Энтальпия натрия. Что такое энтальпия

Энтальпия натрия. Что такое энтальпия
Энтальпия натрия. Что такое энтальпия

Энтальпия. Этому элементу I - d диаграммы я посвятил отдельную тему, потому как для меня этот элемент являлся наименее понятным среди остальных (температуры, влагосодержания и относительной влажности ) и требующим разбора других попутных понятий.
Продублирую рисунок из прошлой статьи :

Не буду глубоко вдаваться в терминологию, скажу лишь, что я понимаю энтальпию воздуха, как энергию, которую хранит в себе определенный объем воздуха. Эта энергия является потенциальной, то есть в условии равновесия воздух не тратит эту энергию и не поглощает её из других источников.

Не буду даже приводить пример для разъяснения своего определения (хотя хотел ), потому как, по моему мнению, это запутает и уведет в сторону.

Сразу к делу - что главное мы можем взять из энтальпии? - отвечаю - энергию (или количество теплоты ), которую нужно передать воздуху, чтобы нагреть его или отнять, чтобы его охладить (или осушить ).

Например, у нас есть задача - посчитать какой мощности нам нужен калорифер, чтобы осенью или весной подать в помещение 1200 м3/ч нагретого до температуры плюс 20 градусов наружного воздуха. Расчетная температура наружного воздуха в переходный период - плюс 10 градусов при энтальпии 26,5 кДж/кг (по СП 60.13330.2012 ).

Задача решается легко. Для того чтобы решить такую простую задачку используя и-д диаграмму, нам необходимо ввести в уровень понимания единицы измерения некоторых физических величин:
1) Энтальпия - килоДжоуль/килограмм. То есть количество потенциальной энергии в одном килограмме воздуха. Здесь все просто - если энтальпия равна 20, то это означает, что в одном килограмме данного воздуха находится 20 килоджоулей потенциальной теплоты или 20000 джоулей.
2) Мощность калорифера - Ватты, но в то же время ватты можно разложить на Джоуль/секунда. То есть, сколько может выдать калорифер энергии за одну секунду. Чем больше энергии нам сможет выдать калорифер за секунду, тем он мощнее. И тут все просто.

Итак, берем I - d диаграмму и ставим на ней точку наружного воздуха. После, проводим прямую линию вверх (идет нагрев воздуха без изменения влагосодержания ).

Мы получаем точку на j - d диаграмме с температурой плюс 20 градусов и энтальпией 36,5 кДж/кг. Возникает вопрос - что, же, черт возьми, нам дальше делать с этой гребанной информацией?! :)

Во первых, обратим внимание на то, что мы производили все операции с одним килограммом воздуха (это косвенно видно по единице измерения энтальпии кДж/кг ).

Во вторых, у нас был килограмм воздуха с 26,5 кДж, а стал с 36,5 кДж потенциальной энергии. То есть килограмму воздуха сообщили 10 кДж для того чтобы его температура поднялась с плюс 10 градусов до плюс двадцати.

Дальше мы переведем 1200 м 3 /ч в кг/с(килограммы/секунда, т.к. на I - d диаграмме используются эти единицы измерения ), умножив 1200 на 1,25 кг/м 3 (один метр кубический десятиградусного воздуха весит 1,25 килограмма ), что даст нам 1500 кг/ч, а затем разделив на 3600 (обратите внимание на логику перевода между системами - делим мы на 3600 не потому что мы так зазубрили или запомнили, а потому что за секунду у нас воздуха пройдет меньше чем за час, меньше в 3600 раз ) получаем итог 0,417 кг/с.

Идем дальше. Мы получили, что за одну секунду проходит 0,417 кг воздуха. И мы знаем, что каждому килограмму необходимо передать (сообщить ) 10 кДж для того, чтобы нагреть его до температуры плюс 20 градусов. Сообщаем, умножая 0,417 кг/с на 10 кДж/кг, и получая 4,17 кДж/с (килограммы сократились ) или 4170 Дж/с, что равно 4170 Вт (определено нами ранее по тексту ). Вот мы и получили мощность нашего калорифера.

