный деятель-гуманист. Жил в Германии (1879-1893, 1914-1933), Швейцарии (1893-1914) и США (1933-1955). Почётный доктор около 20 ведущих университетов мира, член многих Академий наук, в том числе иностранный почётный член АН СССР (1926).

(1905).
В её рамках - закон взаимосвязи массы и энергии: E=mc^2.
Общая теория относительности (1907-1916).
Квантовая теория фотоэффекта.
Квантовая теория теплоёмкости.
Квантовая статистика Бозе - Эйнштейна.
Статистическая теория броуновского движения, заложившая основы теории флуктуаций.
Теория индуцированного излучения.
Теория рассеяния света на термодинамических флуктуациях в среде.

Он также предсказал «квантовую телепортацию», предсказал и измерил гиромагнитный эффект Эйнштейна - де Хааза. С 1933 года работал над проблемами космологии и единой теории поля. Активно выступал против войны, против применения ядерного оружия, за гуманизм, уважение прав человека, взаимопонимание между народами.

Эйнштейну принадлежит решающая роль в популяризации и введении в научный оборот новых физических концепций и теорий. В первую очередь это относится к пересмотру понимания физической сущности пространства и времени и к построению новой теории гравитации взамен ньютоновской. Эйнштейн также, вместе с Планком, заложил основы квантовой теории. Эти концепции, многократно подтверждённые экспериментами, образуют фундамент современной физики.

Ранние годы

Альберт Эйнштейн родился 14 марта 1879 года в южно-германском городе Ульме, в небогатой еврейской семье.

Отец, Герман Эйнштейн (1847-1902), был в это время совладельцем небольшого предприятия по производству перьевой набивки для матрацев и перин. Мать, Паулина Эйнштейн (урождённая Кох, 1858-1920), происходила из семьи состоятельного торговца кукурузой Юлиуса Дерцбахера (в 1842 году он сменил фамилию на Кох) и Йетты Бернхаймер. Летом 1880 года семья переселилась в Мюнхен, где Герман Эйнштейн вместе с братом Якобом основал небольшую фирму по торговле электрическим оборудованием. В Мюнхене родилась младшая сестра Альберта Мария (Майя, 1881-1951).

Начальное образование Альберт Эйнштейн получил в местной католической школе. По его собственным воспоминаниям, он в детстве пережил состояние глубокой религиозности, которое оборвалось в 12 лет. Через чтение научно-популярных книг он пришёл к убеждению, что многое из того, что изложено в Библии, не может быть правдой, а государство намеренно занимается обманом молодого поколения. Всё это сделало его вольнодумцем и навсегда породило скептическое отношение к авторитетам. Из детских впечатлений Эйнштейн позже вспоминал как наиболее сильные: компас, «Начала» Евклида и (около 1889 года) «Критику чистого разума» Иммануила Канта. Кроме того, по инициативе матери он с шести лет начал заниматься игрой на скрипке. Увлечение музыкой сохранялось у Эйнштейна на протяжении всей жизни. Уже находясь в США в Принстоне, в 1934 году Альберт Эйнштейн дал благотворительный концерт, где исполнял на скрипке произведения Моцарта в пользу эмигрировавших из нацистской Германии учёных и деятелей культуры.

В гимназии (ныне Гимназия имени Альберта Эйнштейна в Мюнхене) он не был в числе первых учеников (исключение составляли математика и латынь). Укоренившаяся система механического заучивания материала учащимися (которая, как он позже говорил, наносит вред самому духу учёбы и творческому мышлению), а также авторитарное отношение учителей к ученикам вызывало у Альберта Эйнштейна неприятие, поэтому он часто вступал в споры со своими преподавателями.

В 1894 году Эйнштейны переехали из Мюнхена в итальянский город Павию, близ Милана, куда братья Герман и Якоб перевели свою фирму. Сам Альберт оставался с родственниками в Мюнхене ещё некоторое время, чтобы окончить все шесть классов гимназии. Так и не получив аттестата зрелости, в 1895 году он присоединился к своей семье в Павии.

Осенью 1895 года Альберт Эйнштейн прибыл в Швейцарию, чтобы сдать вступительные экзамены в Высшее техническое училище (Политехникум) в Цюрихе и по окончании обучения стать преподавателем физики. Блестяще проявив себя на экзамене по математике, он в то же время провалил экзамены по ботанике и французскому языку, что не позволило ему поступить в Цюрихский Политехникум. Однако директор училища посоветовал молодому человеку поступить в выпускной класс школы в Арау (Швейцария), чтобы получить аттестат и повторить поступление.

В кантональной школе Арау Альберт Эйнштейн посвящал своё свободное время изучению электромагнитной теории Максвелла. В сентябре 1896 года он успешно сдал все выпускные экзамены в школе, за исключением экзамена по французскому языку, и получил аттестат, а в октябре 1896 года был принят в Политехникум на педагогический факультет. Здесь он подружился с однокурсником, математиком Марселем Гроссманом (1878-1936), а также познакомился с сербской студенткой факультета медицины Милевой Марич (на 4 года старше его), впоследствии ставшей его женой. В этом же году Эйнштейн отказался от германского гражданства. Чтобы получить швейцарское гражданство, требовалось уплатить 1000 швейцарских франков, однако бедственное материальное положение семьи позволило ему сделать это только спустя 5 лет. Предприятие отца в этом году окончательно разорилось, родители Эйнштейна переехали в Милан, где Герман Эйнштейн, уже без брата, открыл фирму по торговле электрооборудованием.

Стиль и методика преподавания в Политехникуме существенно отличались от закостеневшей и авторитарной германской школы, поэтому дальнейшее обучение давалось юноше легче. У него были первоклассные преподаватели, в том числе замечательный геометр Герман Минковский (его лекции Эйнштейн часто пропускал, о чём потом искренне сожалел) и аналитик Адольф Гурвиц.

Начало научной деятельности

В 1900 году Эйнштейн окончил Политехникум, получив диплом преподавателя математики и физики. Экзамены он сдал успешно, но не блестяще. Многие профессора высоко оценивали способности студента Эйнштейна, но никто не захотел помочь ему продолжить научную карьеру. Сам Эйнштейн позже вспоминал:

Я был третируем моими профессорами, которые не любили меня из-за моей независимости и закрыли мне путь в науку.

Хотя в следующем, 1901 году, Эйнштейн получил гражданство Швейцарии, но вплоть до весны 1902 года не мог найти постоянное место работы - даже школьным учителем. Вследствие отсутствия заработка он буквально голодал, не принимая пищу несколько дней подряд. Это стало причиной болезни печени, от которой учёный страдал до конца жизни.

Несмотря на лишения, преследовавшие его в 1900-1902 годах, Эйнштейн находил время для дальнейшего изучения физики. В 1901 году берлинские «Анналы физики» опубликовали его первую статью «Следствия теории капиллярности» (Folgerungen aus den Capillaritätserscheinungen), посвящённую анализу сил притяжения между атомами жидкостей на основании теории капиллярности.

Преодолеть трудности помог бывший однокурсник Марсель Гроссман, рекомендовавший Эйнштейна на должность эксперта III класса в Федеральное Бюро патентования изобретений (Берн) с окладом 3500 франков в год (в годы студенчества он жил на 100 франков в месяц).

Эйнштейн работал в Бюро патентов с июля 1902 года по октябрь 1909 года, занимаясь преимущественно экспертной оценкой заявок на изобретения. В 1903 году он стал постоянным работником Бюро. Характер работы позволял Эйнштейну посвящать свободное время исследованиям в области теоретической физики.

В октябре 1902 года Эйнштейн получил известие из Италии о болезни отца; Герман Эйнштейн умер спустя несколько дней после приезда сына.

6 января 1903 года Эйнштейн женился на двадцатисемилетней Милеве Марич. У них родились трое детей.

С 1904 года Эйнштейн сотрудничал с ведущим физическим журналом Германии «Анналы физики», предоставляя для его реферативного приложения аннотации новых статей по термодинамике. Вероятно, приобретённый этим авторитет в редакции содействовал его собственным публикациям 1905 года.

1905 - «Год чудес»

1905 год вошёл в историю физики как «Год чудес» (лат. Annus Mirabilis). В этом году «Анналы физики» опубликовал три выдающиеся статьи Эйнштейна, положившие начало новой научной революции:

«К электродинамике движущихся тел» (нем. Zur Elektrodynamik bewegter Körper). С этой статьи начинается теория относительности. «Об одной эвристической точке зрения, касающейся возникновения и превращения света» (нем. Über einen die Erzeugung und Verwandlung des Lichts betreffenden heuristischen Gesichtspunkt). Одна из работ, заложивших фундамент квантовой теории. «О движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно-кинетической теорией теплоты» (нем. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen) - работа, посвящённая броуновскому движению и существенно продвинувшая статистическую физику. Эйнштейну часто задавали вопрос: как ему удалось создать теорию относительности? Полушутя, полувсерьёз он отвечал:

Почему именно я создал теорию относительности? Когда я задаю себе такой вопрос, мне кажется, что причина в следующем. Нормальный взрослый человек вообще не задумывается над проблемой пространства и времени. По его мнению, он уже думал об этой проблеме в детстве. Я же развивался интеллектуально так медленно, что пространство и время занимали мои мысли, когда я стал уже взрослым. Естественно, я мог глубже проникать в проблему, чем ребёнок с нормальными наклонностями.

Специальная теория относительности

В течение всего XIX века материальным носителем электромагнитных явлений считалась гипотетическая среда - эфир. Однако к началу XX века выяснилось, что свойства этой среды трудно согласовать с классической физикой. С одной стороны, аберрация света наталкивала на мысль, что эфир абсолютно неподвижен, с другой - опыт Физо свидетельствовал в пользу гипотезы, что эфир частично увлекается движущейся материей. Опыты Майкельсона (1881), однако, показали, что никакого «эфирного ветра» не существует.

В 1892 году Лоренц и (независимо от него) Джордж Френсис Фицджеральд предположили, что эфир неподвижен, а длина любого тела сокращается в направлении его движения. Оставался, однако, открытым вопрос, почему длина сокращается в точности в такой пропорции, чтобы компенсировать «эфирный ветер» и не дать обнаружить существование эфира. Одновременно изучался вопрос, при каких преобразованиях координат уравнения Максвелла инвариантны. Правильные формулы впервые выписали Лармор (1900) и Пуанкаре (1905), последний доказал их групповые свойства и предложил назвать преобразованиями Лоренца.

Пуанкаре также дал обобщённую формулировку принципа относительности, охватывающего и электродинамику. Тем не менее он продолжал признавать эфир, хотя придерживался мнения, что его никогда не удастся обнаружить. В докладе на физическом конгрессе (1900) Пуанкаре впервые высказывает мысль, что одновременность событий не абсолютна, а представляет собой условное соглашение («конвенцию»). Было высказано также предположение о предельности скорости света. Таким образом, в начале XX века существовали две несовместимые кинематики: классическая, с преобразованиями Галилея, и электромагнитная, с преобразованиями Лоренца.

Эйнштейн, размышляя на эти темы в значительной степени независимо, предположил, что первая есть приближённый случай второй для малых скоростей, а то, что считалось свойствами эфира, есть на деле проявление объективных свойств пространства и времени. Эйнштейн пришёл к выводу, что нелепо привлекать понятие эфира только для того, чтобы доказать невозможность его наблюдения, и что корень проблемы лежит не в динамике, а глубже - в кинематике. В упомянутой выше основополагающей статье «К электродинамике движущихся тел» он предложил два постулата: всеобщий принцип относительности и постоянство скорости света; из них без труда выводятся лоренцево сокращение, формулы преобразования Лоренца, относительность одновременности, ненужность эфира, новая формула сложения скоростей, возрастание инерции со скоростью и т. д. В другой его статье, которая вышла в конце года, появилась и формула E=mc^2, определяющая связь массы и энергии.

Часть учёных сразу приняли эту теорию, которая позднее получила название «специальная теория относительности» (СТО); Планк (1906) и сам Эйнштейн (1907) построили релятивистскую динамику и термодинамику. Бывший учитель Эйнштейна, Минковский, в 1907 году представил математическую модель кинематики теории относительности в виде геометрии четырёхмерного неевклидова мира и разработал теорию инвариантов этого мира (первые результаты в этом направлении опубликовал Пуанкаре в 1905 году).

Однако немало учёных сочли «новую физику» чересчур революционной. Она отменяла эфир, абсолютное пространство и абсолютное время, ревизовала механику Ньютона, которая 200 лет служила опорой физики и неизменно подтверждалась наблюдениями. Время в теории относительности течёт по-разному в разных системах отсчёта, инерция и длина зависят от скорости, движение быстрее света невозможно, возникает «парадокс близнецов» - все эти необычные следствия были неприемлемы для консервативной части научного сообщества. Дело осложнялось также тем, что СТО не предсказывала поначалу никаких новых наблюдаемых эффектов, а опыты Вальтера Кауфманна (1905-1909) многие истолковывали как опровержение краеугольного камня СТО - принципа относительности (этот аспект окончательно прояснился в пользу СТО только в 1914-1916 годах). Некоторые физики уже после 1905 года пытались разработать альтернативные теории (например, Ритц в 1908 году), однако позже выяснилось неустранимое расхождение этих теорий с экспериментом.

Многие видные физики остались верными классической механике и концепции эфира, среди них Лоренц, Дж. Дж. Томсон, Ленард, Лодж, Нернст, Вин. При этом некоторые из них (например, сам Лоренц) не отвергали результатов специальной теории относительности, однако интерпретировали их в духе теории Лоренца, предпочитая смотреть на пространственно-временную концепцию Эйнштейна-Минковского как на чисто математический приём.

Решающим аргументом в пользу истинности СТО стали опыты по проверке Общей теории относительности (см. ниже). Со временем постепенно накапливались и опытные подтверждения самой СТО. На ней основаны квантовая теория поля, теория ускорителей, она учитывается при проектировании и работе спутниковых систем навигации (здесь оказались нужны даже поправки общей теории относительности) и т. д.

Квантовая теория

Для разрешения проблемы, вошедшей в историю под названием «Ультрафиолетовой катастрофы», и соответствующего согласования теории с экспериментом Макс Планк предположил (1900), что излучение света веществом происходит дискретно (неделимыми порциями), и энергия излучаемой порции зависит от частоты света. Некоторое время эту гипотезу даже сам её автор рассматривал как условный математический приём, однако Эйнштейн во второй из вышеупомянутых статей предложил далеко идущее её обобщение и с успехом применил для объяснения свойств фотоэффекта. Эйнштейн выдвинул тезис, что не только излучение, но и распространение и поглощение света дискретны; позднее эти порции (кванты) получили название фотонов. Этот тезис позволил ему объяснить две загадки фотоэффекта: почему фототок возникал не при всякой частоте света, а только начиная с определённого порога, зависящего только от вида металла, а энергия и скорость вылетающих электронов зависели не от интенсивности света, а только от его частоты. Теория фотоэффекта Эйнштейна с высокой точностью соответствовала опытным данным, что позднее подтвердили эксперименты Милликена (1916).

Первоначально эти взгляды встретили непонимание большинства физиков, даже Планка Эйнштейну пришлось убеждать в реальности квантов. Постепенно, однако, накопились опытные данные, убедившие скептиков в дискретности электромагнитной энергии. Последнюю точку в споре поставил эффект Комптона (1923).

В 1907 году Эйнштейн опубликовал квантовую теорию теплоёмкости (старая теория при низких температурах сильно расходилась с экспериментом). Позже (1912) Дебай, Борн и Карман уточнили теорию теплоёмкости Эйнштейна, и было достигнуто отличное согласие с опытом.