Кондиционирование

Охлаждение происходит по тому же принципу, но только немного сложнее из-за выделения влаги из воздуха.

Выделение влаги (конденсата ) из воздуха происходит тогда, когда температура воздуха при охлаждении достигает точки росы на линии относительной влажности 100%. В предыдущей статье я описал этот процесс:

Вроде бы, нет ничего сложного - охлаждаем воздух с температурой плюс 20 градусов и относительной влажностью 50% до плюс 12 градусов (как это обычно происходит в сплит-системах ), проводя прямую вертикально вниз из точки 20-ти градусного воздуха до точки 12-ти градусного воздуха.

И что мы видим - никаких влаговыделений. Влагосодержание осталось на прежнем уровне - 8 г/кг. Но мы то знаем, что при работе кондиционера идет обильное влаговыделение (конденсат активно капает из дренажной трубки, выведенной на фасад здания ) - этот факт подтверждается неоднократным наблюдением гуляющего по летним улицам.

Возникает вопрос - откуда же влага? Ответ: дело в том, что через внутренний блок кондиционера проходят медные трубки, которые охлаждаются хладагентом до температур, которые ниже плюс 12 градусов, и в связи с этим охлаждаемый воздух делится на слои с различной температурой, примерно как на рисунке ниже (предположим, что трубки охлаждаются до плюс 5 градусов ). Сразу скажу, что это далекий от действительности, но показывающий общий смысл вышесказанных мною слов рисунок (прошу меня за него не ругать )

Поэтому из того воздуха, который соприкасается с трубками(и оребрением ) и выпадает влага. А тот воздух, что не успел охладиться до точки росы, или успел, но избежал контакта с охлажденной поверхностью, минует процесс влаговыделения и несет в себе столько же влаги, сколько он нес в себе до охлаждения (по сути ).

Для того чтобы провести правильную прямую процесса охлаждения воздуха в таком охладителе (где температура хладагента ниже температуры точки росы ), нам необходимо учесть каждый воздушный поток с различными тепловлажностными параметрами воздуха и найти на графике точки смешения всех этих потоков - что по моему мнению - не реально (у меня просто не хватит мозгов на это )! Но…

Я пришел к вот такому решению (скорее всего не я такой один ) - у нас есть температура входящего воздуха, есть температура хладагента и есть температура получаемого воздуха, и я считаю, что нам достаточно провести линию процесса охлаждения части воздуха до плюс 5 градусов и найти точку смешения 5-ти градусного воздуха и 20-ти градусного воздуха. То есть, я предполагаю, что проходя через внутренний блок кондиционера, воздух делится на два потока - тот, который охлаждается до плюс пяти градусов и выдает нам наибольшее количество влаги, и тот который вообще не охлаждается, а на выходе эти два потока смешиваются и образуют поток воздуха с температурой плюс 12 градусов и определенным влагосодержанием.

Я считаю, что для достижения тех целей, которые я преследую, результата, полученного при таком упрощении, вполне достаточно. А какие же цели я преследую?

Первая цель - это определение максимального влаговыделения для того, чтобы рассчитать систему конденсатоотвода (особенно актуально это при системах кондиционирования, в составе которых две и более охлаждающих установок )

Вторая цель - учесть количество холода, идущего на перевод воды из газообразного состояния в жидкое (на конденсацию влаги; так назывемая скрытая холодопроизводительность ). Особенно актуально это при охлаждении (отведении тепла ) во влажных помещениях. Например, нам необходимо отвести от определенного насоса 2 кВт тепла, которые он выделяет в помещение. Если мы не учтем, что помещение влажное (влажное, по каким либо причинам ) и установим в помещение сплит-систему мощностью 2,5 кВт, то мы можем получить (при определенных условиях ), что сплит-система тратит 1 кВт лишь для того, чтобы перевести пар во влагу, а на удаление теплоизбытков тратит оставшиеся 1,5 кВт, что меньше на 500 Вт необходимого, и что может привести к перегреву насоса и скорого его выхода из строя.

Итак, делим поток на два потока, один из которых охлаждаем до плюс пяти - отрезок 1-2, а другой оставляем не тронутым - точка 1.

Смешиваем эти два потока, объединяя получившиеся точки прямой 1-3-2, и находим нашу 12-ти градусную точку на получившейся прямой.

Оставляем прямую 1-3 как линию процесса охлаждения воздуха в сухом охладителе с температуры плюс 20 градусов до плюс 12 градусов с выделением конденсата.

Для того чтобы узнать количество конденсата, выпавшего на оребрении и трубках охладителя нам необходимо вычесть влагосодержание получившегося воздуха из влагосодержания необработанного воздуха 7,3 г/кг - 6,3 г/кг. В итоге мы получим, что из каждого килограмма прошедшего через охладитель воздуха выделится 1 грамм конденсата. Чтобы узнать расход конденсата, нам необходимо узнать, сколько килограммов воздуха проходит через теплообменник за определенное время. Например, если нам необходимо охладить 1400 м 3 /ч воздуха с температуры плюс 20 градусов с относительной влажностью 50% до температуры плюс 12 градусов, то мы переведем 1400 м 3 /ч в 1680 кг/ч и получим, что за час обработки воздуха выделится 1680 грамм конденсата (по одному грамму на каждый килограмм воздуха ), что равно 0,47 г/с (грамм/секунда ) и 0,47 * 10 -3 кг/с.

Полная холодопроизводительность находится так же, как мы искали теплопроизводительность калорифера ранее. Берем энтальпию начальной точки 28 кДж/кг, вычитаем из нее энтальпию конечной точки 38,5 кДж/кг, получая отрицательное число 10,5 кДж/кг (минус указывает на то, что энергия отдается хладагенту ). Переводим 1680 кг/ч в килограмм/секунда, что будет равняться 0,47 кг/с. В итоге получаем 4,935 кДж/с, что равно 4,935 кВт мощности.

Подпишись на мой YouTube-канал FAN-tastiK - канал о проектировании Вентиляции, Кондиционирования и Отопления

Если есть необходимость определить скрытую холодопроизводительность , можно найти её, отталкиваясь от количества выделенного конденсата, используя удельную теплоту парообразования:
Теплота, требуемая для конденсации влаги, находится по формуле: Q = L * m ,
где L - удельная теплота парообразования; m - масса влаги.
L воды равно: 2260 кДж/кг.

Для того, чтобы перевести 0,47 грамма воды из газообразного состояния в жидкое состояние за секунду нам требуется 2260 Дж * 10 3 * 0,47 кг/с * 10 -3 = 1063 Дж/с, что равно 1063 Вт.

Итак скрытая холодопроизводительность данного процесса равна 1063 Вт.

Это Все

Собственно, это все, что я хотел рассмотреть в данной статье. Прошу не бранить меня за наивную упрощенность описанного мною - я постарался объяснить в первую очередь себе - что такое энтальпия и как ей пользоваться. Надеюсь Вам было интересно и полезно. Спасибо за внимание.

P.S. Эта статья не в коем случае не является учебным пособием. Она лишь мое субъективное видение вопроса. Я бы даже сказал - каждое слово, написанное в этой статье, является ошибочным. Информацию, достойную носить звание "Научная истина" ищите в учебниках.

См. также «Физический портал »

Энтальпи́я , также тепловая функция и теплосодержание - термодинамический потенциал , характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления , энтропии и числа частиц.

Проще говоря, энтальпия - это та энергия, которая доступна для преобразования в теплоту при определенных температуре и давлении.

Если термомеханическую систему рассматривать как состоящую из макротела (газа) и поршня площадью S с грузом весом Р = pS , уравновешивающего давление газа р внутри сосуда, то такая система называется расширенной .