Броуновское движение

В 1827 году Роберт Броун наблюдал под микроскопом и впоследствии описал хаотическое движение цветочной пыльцы, плававшей в воде. Эйнштейн, на основе молекулярной теории, разработал статистико-математическую модель подобного движения. На основании его модели диффузии можно было, помимо прочего, с хорошей точностью оценить размер молекул и их количество в единице объёма. Одновременно к аналогичным выводам пришёл Смолуховский, чья статья была опубликована на несколько месяцев позже, чем Эйнштейна. Свои работы по статистической механике, под названием «Новое определение размеров молекул», Эйнштейн представил в Политехникум в качестве диссертации и в том же 1905 году получил звание доктора философии (эквивалент кандидата естественных наук) по физике. В следующем году Эйнштейн развил свою теорию в новой статье «К теории броуновского движения», и в дальнейшем неоднократно возвращался к этой теме.

Вскоре (1908) измерения Перрена полностью подтвердили адекватность модели Эйнштейна, что стало первым экспериментальным доказательством молекулярно-кинетической теории, подвергавшейся в те годы активным атакам со стороны позитивистов.

Макс Борн писал (1949): «Я думаю, что эти исследования Эйнштейна больше, чем все другие работы, убеждают физиков в реальности атомов и молекул, в справедливости теории теплоты и фундаментальной роли вероятности в законах природы». Работы Эйнштейна по статистической физике цитируются даже чаще, чем его работы по теории относительности. Выведенная им формула для коэффициента диффузии и его связи с дисперсией координат оказалась применимой в самом общем классе задач: марковские процессы диффузии, электродинамика и т. п.

Позднее, в статье «К квантовой теории излучения» (1917) Эйнштейн, исходя из статистических соображений, впервые предположил существование нового вида излучения, происходящего под воздействием внешнего электромагнитного поля («индуцированное излучение»). В начале 1950-х годов был предложен способ усиления света и радиоволн, основанный на использовании индуцированного излучения, а в последующие годы оно легло в основу теории лазеров.

Берн - Цюрих - Прага - Цюрих - Берлин (1905-1914)

Работы 1905 года принесли Эйнштейну, хотя и не сразу, всемирную славу. 30 апреля 1905 он направил в университет Цюриха текст своей докторской диссертации на тему «Новое определение размеров молекул». Рецензентами были профессора Кляйнер и Буркхард. 15 января 1906 года он получил степень доктора наук по физике. Он переписывается и встречается с самыми знаменитыми физиками мира, а Планк в Берлине включает теорию относительности в свой учебный курс. В письмах его называют «г-н профессор», однако ещё четыре года (до октября 1909 года) Эйнштейн продолжает службу в Бюро патентов; в 1906 году его повысили в должности (он стал экспертом II класса) и прибавили оклад. В октябре 1908 года Эйнштейна пригласили читать факультатив в Бернский университет, однако без всякой оплаты. В 1909 году он побывал на съезде натуралистов в Зальцбурге, где собралась элита немецкой физики, и впервые встретился с Планком; за 3 года переписки они быстро стали близкими друзьями и сохранили эту дружбу до конца жизни.

После съезда Эйнштейн наконец получил оплачиваемую должность экстраординарного профессора в Цюрихском университете (декабрь 1909 года), где преподавал геометрию его старый друг Марсель Гроссман. Оплата была небольшой, особенно для семьи с двумя детьми, и в 1911 году Эйнштейн без колебаний принял приглашение возглавить кафедру физики в пражском Немецком университете. В этот период Эйнштейн продолжает публикацию серии статей по термодинамике, теории относительности и квантовой теории. В Праге он активизирует исследования по теории тяготения, поставив целью создать релятивистскую теорию гравитации и осуществить давнюю мечту физиков - исключить из этой области ньютоновское дальнодействие.

В 1911 году Эйнштейн участвовал в Первом Сольвеевском конгрессе (Брюссель), посвящённом квантовой физике. Там произошла его единственная встреча с Пуанкаре, который продолжал отвергать теорию относительности, хотя лично к Эйнштейну относился с большим уважением.

Спустя год Эйнштейн вернулся в Цюрих, где стал профессором родного Политехникума и читал там лекции по физике. В 1913 году он посетил Конгресс естествоиспытателей в Вене, навестил там 75-летнего Эрнста Маха; когда-то критика Махом ньютоновской механики произвела на Эйнштейна огромное впечатление и идейно подготовила к новациям теории относительности.

В конце 1913 года, по рекомендации Планка и Нернста, Эйнштейн получил приглашение возглавить создаваемый в Берлине физический исследовательский институт; он зачислен также профессором Берлинского университета. Помимо близости к другу Планку эта должность имела то преимущество, что не обязывала отвлекаться на преподавание. Он принял приглашение, и в предвоенный 1914 год убеждённый пацифист Эйнштейн прибыл в Берлин. Милева с детьми осталась в Цюрихе, их семья распалась. В феврале 1919 года они официально развелись.

Гражданство Швейцарии, нейтральной страны, помогало Эйнштейну выдерживать милитаристское давление после начала войны. Он не подписывал никаких «патриотических» воззваний, напротив - в соавторстве с физиологом Георгом Фридрихом Николаи составил антивоенное «Воззвание к европейцам» в противовес шовинистическому манифесту 93-х, а в письме Ромену Роллану писал:

Поблагодарят ли будущие поколения нашу Европу, в которой три столетия самой напряжённой культурной работы привели лишь к тому, что религиозное безумие сменилось безумием националистическим? Даже учёные разных стран ведут себя так, словно у них ампутировали мозги.

Общая теория относительности (1915)

Ещё Декарт объявил, что все процессы во Вселенной объясняются локальным взаимодействием одного вида материи с другим, и с точки зрения науки этот тезис близкодействия был естественным. Однако ньютоновская теория всемирного тяготения резко противоречила тезису близкодействия - в ней сила притяжения передавалась непонятно как через совершенно пустое пространство, причём бесконечно быстро. По существу ньютоновская модель была чисто математической, без какого-либо физического содержания. На протяжении двух веков делались попытки исправить положение и избавиться от мистического дальнодействия, наполнить теорию тяготения реальным физическим содержанием - тем более что после Максвелла гравитация осталась единственным в физике пристанищем дальнодействия. Особенно неудовлетворительной стала ситуация после утверждения специальной теории относительности, так как теория Ньютона была несовместима с преобразованиями Лоренца. Однако до Эйнштейна исправить положение никому не удалось.

Основная идея Эйнштейна была проста: материальным носителем тяготения является само пространство (точнее, пространство-время). Тот факт, что гравитацию можно рассматривать как проявление свойств геометрии четырёхмерного неевклидова пространства, без привлечения дополнительных понятий, есть следствие того, что все тела в поле тяготения получают одинаковое ускорение («принцип эквивалентности» Эйнштейна). Четырёхмерное пространство-время при таком подходе оказывается не «плоской и безразличной сценой» для материальных процессов, у него имеются физические атрибуты, и в первую очередь - метрика и кривизна, которые влияют на эти процессы и сами зависят от них. Если специальная теория относительности - это теория неискривлённого пространства, то общая теория относительности, по замыслу Эйнштейна, должна была рассмотреть более общий случай, пространство-время с переменной метрикой (псевдориманово многообразие). Причиной искривления пространства-времени является присутствие материи, и чем больше её энергия, тем искривление сильнее. Ньютоновская же теория тяготения представляет собой приближение новой теории, которое получается, если учитывать только «искривление времени», то есть изменение временно́й компоненты метрики (пространство в этом приближении евклидово). Распространение возмущений гравитации, то есть изменений метрики при движении тяготеющих масс, происходит с конечной скоростью. Дальнодействие с этого момента исчезает из физики.

Математическое оформление этих идей было достаточно трудоёмким и заняло несколько лет (1907-1915). Эйнштейну пришлось овладеть тензорным анализом и создать его четырёхмерное псевдориманово обобщение; в этом ему помогли консультации и совместная работа сначала с Марселем Гроссманом, ставшим соавтором первых статей Эйнштейна по тензорной теории гравитации, а затем и с «королём математиков» тех лет, Давидом Гильбертом. В 1915 году уравнения поля общей теории относительности Эйнштейна (ОТО), обобщающие ньютоновские, были опубликованы почти одновременно в статьях Эйнштейна и Гильберта.

Новая теория тяготения предсказала два ранее неизвестных физических эффекта, вполне подтверждённые наблюдениями, а также точно и полностью объяснила вековое смещение перигелия Меркурия, долгое время приводившее в недоумение астрономов. После этого теория относительности стала практически общепризнанным фундаментом современной физики. Кроме астрофизики, ОТО нашла практическое применение, как уже упоминалось выше, в системах глобального позиционирования (Global Positioning Systems, GPS), где расчёты координат производятся с очень существенными релятивистскими поправками.

Берлин (1915-1921)

В 1915 году в разговоре с нидерландским физиком Вандером де Хаазом Эйнштейн предложил схему и расчёт опыта, который после успешной реализации получил название «эффект Эйнштейна - де Хааза». Результат опыта воодушевил Нильса Бора, двумя годами ранее создавшего планетарную модель атома, поскольку подтвердил, что внутри атомов существуют круговые электронные токи, причём электроны на своих орбитах не излучают. Именно эти положения Бор и положил в основу своей модели. Кроме того, обнаружилось, что суммарный магнитный момент получается вдвое больше ожидаемого; причина этого разъяснилась, когда был открыт спин - собственный момент импульса электрона.

По окончании войны Эйнштейн продолжал работу в прежних областях физики, а также занимался новыми областями - релятивистской космологией и «Единой теорией поля», которая, по его замыслу, должна была объединить гравитацию, электромагнетизм и (желательно) теорию микромира. Первая статья по космологии, «Космологические соображения к общей теории относительности», появилась в 1917 году. После этого Эйнштейн пережил загадочное «нашествие болезней» - кроме серьёзных проблем с печенью, обнаружилась язва желудка, затем желтуха и общая слабость. Несколько месяцев он не вставал с постели, но продолжал активно работать. Только в 1920 году болезни отступили.

В июне 1919 года Эйнштейн женился на своей двоюродной сестре со стороны матери Эльзе Лёвенталь (урождённой Эйнштейн) и удочерил двух её детей. В конце года к ним переехала его тяжелобольная мать Паулина; она скончалась в феврале 1920 года. Судя по письмам, Эйнштейн тяжело переживал её смерть.

Осенью 1919 года английская экспедиция Артура Эддингтона в момент затмения зафиксировала предсказанное Эйнштейном отклонение света в поле тяготения Солнца. При этом измеренное значение соответствовало не ньютоновскому, а эйнштейновскому закону тяготения. Сенсационную новость перепечатали газеты всей Европы, хотя суть новой теории чаще всего излагалась в беззастенчиво искажённом виде. Слава Эйнштейна достигла небывалых высот.

В мае 1920 года Эйнштейн, вместе с другими членами Берлинской академии наук, был приведён к присяге как государственный служащий и по закону стал считаться гражданином Германии. Однако швейцарское гражданство он сохранил до конца жизни. В 1920-е годы, получая отовсюду приглашения, он много путешествовал по Европе (по швейцарскому паспорту), читал лекции для учёных, студентов и для любознательной публики. Посетил и США, где в честь именитого гостя была принята специальная приветственная резолюция Конгресса (1921). В конце 1922 года посетил Индию, где имел продолжительное общение с Тагором, и Китай. Зиму Эйнштейн встретил в Японии, где его застала новость о присуждении ему Нобелевской премии.

Нобелевская премия (1922)

Эйнштейна неоднократно номинировали на Нобелевскую премию по физике. Первая такая номинация (за теорию относительности) состоялась, по инициативе Вильгельма Оствальда, уже в 1910 году, однако Нобелевский комитет счёл экспериментальные доказательства теории относительности недостаточными. Далее выдвижение кандидатуры Эйнштейна повторялась ежегодно, кроме 1911 и 1915 годов. Среди рекомендателей в разные годы были такие крупнейшие физики, как Лоренц, Планк, Бор, Вин, Хвольсон, де Хааз, Лауэ, Зееман, Камерлинг-Оннес, Адамар, Эддингтон, Зоммерфельд и Аррениус.

Однако члены Нобелевского комитета долгое время не решались присудить премию автору столь революционных теорий. В конце концов был найден дипломатичный выход: премия за 1921 год была присуждена Эйнштейну (в ноябре 1922 года) за теорию фотоэффекта, то есть за наиболее бесспорную и хорошо проверенную в эксперименте работу; впрочем, текст решения содержал нейтральное добавление: «… и за другие работы в области теоретической физики».

Как я уже сообщил Вам телеграммой, Королевская академия наук на своём вчерашнем заседании приняла решение присудить Вам премию по физике за прошедший год, отмечая тем самым Ваши работы по теоретической физике, в частности открытие закона фотоэлектрического эффекта, не учитывая при этом Ваши работы по теории относительности и теории гравитации, которые будут оценены после их подтверждения в будущем.

Поскольку Эйнштейн был в отъезде, премию от его имени принял 10 декабря 1922 года Рудольф Надольный, посол Германии в Швеции. Предварительно он запросил подтверждения, является ли Эйнштейн гражданином Германии или Швейцарии; Прусская академия наук официально заверила, что Эйнштейн - германский подданный, хотя его швейцарское гражданство также признаётся действительным. Знаки отличия, сопровождающие премию, Эйнштейн по возвращении в Берлин получил лично у шведского посла.

Естественно, традиционную Нобелевскую речь (в июле 1923 года) Эйнштейн посвятил теории относительности.

Берлин (1922-1933)

В 1923 году, завершая своё путешествие, Эйнштейн выступил в Иерусалиме, где намечалось вскоре (1925 год) открыть Еврейский университет.

В 1924 году молодой индийский физик Шатьендранат Бозе в кратком письме обратился к Эйнштейну с просьбой помочь в публикации статьи, в которой выдвигал предположение, положенное в основу современной квантовой статистики. Бозе предложил рассматривать свет в качестве газа из фотонов. Эйнштейн пришёл к выводу, что эту же статистику можно использовать для атомов и молекул в целом. В 1925 году Эйнштейн опубликовал статью Бозе в немецком переводе, а затем собственную статью, в которой излагал обобщённую модель Бозе, применимую к системам тождественных частиц с целым спином, называемых бозонами. На основании данной квантовой статистики, известной ныне как статистика Бозе - Эйнштейна, оба физика ещё в середине 1920-х годов теоретически обосновали существование пятого агрегатного состояния вещества - конденсата Бозе - Эйнштейна.

Суть «конденсата» Бозе - Эйнштейна состоит в переходе большого числа частиц идеального бозе-газа в состояние с нулевым импульсом при температурах, приближающихся к абсолютному нулю, когда длина волны де Бройля теплового движения частиц и среднее расстояние между этими частицами сводятся к одному порядку. Начиная с 1995 года, когда первый подобный конденсат был получен в университете Колорадо, учёные практически доказали возможность существования конденсатов Бозе - Эйнштейна из водорода, лития, натрия, рубидия и гелия.

Как личность огромного и всеобщего авторитета, Эйнштейна постоянно привлекали в эти годы к разного рода политическим акциям, где он выступал за социальную справедливость, за интернационализм и сотрудничество между странами (см. ниже). В 1923 году Эйнштейн участвовал в организации общества культурных связей «Друзья новой России». Неоднократно призывал к разоружению и объединению Европы, к отмене обязательной воинской службы.

В 1928 году Эйнштейн проводил в последний путь Лоренца, с которым очень подружился в его последние годы. Именно Лоренц выдвинул кандидатуру Эйнштейна на Нобелевскую премию в 1920 году и поддержал её в следующем году.

В 1929 году мир шумно отметил 50-летие Эйнштейна. Юбиляр не принял участия в торжествах и скрылся на своей вилле близ Потсдама, где с увлечением выращивал розы. Здесь он принимал друзей - деятелей науки, Тагора, Эммануила Ласкера, Чарли Чаплина и других.