Энтальпия или энергия расширенной системы Е равна сумме внутренней энергии газа U и потенциальной энергии поршня с грузом E пот = pSx = pV

Таким образом, энтальпия в данном состоянии представляет собой сумму внутренней энергии тела и работы, которую необходимо затратить, чтобы тело объёмом V ввести в окружающую среду, имеющую давление р и находящуюся с телом в равновесном состоянии. Энтальпия системы H - аналогично внутренней энергии и другим термодинамическим потенциалам - имеет вполне определенное значение для каждого состояния, т. е. является функцией состояния. Следовательно, в процессе изменения состояния

Примеры

Неорганические соединения (при 25 °C)
стандартная энтальпия реакции
Хим соединение Фаза (вещества) Химическая формула Δ H f 0 кДж/моль
Аммиак сольватированный NH 3 (NH 4 OH) −80.8
Аммиак газообразный NH 3 −46.1
Карбонат натрия твёрдый Na 2 CO 3 −1131
Хлорид натрия (соль) сольватированный NaCl −407
Хлорид натрия (соль) твёрдый NaCl −411.12
Хлорид натрия (соль) жидкий NaCl −385.92
Хлорид натрия (соль) газообразный NaCl −181.42
Гидроксид натрия сольватированный NaOH −469.6
Гидроксид натрия твёрдый NaOH −426.7
Нитрат натрия сольватированный NaNO 3 −446.2
Нитрат натрия твёрдый NaNO 3 −424.8
Диоксид серы газообразный SO 2 −297
Серная кислота жидкий H 2 SO 4 −814
Диоксид кремния твёрдый SiO 2 −911
Диоксид азота газообразый NO 2 +33
Монооксид азота газообразный NO +90
Вода жидкий H 2 O −286
Вода газообразный H 2 O −241.8
Диоксид углерода газообразный CO 2 −393.5
Водород газообразный H 2 0
Фтор газообразный F 2 0
Хлор газообразный Cl 2 0
Бром жидкий Br 2 0
Бром газоообразный Br 2 0

Инвариантная энтальпия в релятивистской термодинамике

При построении релятивистской термодинамики (с учетом специальной теории относительности) обычно наиболее удобным подходом является использование так называемой инвариантной энтальпии - для системы, находящейся в некотором сосуде.

При этом подходе температура определяется как лоренц-инвариант . Энтропия - также инвариант. Поскольку стенки влияют на систему, наиболее естественной независимой переменной является давление , в связи с чем в качестве термодинамического потенциала удобно брать именно энтальпию .

Для такой системы «обычная» энтальпия и импульс системы образуют 4-вектор , и за определение инвариантной энтальпии, одинаковой во всех системах отсчёта, берётся инвариантная функция этого 4-вектора:

Основное уравнение релятивистской термодинамики записывается через дифференциал инвариантной энтальпии следующим образом:

Пользуясь этим уравнением, можно решить любой вопрос термодинамики движущихся систем, если известна функция .

См. также

Источники

  1. Болгарский А. В., Мухачев Г. А., Щукин В. К., «Термодинамика и теплопередача» Изд. 2-е, перераб. и доп. М.: «Высшая школа», 1975, 495 с.
  2. Харин А. Н., Катаева Н. А., Харина Л. Т., под ред. проф. Харина А. Н. «Курс химии», М.: «Высшая школа», 1975, 416 с.

Примечания


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Энтальпия" в других словарях:

    Энтальпия - (от греческого enthalpo нагреваю), функция состояния термодинамической системы, изменение которой при постоянном давлении равно количеству теплоты, подведенной к системе, поэтому энтальпия называется часто тепловой функцией или теплосодержанием.… … Иллюстрированный энциклопедический словарь

    - (от греч. enthalpo нагреваю) однозначная функция Н состояния термодинамической системы при независимых параметрах энтропии S и давлении p, связана с внутренней энергией U соотношением Н = U + pV, где V объем системы. При постоянном p изменение… … Большой Энциклопедический словарь

    - (обозначение Н), количество термодинамической (тепловой) энергии, содержащееся в веществе. В любой системе энтальпия равна сумме внутренней энергии и произведения давления на объем. Измеряют в терминах изменения (обычно увеличения) количества… … Научно-технический энциклопедический словарь

    Теплосодержание Словарь русских синонимов. энтальпия сущ., кол во синонимов: 1 теплосодержание (1) Словарь синонимов ASIS … Словарь синонимов

    - (от греч. enthalpo нагреваю) экосистемы, функциональное состояние экосистемы, определяющее ее теплосодержание. Энтальпия экстенсивное свойство экосистемы. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской… … Экологический словарь

    энтальпия - Функция состояния термодинамической системы, равная сумме внутренней энергии и произведения объема на давление. Примечание Энтальпия является характеристической функцией, если энтропия и давление являются независимыми параметрами. [Сборник… … Справочник технического переводчика

    - (от греч. enthalpo нагреваю) (теплосодержание, тепловая функция Гиббса), потенциал термодинамический, характеризующий состояние макроскопич. системы в термодинамич. равновесии при выборе в кач ве основных независимых переменных энтропии S и… … Физическая энциклопедия

    - [ενυαλπω (энтальпо) нагреваю] термодинамическая функция состояния Н, равная сумме внутренней энергии U и произведения объема на давление Vp(H + U + Vp). В процессах, протекающих при постоянном давлении,… … Геологическая энциклопедия

    энтальпия - энтальпия; отрасл. теплосодержание; тепловая функция Гиббса Функция состояния системы (Н), равная величине внутренней энергии (U), сложенной с произведением объема на давление; H = U + pV … Политехнический терминологический толковый словарь

    энтальпия - – это функция состояния системы, приращение которой равно теплоте, полученной системой в изобарном процессе. Общая химия: учебник / А. В. Жолнин … Химические термины

Энтальпия (от греч. enthalpo - нагреваю) - это свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту .

Энтальпия - это термодинамическое свойство вещества, которое указывает уровень энергии , сохраненной в его молекулярной структуре. Это значит, что, хотя вещество может обладать энергией на основании температуры и давления , не всю ее можно преобразовать в теплоту . Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру. Часть кинетической энергии вещества недоступна, когда его температура приближается к температуре окружающей среды. Следовательно, энтальпия - это количество энергии, которая доступна для преобразования в теплоту при определенной температуре и давлении .

Единицы энтальпии - британская тепловая единица или Джоуль для энергии и Btu/lbm или Дж/кг для удельной энергии.

Количество энтальпии

Количество энтальпии вещества основано на его данной температуре.

Данная температура - это значение, которая выбрано учеными и инженерами, как основание для вычислений. Это температура, при которой энтальпия вещества равна нулю Дж. Другими словами, у вещества нет доступной энергии , которую можно преобразовать в теплоту . Данная температура у различных веществ разная. Например, данная температура воды - это тройная точка (0°С), азота −150°С, а хладагентов на основе метана и этана −40°С.

Если температура вещества выше его данной температуры или изменяет состояние на газообразное при данной температуре, энтальпия выражается положительным числом. И наоборот при температуре ниже данной энтальпия вещества выражается отрицательным числом. Энтальпия используется в вычислениях для определения разницы уровней энергии между двумя состояниями. Это необходимо для настройки оборудования и определения коэффициента полезного действия процесса.

Энтальпию часто определяют как полную энергию вещества, так как она равна сумме его внутренней энергии (и) в данном состоянии наряду с его способностью проделать работу (pv ). Но в действительности энтальпия не указывает полную энергию вещества при данной температуре выше абсолютного нуля (-273°С). Следовательно, вместо того, чтобы определять энтальпию как полную теплоту вещества, более точно определять ее как общее количество доступной энергии вещества, которое можно преобразовать в теплоту .