В 1931 году Эйнштейн снова побывал в США. В Пасадене его очень тепло встретил Майкельсон, которому оставалось жить четыре месяца. Вернувшись летом в Берлин, Эйнштейн в выступлении перед Физическим обществом почтил память замечательного экспериментатора, заложившего первый камень фундамента теории относительности.

Помимо теоретических исследований, Эйнштейну принадлежат и несколько изобретений, в том числе:

измеритель очень малых напряжений (совместно с Конрадом Габихтом);
устройство, автоматически определяющее время экспозиции при фотосъёмке;
оригинальный слуховой аппарат;
бесшумный холодильник (совместно с Силардом);
гирокомпас.

Примерно до 1926 года Эйнштейн работал в очень многих областях физики, от космологических моделей до исследования причин речных извилин. Далее он, за редким исключением, сосредотачивает усилия на квантовых проблемах и Единой теории поля.

Утверждение эйнштейновских идей (квантовой теории и особенно теории относительности) в СССР было непростым. Часть учёных, особенно научная молодёжь, восприняли новые идеи с интересом и пониманием, уже в 1920-е годы появились первые отечественные работы и учебные пособия на эти темы. Однако были физики и философы, которые решительно воспротивились концепциям «новой физики»; среди них особенно активен был А. К. Тимирязев (сын известного биолога К. А. Тимирязева), критиковавший Эйнштейна ещё до революции. После его статей в журналах «Красная новь» (1921, № 2) и «Под знаменем марксизма» (1922, № 4) последовало критическое замечание Ленина:

Если Тимирязев в первом номере журнала должен был оговорить, что за теорию Эйнштейна, который сам, по словам Тимирязева, никакого активного похода против основ материализма не ведёт, ухватилась уже громадная масса представителей буржуазной интеллигенции всех стран, то это относится не к одному Эйнштейну, а к целому ряду, если не к большинству великих преобразователей естествознания, начиная с конца XIX века.

В том же 1922 году Эйнштейн был избран иностранным членом-корреспондентом РАН. Тем не менее за 1925-1926 годы Тимирязев опубликовал не менее 10 анти-релятивистских статей.

Не принял теорию относительности и К. Э. Циолковский, который отверг релятивистскую космологию и ограничение на скорость движения, подрывавшее планы Циолковского по заселению космоса: «Второй вывод его: скорость не может превышать скорости света… это те же шесть дней, якобы употреблённые на создание мира.» Тем не менее к концу жизни, видимо, Циолковский смягчил свою позицию, потому что на рубеже 1920-1930-х годов он в ряде трудов и интервью упоминает релятивистскую формулу Эйнштейна E=mc^2 без критических возражений. Однако с невозможностью двигаться быстрее света Циолковский так никогда и не смирился.

Хотя в 1930-е годы критика теории относительности среди советских физиков прекратилась, идеологическая борьба ряда философов с теорией относительности как «буржуазным мракобесием» продолжалась и особенно усилилась после смещения Николая Бухарина, влияние которого ранее смягчало идеологический нажим на науку. Следующая фаза кампании началась в 1950 году; вероятно, она была связана с аналогичными по духу тогдашними кампаниями против генетики (лысенковщина) и кибернетики. Незадолго до того (1948) издательство «Гостехиздат» выпустило перевод книги «Эволюция физики» Эйнштейна и Инфельда, снабжённый обширным предисловием под названием: «Об идеологических пороках в книге А. Эйнштейна и Л. Инфельда „Эволюция физики“». Спустя 2 года в журнале «Советская книга» была помещена разгромная критика как самой книги (за «идеалистический уклон»), так и издательства, её выпустившего (за идеологическую ошибку).

Эта статья открыла целую лавину публикаций, которые формально были направлены против философии Эйнштейна, однако заодно обвиняли в идеологических ошибках ряд крупных советских физиков - Я. И. Френкеля, С. М. Рытова, Л. И. Мандельштама и других. Вскоре в журнале «Вопросы философии» появилась статья доцента кафедры философии Ростовского государственного университета М. М. Карпова «О философских взглядах Эйнштейна» (1951), где учёный обвинялся в субъективном идеализме, неверии в бесконечность Вселенной и других уступках религии. В 1952 году была опубликована статья видного советского философа А. А. Максимова, которая клеймила уже не только философию, но и лично Эйнштейна, «которому буржуазная пресса создала рекламу за его многочисленные нападки на материализм, за пропаганду воззрений, подрывающих научное мировоззрение, выхолащивающих идейно науку». Другой видный философ, И. В. Кузнецов, в ходе кампании 1952 года заявил: «Интересы физической науки настоятельно требуют глубокой критики и решительного разоблачения всей системы теоретических взглядов Эйнштейна». Однако критическая важность «атомного проекта» в те годы, авторитет и решительная позиция академического руководства предотвратили разгром советской физики, аналогичный тому, который устроили генетикам. После смерти Сталина анти-эйнштейновская кампания была быстро свёрнута, хотя немалое количество «ниспровергателей Эйнштейна» встречается и в наши дни.

Другие мифы

В 1962 году была впервые опубликована логическая головоломка, известная как «Загадка Эйнштейна». Такое название ей дали, вероятно, в рекламных целях, потому что нет никаких свидетельств того, что Эйнштейн имеет какое-либо отношение к этой загадке. Ни в одной биографии Эйнштейна она также не упоминается.
В известной биографии Эйнштейна утверждается, что в 1915 году Эйнштейн якобы участвовал в проектировании новой модели военного самолета. Это занятие трудно согласовать с его пацифистскими убеждениями. Исследование показало, однако, что Эйнштейн просто обсуждал с мелкой авиафирмой одну идею в области аэродинамики - крыло типа «кошачья спина» (горб на верхней части профиля). Идея оказалась неудачной и, как позже выразился Эйнштейн, легкомысленной; впрочем, развитой теории полёта тогда ещё не существовало.
Эйнштейна часто упоминают в числе вегетарианцев. Хотя он в течение многих лет поддерживал это движение, строгой вегетарианской диете он начал следовать только в 1954 году, примерно за год до своей смерти.
Существует ничем не подтверждённая легенда, что перед смертью Эйнштейн сжёг свои последние научные работы, содержащие открытие, потенциально опасное для человечества. Часто эту тему связывают с «Филадельфийским экспериментом». Легенда нередко упоминается в различных СМИ, на её основе снят фильм «Последнее уравнение» (англ. The Last Equation).

Семья

Генеалогическое древо семьи Эйнштейн
Герман Эйнштейн
Паулина Эйнштейн (Кох)
Майя Эйнштейн
Милева Марич
Эльза Эйнштейн
Ганс Альберт Эйнштейн
Эдуард Эйнштейн
Лизерл Эйнштейн
Бернард Сизер Эйнштейн
Карл Эйнштейн

Научная деятельность

Список научных публикаций Альберта Эйнштейна
История теории относительности
История квантовой механики
Общая теория относительности
Парадокс Эйнштейна - Подольского - Розена
Принцип эквивалентности
Соглашение Эйнштейна
Соотношение Эйнштейна (молекулярно-кинетическая теория)
Специальная теория относительности
Статистика Бозе - Эйнштейна
Теория теплоёмкости Эйнштейна
Уравнения Эйнштейна
Эквивалентность массы и энергии

Регулярная статья
Альберт Эйнштейн
Albert Einstein
Род деятельности:
Дата рождения:
Место рождения:
Гражданство:
Дата смерти:
Место смерти:
Награды и премии:

Нобелевская премия по физике (1921)

Эйнштейн, Альберт (Einstein, Albert; 1879, Ульм , Германия , - 1955, Принстон, США) - физик-теоретик, один из основателей современной физики, создатель теории относительности, один из творцов квантовой теории и статистической физики.

Ранние годы

Родился в городке Ульм в земле Вюртемберг в нерелигиозной еврейской семье. Его отец, Герман Эйнштейн, занимался торговлей, затем открыл небольшой электрохимический заводик, которым руководил с переменным успехом. Мать звали Полина Кох. Была младшая сестра Мария.