H = U + pV ,

где V - объём системы. Полный дифференциал энтальпии имеет вид:

dH = TdS + Vdp

Во время химических реакций происходит поглощение или выделение тепла в окружающую среду. Такой теплообмен между химической реакцией и окружающей средой называется энтальпией, или H. Однако измерить энтальпию напрямую невозможно, поэтому принято рассчитывать изменение температуры окружающей среды (обозначаемое ∆H). ∆H показывает, что в ходе химической реакции происходит выделение тепла в окружающую среду (экзотермическая реакция) или поглощение тепла (эндотермическая реакция). Рассчитывается энтальпия так: ∆H = m x s x ∆T , где m - масса реагентов, s - теплоемкость продукта реакции, ∆T - изменение температуры в результате реакции.

Шаги

Решение задач на энтальпию

    Определите реагенты и продукты реакции. Любая химическая реакция имеет реагенты и продукты реакции. Продукт реакции создается в результате взаимодействия реагентов. Другими словами реагенты - это ингредиенты в рецепте, а продукт реакции - это готовое блюдо. Чтобы найти ∆H реакции, необходимо знать реагенты и продукты реакции.

    • Например, необходимо найти энтальпию реакции образования воды из водорода и кислорода: 2H 2 (водород) + O 2 (кислород) → 2H 2 O (вода). В этой реакции H 2 и O 2 – реагенты, а H 2 O - продукт реакции.
  1. Определите общую массу реагентов. Далее необходимо подсчитать массу реагентов. Если вы не можете взвесить их, то подсчитайте молекулярную массу, чтобы найти фактическую. Молекулярная масса - это постоянная, которую можно найти в периодической таблице Менделеева или в других таблицах молекул и соединений. Умножьте массу каждого реагента на число молей.

    • В нашем примере реагенты водород и кислород имеют молекулярные массы 2 г и 32 г соответственно. Поскольку мы используем 2 моль водорода (коэффициент в химической реакции перед водородом H 2) и 1 моль кислорода (отсутствие коэффициента перед O 2 обозначает 1 моль), то общая масса реагентов рассчитывается следующим образом:
      2 × (2 г) + 1 × (32 г) = 4 г + 32 г = 36 г
  2. Определите теплоемкость продукта. Далее определите теплоемкость продукта реакции. Каждая молекула имеет определенную величину теплоемкости, которая является постоянной. Найдите эту постоянную в таблицах учебника по химии. Существует несколько единиц измерения теплоемкости; в наших расчетах мы будем использовать Дж/г°C.

    • Обратите внимание на то, что при наличии нескольких продуктов реакции вам потребуется рассчитать теплоемкость каждого, а затем сложить их, чтоб получить энтальпию всей реакции.
    • В нашем примере, продукт реакции - вода, которая имеет теплоемкость 4,2 Дж/г°C .
  3. Найдите изменение температуры. Теперь мы найдем ∆T - разницу температур до и после реакции. Из начальной температуры (T1) вычтите конечную температуру (T2). Чаще всего в задачах по химии используется шкала Кельвина (К) (хотя по шкале Цельсия (°С) получится тот же результат).

    • В нашем примере давайте предположим, что начальная температура реакции была 185 K, а после реакции стала 95 K, значит, ∆T вычисляется так:
      ∆T = T2 – T1 = 95 K - 185 K = -90 K
  4. Найдите энтальпию по формуле ∆H = m x s x ∆T. Если известна m - масса реагентов, s - теплоемкость продукта реакции и ∆T - изменение температуры, то можно подсчитать энтальпию реакции. Подставьте значения в формулу ∆H = m x s x ∆T и получите энтальпию. Результат вычисляется в Джоулях (Дж).

    • В нашем примере энтальпия вычисляется так:
      ∆H = (36 г) × (4,2 ДжK - 1 г - 1) × (-90 K) = -13608 Дж
  5. Определите, выделяется или поглощается энергия в ходе рассматриваемой реакции. Одна из самых распространенных причин, по которой требуется вычислить ∆H на практике, - узнать, будет ли реакция экзотермической (выделение тепла и снижение собственной энергии) или эндотермической (поглощение тепла из окружающей среды и повышение собственной энергии). Если значение ∆H положительное, значит, реакция эндотермическая. Если отрицательное, значит, реакция экзотермическая. Чем больше абсолютное значение ∆H, тем больше энергии выделяется или поглощается. Будьте осторожны, если собираетесь проводить практический опыт: во время реакций с высоким значением энтальпии может произойти большое высвобождение энергии, и если оно протекает быстро, то может привести ко взрыву.

    • В нашем примере конечный результат получился равным -13608 Дж. Перед значением энтальпии отрицательный знак, а это означает, что реакция экзотермическая . Горячие газы (в виде пара) H 2 и O 2 должны выделить некоторое количество тепла, чтобы образовать молекулу воды, то есть реакция образования H 2 O является экзотермической.

    Оценка энтальпии

    1. Подсчитайте энергию связей для оценки энтальпии. Почти все химические реакции приводят к разрыву одних связей и образованию других. Энергия в результате реакции не возникает ниоткуда и не разрушается: это та энергия, которая требуется для разрыва или образования этих связей. Поэтому изменение энтальпии всей реакции можно довольно точно оценить путем суммирования энергии этих связей.

      Используйте энтальпию образования для оценки энтальпии. Энтальпия образования позволяет рассчитать ∆H через вычисление реакций образования реагентов и продуктов. Если известна энтальпия образования продуктов реакции и реагентов, то вы можете оценить энтальпию в целом путем сложения, как и в случае энергии, рассмотренном выше.

    2. Не забывайте о знаках перед значениями энтальпии. При вычислении энтальпии образования формулу для определения энтальпии реакции продукта вы переворачиваете, и знак энтальпии должен поменяться. Другими словами, если вы переворачиваете формулу, то знак энтальпии должен смениться на противоположный.

      • В примере обратите внимание на то, что реакция образования для продукта C 2 H 5 OH записана наоборот. C 2 H 5 OH → 2C + 3H 2 + 0,5O 2 то есть C 2 H 5 OH распадается, а не синтезируется. Поэтому знак перед энтальпией в такой реакции положительный, 228 кДж/моль, хотя энтальпия образования C 2 H 5 OH составляет -228 кДж/моль.

    Наблюдение энтальпии в ходе эксперимента

    1. Возьмите чистую емкость и налейте туда воды. Увидеть принципы энтальпии в действии нетрудно - достаточно провести простой опыт. Необходимо, чтобы на результат эксперимента не повлияли посторонние загрязнители, так что емкость нужно вымыть и простерилизовать. Ученые для измерения энтальпии используют специальный закрытые контейнеры - калориметры, но вам вполне подойдет стеклянный стакан или колба. Заполните емкость чистой водопроводной водой комнатной температуры. Желательно проводить эксперимент в прохладном помещении.

      • Для эксперимента желательно использовать небольшую емкость. Мы будем рассматривать энтальпию реакции воды с «Алка-Зельтцер», поэтому, чем меньше воды используется, тем более очевидным будет изменение температуры.

Энтальпи́я, также тепловая функция и теплосодержание - термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц.

Проще говоря, энтальпия - это та энергия, которая доступна для преобразования в теплоту при определенных температуре и давлении.

Определением этой величины служит тождество: H=U+PV

Размерность энтальпии-Дж/моль.

В химии чаще всего рассматривают изобарические процессы (P = const), и тепловой эффект в этом случае называют изменением энтальпии системы или энтальпией процесса :

В термодинамической системе выделяющуюся теплоту химического процесса условились считать отрицательной (экзотермический процесс, ΔH < 0), а поглощение системой теплоты соответствует эндотермическому процессу, ΔH > 0.