С детства интересовался природными явлениями; в 12 лет прочёл книгу по геометрии и увлёкся математикой на всю жизнь. В то же время он увлёкся религией но в те времена религия считалась несовместимой с научным мировоззрением, и религиозность Эйнштейна прошла. В немецкой школе Альберту не нравилось, а он не нравился учителям. Его наставником в математике и философии стал друг семьи студент-медик Макс Талмуд.

Его отец перенёс производство в Мюнхен , туда же переселилась семья. В 1894 году, потерпев неудачу в Мюнхене, Эйнштейн-старший переехал в Милан , чтобы работать вместе с родственником. Альберт остался в пансионе до окончания школы. В возрасте 16 лет он сбежал оттуда к родителям. Он подал прошение о поступлении в Швейцарскую федеральную политехническую школу в Цюрихе . Поскольку у него не было аттестата об окончании школы, пришлось сдавать очень жёсткие экзамены. Он провалил французский, химию и биологию, но математику и физику сдал так, что ему разрешили поступление при условии, что сначала он закончит школу.

Он поступил в специальную частную школу в швейцарском городке Аррау. Тогда же отказался от немецкого гражданства, чтобы не попасть на военный учёт в Германии.

В 1896 году поступил в Швейцарскую федеральную политехническую школу, окончил в 1900 г. В университете он подружился с Марселем Гроссманом и встретил свою первую жену Милеву Марич, которая училась там физике. Единственный из четырёх выпускников 1900 года по своей специальности, он не получил работу в Политехникуме (помешал профессор Вербер, имевший на него зуб). Он принял швейцарское гражданство и занимался репетиторством, не имел средств. Его отец обанкротился.

В 1902 г. по рекомендации отца Марселя Гроссмана поступил на службу техническим экспертом в патентное бюро (Берн), поскольку ни в какой университет его на работу не взяли. Продолжал заниматься теоретической физикой в свободное время. В 1903 году женился на Милеве Марич (его отец перед смертью согласился на его брак с христианкой). У них были два сына.

Первые открытия в физике

Вторая статья - «Об одной эвристической точке зрения, касающейся возникновения и превращения света» - трактует свет как поток квантов (фотонов), обладающих корпускулярными и волновыми свойствами, и вводит понятие фотона как образования, имеющего характеристики частицы и поля. Он основал фотонную теорию света (фотоэффекта), за которую получил Нобелевскую премию в 1921 году.

Третья статья - «К электродинамике движущихся сред» - содержала основы специальной теории относительности. Эйнштейн ввел в физику новые понятия о пространстве, времени и движении, отбросив концепцию абсолютного пространства и абсолютного времени Ньютона и «теорию мирового эфира». Пространство и время обрели статус единой реальности (пространство-время), связанной с движением физических тел и полей.

Классическая механика при этом не отвергалась, а включалась в новую теорию как ее предельный случай. Из теории следовал вывод: все физические законы должны быть одинаковыми в системах, движущихся друг относительно друга прямолинейно и равномерно. Физические величины, ранее считавшиеся абсолютными (масса, длина, интервал времени), в действительности оказались относительными - зависимыми от относительной скорости движения объекта и наблюдателя. При этом скорость света оказалась постоянной, независимой от скорости движения других объектов (что уже было известно из эксперимента Майкельсона -Морли 1881 года и не укладывалось в представления классической физики Ньютона).

В том же 1905 г. в статье «Зависит ли инерция тела от содержания в нем энергии» Эйнштейн впервые ввел в физику формулу соотношения между массой (m) и энергией (Е), а в 1906 г. записал ее в виде Е=mc² , где (с) представляет собой скорость света. Она лежит в основе релятивистского принципа сохранения энергии, всей ядерной энергетики.

У теории относительности были предшественники - фрагменты её содержатся в работах Анри Пуанкаре и Хендрика Лоренца, но Эйнштейн первым собрал вместе и систематизировал научные представления об этом. Теория относительности несколько лет игнорировалась научным сообществом. Первым, кто понял её, был Макс Планк, который стал помогать Эйнштейну и организовал для него приглашения на научные конференции и преподавательские должности.

Переход к профессиональной научной деятельности

В 1906 г. Эйнштейн защитил докторскую диссертацию, обобщив работы по броуновскому движению. В 1907 г. он создал квантовую теорию теплоемкости. С 1908 г. Эйнштейн стал приват-доцентом Бернского университета, в 1909 г. - экстраординарным профессором Цюрихского университета, в 1911 г. - ординарным профессором Немецкого университета в Праге , в 1912 г. - профессором Цюрихского политехникума (в котором ранее учился).

В 1914 г., несмотря на происки антисемитов, по приглашению Макса Планка был утвержден директором Института кайзера Вильгельма, профессором Берлинского университета, членом Прусской академии наук в Берлине . В 1916 г. Эйнштейн предсказал явление индуцированного (вынужденного) излучения атомов, лежащее в основе квантовой электроники. Теория Эйнштейна о вынужденном, упорядоченном (когерентном) излучении привела к открытию лазеров.

В 1917 г. Эйнштейн завершил создание общей теории относительности , концепции, обосновывающей распространение принципа относительности на системы, двигающиеся с ускорением и криволинейно друг относительно друга. Теория Эйнштейна впервые в науке обосновывала связь между геометрией пространства-времени и распределением массы во Вселенной. Новая теория основывалась на теории тяготения Ньютона. Его предсказание отклонения света звёзд в гравитационном поле Солнца было подтверждено британской командой ученых в момент солнечного затмения в 1919 году.

Современная физика экспериментально обосновала специальную теорию относительности. На ее основе, например, создаются ускорители элементарных частиц. Принципиальное обоснование получила и общая теория относительности. Ее гипотеза об отклонении света под влиянием силы тяготения Солнца была подтверждена еще в 1919 г. группой английских астрономов. За открытие законов фотоэффекта и труды по теоретической физике Эйнштейн в 1921 г. получил Нобелевскую премию . В 1924-25 гг. Эйнштейн внес большой вклад в разработку квантовой статистики Бозе, которая ныне именуется статистикой Бозе-Эйнштейна.

Личные проблемы

Из-за постоянных разъездов и материальных проблем семейная жизнь Эйнштейна испортилась. В 1919 году он развёлся с женой (по договору о разводе, он уступил ей, в частности, права на Нобелевскую премию в случае, если она когда-либо будет получена). Тогда же он начал встречаться со своей двоюродной сестрой Эльзой Лёвенталь, на которой впоследствии женился.

В 1915 году, когда Эйнштейн читал цикл лекций в Гёттингене , в теории относительности существовали незавершённые места, требовавшие математической доработки. Слушавший лекции Давид Гильберт сделал эту работу и опубликовал свои результаты раньше Эйнштейна. Двое учёных некоторое время конфликтовали из-за научного приоритета, но потом подружились.

Отъезд в США

В 1920-30-х гг. он был знаменит, особенно за рубежом. Он много ездил по миру, контактируя с коллегами и читая лекции в различных университетах, а ткже занимался общественно-политической деятельностью, помогая социалистам , пацифистам и сионистам .

В 1930 году его старший сын Эдуард заболел шизофренией и попал в больницу на всю оставшуюся жизнь.

Эйнштейн Альберт (1879-1955 гг.)

Выдающийся физик-теоретик, один из создателей современной физики, разработал специальную и общую теории относительности.

Родился в немецком городе Ульме, в небогатой еврейской семье Германа и Паулины Эйнштейн. Посещал католическую начальную школу в Мюнхене (впоследствии он, верящий в существование Бога, не разграничивал христианское и иудейское вероучение). Мальчик рос замкнутым и необщительным, не демонстрировал каких-либо значительных успехов в школе. С шести лет по настоянию матери он начал заниматься игрой на скрипке. Увлечение музыкой сохранялось у Эйнштейна на протяжении всей жизни.

После окончательного разорения отца семейства в 1894 г. Эйнштейны переехали из Мюнхена в Павию близ Милана (Италия). Осенью 1895 г. Альберт Эйнштейн прибыл в Швейцарию, чтобы сдать вступительные экзамены в Высшее техническое училище (так называемый Политехникум) в Цюрихе. Блестяще проявив себя на экзамене по математике, он в то же время провалил экзамены по ботанике и французскому у языку. В октябре 1896 г. со второй попытки был принят на педагогический факультет. Здесь он познакомился с родившейся в Венгрии сербской студенткой Милевой Марич, впоследствии ставшей его женой.

В 1900 г. Эйнштейн окончил Политехникум, получив диплом преподавателя математики и физики. В 1901 г. получил гражданство Швейцарии, но вплоть до весны 1902 г. не мог найти постоянное место работы. Несмотря на лишения, преследовавшие его в 1900-1902 гг., Эйнштейн находил время для дальнейшего изучения физики. В1901 г. берлинские «Анналы физики» опубликовали его первую статью «Следствия теории капиллярности», посвященную анализу сил притяжения между атомами жидкостей на основании теории капиллярности. С июля 1902 по октябрь 1909 гг. великий физик работал в бюро патентов, занимаясь преимущественно патентованием изобретений, связанных с электромагнетизмом. Характер работы позволял Эйнштейну посвящать свободное время исследованиям в области теоретической физики.

6 января 1903 г. Эйнштейн женился на 27-летней Милеве Марич. Влияние Милевы Марич, дипломированного математика, на труды ее мужа до нашего времени остается нерешенным вопросом. Тем не менее, их брак был скорее интеллектуальным союзом, и сам Альберт Эйнштейн называл свою жену «созданием, равным мне, таким же сильным и независимым, как и я». Еще в 1904 г. «Анналы физики» получили от Альберта Эйнштейна ряд статей, посвященных изучению вопросов статической механики и молекулярной физики. Они были опубликованы в 1905 г., открыв так называемый «Год чудес», когда четыре статьи Эйнштейна совершили революцию в теоретической физике, дав начало теории относительности. В 1909-1913 гг. он -профессор Цюрихского политехникума, в 1914-1933 гг. - профессор Берлинского университета и директор Института физики.

В 1915 г. завершил создание общей теории относительности или современной релятивистской теории тяготения, установил связь между пространством, временем и материей. Вывел уравнение, описывающее поле тяготения. В 1921 г. Эйнштейн стал лауреатом Нобелевской премии, а так же членом многих академий наук, в частности иностранный член АН СССР.

После прихода к власти нацистов в 1933 г. физик подвергся преследованиям и покинул Германию навсегда, выехав в США.

После переезда получил должность профессора физики в недавно созданном Институте фундаментальных исследований в Принстоне, штат Нью-Джерси. В Принстоне он продолжал работу над исследованием проблем космологии и созданием единой теории поля, призванной объединить теорию гравитации и электромагнетизм. В США Эйнштейн мгновенно превратился в одного из самых известных и уважаемых людей страны, приобрел репутацию гениальнейшего ученого в истории человечества, а также олицетворения образа «рассеянного профессора» и интеллектуальных возможностей человека вообще.

Альберт Эйнштейн умер 18 апреля 1955 г. в Принстоне от аневризмы аорты. Его прах был сожжен в крематории Юинг-Симтери, а пепел развеян по ветру.

    В 1950 году в письме М. Берковитцу Эйнштейн писал: «По отношению к Богу я агностик. Я убеждён, что для отчётливого понимания первостепенной важности нравственных принципов в деле улучшения и облагораживания жизни не требуется понятие законодателя, особенно - законодателя, работающего по принципу награды и наказания».

    В последние годы
    Ещё раз Эйнштейн описал свои религиозные взгляды, отвечая тем, кто приписывал ему веру в иудео-христианского Бога:

    То, что вы читали о моих религиозных убеждениях - разумеется, ложь. Ложь, которую систематически повторяют. Я не верю в Бога как в личность и никогда не скрывал этого, а выражал очень ясно. Если во мне есть что-то, что можно назвать религиозным, то это, несомненно, беспредельное восхищение строением вселенной в той мере, в какой наука раскрывает его.

    В 1954 году, за полтора года до смерти, Эйнштейн в письме к немецкому философу Эрику Гуткинду так охарактеризовал своё отношение к религии:

    «Слово „Бог“ для меня всего лишь проявление и продукт человеческих слабостей, а Библия - свод почтенных, но всё же примитивных легенд, которые, тем не менее, являются довольно ребяческими. Никакая, даже самая изощрённая, интерпретация не сможет это (для меня) изменить».

    Оригинальный текст (англ.)

    Энштейн был великим ученым.

Имя этого ученого знакомо всем. И если его достижения являются неотъемлемой частью школьной программы, то биография Альберта Эйнштейна остается за ее рамками. Это величайший из ученых. Его работы определили развитие современной физики. Кроме того, очень интересной личностью был Альберт Эйнштейн. Краткая биография познакомит вас с достижениями, основными вехами жизненного пути и некоторыми интересными фактами об этом ученом.

Детство

Годы жизни гения - 1879-1955. Биография Альберта Эйнштейна начинается 14 марта 1879 года. Именно тогда он родился в городе Его отцом был небогатый еврейский торговец. Он содержал небольшую мастерскую электротоваров.

Известно, что до трех лет Альберт не говорил, однако проявлял необычайное любопытство уже в ранние годы. Будущему ученому было интересно знать, как устроен мир. Кроме того, с юных лет он проявил способности к математике, мог понимать отвлеченные идеи. В возрасте 12 лет сам, по книгам, изучил Евклидову геометрию Альберт Эйнштейн.

Биография для детей, как мы считаем, непременно должна включать один любопытный факт об Альберте. Известно, что знаменитый ученый в детстве не был вундеркиндом. Более того, окружающие сомневались в его полноценности. Мать Эйнштейна подозревала наличие врожденного уродства у ребенка (дело в том, что у него была большая голова). Будущий гений в школе зарекомендовал себя медлительным, ленивым, замкнутым. Все смеялись над ним. Учителя считали, что он практически ни на что не способен. Школьникам будет очень полезно узнать, каким нелегким было детство такого великого ученого, как Альберт Эйнштейн. Краткая биография для детей должна быть не просто перечислением фактов, но и учить чему-то. В данном случае - толерантности, вере в свои силы. Если ваш ребенок отчаялся и считает себя ни на что не способным, просто расскажите ему о детстве Эйнштейна. Он не сдался, сохранил веру в свои силы, о чем свидетельствует дальнейшая биография Альберта Эйнштейна. Ученый доказал, что способен на многое.

Переезд в Италию

Молодого ученого отталкивали скука и регламентация в мюнхенской школе. В 1894 году из-за деловых неудач семья была вынуждена покинуть Германию. Эйнштейны отправились в Италию, в Милан. Альберт, которому было в это время 15 лет, воспользовался открывшейся возможностью бросить школу. Он провел еще год со своими родителями в Милане. Однако вскоре стало ясно, что Альберт должен определиться в жизни. После окончания средней школы в Швейцарии (в Аррау) биография Альберта Эйнштейна продолжается учебой в Цюрихском политехникуме.

Обучение в Цюрихском политехникуме

Методы обучения в политехникуме ему пришлись не по нраву. Юноша нередко пропускал лекции, посвящая свободное время изучению физики, а также игре на скрипке, которая была любимым инструментом Эйнштейна всю жизнь. Альберту в 1900 году удалось сдать экзамены (он подготовился по записям сокурсника). Так Эйнштейн получил степень. Известно, что профессора были весьма невысокого мнения о выпускнике и не рекомендовали ему в дальнейшем научную карьеру.

Работа в патентном бюро

После получения диплома будущий ученый стал работать в патентном бюро экспертом. Так как оценка технических характеристик занимала у молодого специалиста обычно около 10 минут, у него оставалось много свободного времени. Благодаря этому начал разрабатывать собственные теории Альберт Эйнштейн. Краткая биография и его открытия вскоре стали известны многим.

Три важные работы Эйнштейна

1905 год стал знаменательным в развитии физики. Именно тогда Эйнштейн опубликовал важные работы, которые сыграли выдающуюся роль в истории этой науки в XX веке. Первая из статей была посвящена Ученый сделал важные предсказания по поводу движения частиц, взвешенных в жидкости. Это движение, как отметил он, происходит из-за столкновения молекул. Позднее предсказания ученого подтвердились и опытным путем.

Альберт Эйнштейн, краткая биография и открытия которого только начинаются, вскоре опубликовал вторую работу, посвященную на сей раз фотоэффекту. Альберт высказал гипотезу о природе света, которая была не иначе как революционной. Ученый предположил, что при определенных обстоятельствах можно рассматривать свет как поток фотонов - частиц, энергия которых соотносится с частотой световой волны. Почти все физики тут же согласились с идеей Эйнштейна. Однако для того, чтобы теория фотонов получила признание в квантовой механике, потребовалось 20 лет напряженных усилий теоретиков и экспериментаторов. Но самой революционной работой Эйнштейна стала третья, "К электродинамике движущихся тел". В ней необычайно ясно изложил идеи ЧТО (частной теории относительности) Альберт Эйнштейн. Краткая биография ученого продолжается небольшим рассказом об этой теории.

Частная теория относительности

Она разрушила представления о времени и пространстве, существовавшие в науке еще со времен Ньютона. А. Пуанкаре и Г. А. Лоренц создали ряд положений новой теории, однако лишь Эйнштейн смог ясно сформулировать на физическом языке ее постулаты. Это касается, в первую очередь, а также наличия предела скорости распространения сигнала. И сегодня можно встретить высказывания, что якобы еще до Эйнштейна была создана теория относительности. Однако это неверно, так как в ЧТО формулы (многие из которых действительно вывели Пуанкаре и Лоренц) важны не столько, сколько правильные основания с точки зрения физики. Ведь именно из них вытекают данные формулы. Лишь Альберт Эйнштейн смог раскрыть теорию относительности с точки зрения физического содержания.

Взгляд Эйнштейна на структуру теорий

Общая теория относительности (ОТО)

Альберт Эйнштейн с 1907 по 1915 год работал над новой теорией тяготения, базировавшейся на принципах теории относительности. Извилистым и трудным был путь, приведший Альберта к успеху. Главная идея ОТО, построенной им, заключается в наличии неразрывной связи между геометрией пространства-времени и полем тяготения. Пространство-время при наличии тяготеющих масс, согласно Эйнштейну, становится неевклидовым. У него появляется кривизна, которая тем больше, чем интенсивнее в этой области пространства поле тяготения. Альберт Эйнштейн представил окончательные уравнения ОТО в декабре 1915 года, во время заседания в Берлине Академии наук. Эта теория - вершина творчества Альберта. Она является, по общему мнению, одной из самых красивых в физике.

Затмение 1919 года и его роль в судьбе Эйнштейна

Понимание ОТО, однако, пришло не сразу. Эта теория первые три года интересовала немногих специалистов. Ее поняли лишь некоторые ученые. Однако в 1919 году ситуация резко изменилась. Тогда прямыми наблюдениями удалось проверить одно из парадоксальных предсказаний данной теории - что луч света от далекой звезды искривляется полем тяготения Солнца. Проверку возможно осуществить лишь при полном солнечном затмении. В 1919 году явление можно было наблюдать в тех частях земного шара, где была хорошей погодой. Благодаря этому стало возможным провести точное фотографирование положения звезд в момент затмения. Снаряженная английским астрофизиком Артуром Эддингтоном экспедиция смогла получить информацию, подтвердившую предположение Эйнштейна. Альберт буквально в один день стал знаменитостью мирового масштаба. Слава, обрушившаяся на него, была огромной. На долгое время теория относительности стала предметом дискуссий. Статьями о ней были переполнены газеты всех стран мира. Было издано множество популярных книг, где авторы объясняли обывателям ее суть.

Признание научных кругов, споры Эйнштейна с Бором

Наконец пришло признание и в научных кругах. Эйнштейн в 1921 году получил Нобелевскую премию (хотя и за теорию квантов, а не за ОТО). Его избрали почетным членом целого ряда академий. Мнение Альберта стало одним из наиболее авторитетных во всем мире. Эйнштейн в двадцатые годы много ездил по всему миру. Он участвовал в проводимых международных конференциях по всему миру. Роль этого ученого была особенно важна в дискуссиях, которые развернулись в конце 1920-х годов по вопросам квантовой механики.

Споры и беседы Эйнштейна с Бором по этим проблемам стали знаменитыми. Эйнштейн никак не мог согласиться с тем, что в ряде случаев оперирует лишь вероятностями, а не точными значениями величин. Его не устраивала принципиальная недетерминированность различных законов микромира. Любимым выражением Эйнштейна стала фраза: "Бог не играет в кости!". Однако Альберт в спорах с Бором, по всей видимости, был не прав. Как вы видите, и гении ошибаются, в том числе и Альберт Эйнштейн. Биография и интересные факты о нем дополняются трагедией, которую пережил этот ученый из-за того, что всем свойственно ошибаться.

Трагедия в жизни Эйнштейна

Создателя ОТО в последние 30 лет жизни, к сожалению, была малопродуктивной. Это было связано с тем, что ученый поставил перед собой задачу грандиозной величины. Альберт намеревался создать единую теорию всевозможных взаимодействий. Такая теория, как сейчас ясно, возможна лишь в рамках квантовой механики. В довоенное время, кроме того, было известно очень немного о существовании других взаимодействий, кроме гравитационного и электромагнитного. Титанические усилия Альберта Эйнштейна поэтому завершились ничем. Возможно, это стало одной из самых больших трагедий в его жизни.

Стремление к красоте

Трудно переоценить значение открытий Альберта Эйнштейна в науке. Сегодня практически каждая ветвь современной физики основывается на фундаментальных понятиях теории относительности или квантовой механики. Пожалуй, не менее важна и уверенность, которую вселил Эйнштейн в ученых своими трудами. Он показал, что природа познаваема, показал красоту ее законов. Именно стремление к красоте было смыслом жизни такого великого ученого, как Альберт Эйнштейн. Биография его уже подходит к концу. Жаль, что в рамках одной статьи нельзя охватить всего наследия Альберта. Но о том, как он делал свои открытия, непременно стоит рассказать.

Как Эйнштейн создавал теории

У Эйнштейна был своеобразный способ мышления. Ученый выделял идеи, казавшиеся ему дисгармоничными или неизящными. При этом он исходил главным образом из эстетических критериев. Затем ученый провозглашал общий принцип, восстанавливающий гармонию. И далее он делал прогнозы о том, как поведут себя те или иные физические объекты. Ошеломляющие результаты давал этот подход. Альберт Эйнштейн тренировал умение увидеть проблему с неожиданного ракурса, подняться над ней и найти необычный выход. Когда Эйнштейн попадал в тупик, он играл на скрипке, и внезапно решение всплывало в его голове.

Переезд в США, последние годы жизни

В 1933 году нацисты пришли к власти в Германии. Они сжигали все Семье Альберта пришлось эмигрировать в США. Здесь Эйнштейн работал в Принстоне, в Институте фундаментальных исследований. В 1940 году ученый отказался от немецкого гражданства и официально стал гражданином США. Последние годы он провел в Принстоне, трудился над своей грандиозной теорией. Минуты отдыха он посвящал катанию по озеру на лодке и игре на скрипке. 18 апреля 1955 г. умер Альберт Эйнштейн.

Биография и открытия Альберта до сих пор изучаются многими учеными. Некоторые исследования весьма любопытны. В частности, мозг Альберта после смерти изучали на предмет гениальности, однако не обнаружили ничего исключительного. Это говорит о том, что каждый из нас может стать таким, как Альберт Эйнштейн. Биография, краткое содержание работ и интересные факты об ученом - все это вдохновляет, не правда ли?