Энтропия

а для самопроизвольных

Зависимость изменения энтропии от температуры выражается законом Кирхгофа:

Для изолированной системы изменение энтропии – критерий возможности самопроизвольного протекания процесса. Если , то процесс возможен; если, то в прямом направлении процесс невозможен; если, то в системе равновесие.

Термодинамические потенциалы. Свободная энергия Гиббса и Гельмгольца.

Дл я характеристики процессов, протекающих в закрытых системах, введем новые термодинамические функции состояния: изобарно-изотермический потенциал (свободная энергия Гиббса G) и изохорно-изотермический потенциал (свободная энергия Гельмгольца F).

Для закрытой системы, в которой осуществляется равновесный процесс при постоянных температуре и объеме, выразим работу данного процесса. Которую обозначим А max (посколько работа процесса, проводимого равновесно, максимальна):

A max =T∆S-∆U

Введем функцию F=U-TS-изохорно-изотермический потенциал, определяющий направление и предел самопроизвольного протекания процесса в закрытой системе, находящейся в изохорно-изотермических условиях и получим:

Изменение энергии Гельмгольца определяется только начальным и конечным состоянием системы и не зависит от характера процесса, поскольку оно определяется двумя функциями состояния: U и S. Напомним, что от способа проведения процесса при переходе системы из начального в конечное состояние может зависеть величина полученной или затраченной работы, но не изменение функции.

Закрытую систему, находящуюся в изобарно- изотермических условиях, характеризует изобарно-изотермический потенциал G:

Дифференциалэнергии Гиббса для системы с постоянным числом частиц, выраженный в собственных переменных - черездавлениеp итемпературуT:

Для системы с переменным числом частиц этот дифференциал записывается так:

Здесь -химический потенциал, который можно определить как энергию, которую необходимо затратить, чтобы добавить в систему ещё одну частицу.

Анализ уравнения ∆G=∆H-T∆S позволяет установить, какой из факторов, составляющих энергию Гиббса, ответственен за направление протекания химической реакции, энтальпийный (ΔH) или энтропийный (ΔS · T).

Если ΔH < 0 и ΔS > 0, то всегда ΔG < 0 и реакция возможна при любой температуре.

Если ΔH > 0 и ΔS < 0, то всегда ΔG > 0, и реакция с поглощением теплоты и уменьшением энтропии невозможна ни при каких условиях.

В остальных случаях (ΔH < 0, ΔS < 0 и ΔH > 0, ΔS > 0) знак ΔG зависит от соотношения ΔH и TΔS. Реакция возможна, если она сопровождается уменьшением изобарного потенциала; при комнатной температуре, когда значение T невелико, значение TΔS также невелико, и обычно изменение энтальпии больше TΔS. Поэтому большинство реакций, протекающих при комнатной температуре, экзотермичны. Чем выше температура, тем больше TΔS, и даже эндотермические реакции становятся осуществляемыми.

Под стандартной энергией Гиббса образования ΔG°, понимают изменение энергии Гиббса при реакции образования 1 моль вещества, находящегося в стандартном состоянии. Это определение подразумевает, что стандартная энергия Гиббса образования простого вещества, устойчивого в стандартных условиях, равна нулю.

Изменение энергии Гиббса не зависит от пути процесса, следовательно можно получать разные неизвестные значения энергий Гиббса образования из уравнений, в которых с одной стороны записанны суммы энергий продуктов реакции, а с другой - суммы энергий исходных веществ.

При пользовании значениями стандартной энергии Гиббса критерием принципиальной возможности процесса в нестандартных условиях принимается условие ΔG° < 0, а критерием принципиальной невозможности - условие ΔG° > 0. В то же время, если стандартная энергия Гиббса равна нулю, это не означает, что в реальных условиях (отличных от стандартных) система будет в равновесии.

Условия самопроизвольного протекания процессов в закрытый системах: