Есть ли радиация на марсе. Curiosity рассказал о радиации в космосе. Причины радиации на Марсе

Есть ли радиация на марсе. Curiosity рассказал о радиации в космосе. Причины радиации на Марсе
Есть ли радиация на марсе. Curiosity рассказал о радиации в космосе. Причины радиации на Марсе

Марсоход Curiosity проводит свои первые измерения радиации на поверхности другой планеты для того, чтобы определить, могут ли будущие исследователи жить на Марсе - так как марсоход пересекает ландшафт Красной Планеты. Curiosity смотрит назад на свои следы и холмы Mount Sharp и разрушенную кромку кратера Гейла на дальнем горизонте на 24 марсианский день миссии (30 августа 2012). Эта панорама представлена в новом документальном фильме PBS NOVA "Ultimate Mars Challenge" , который был представлен публике 14 ноября 2012. RAD расположен на палубе марсохода на этой цветной сшитой вместе мозаике из фотографий Navcam командой обработки фотографий из Ken Kremer и Marco Di Lorenzo. Предоставлено: NASA / JPL-Caltech / Ken Kremer / Marco Di Lorenzo.

Металлические роботы, построенные изобретательными людьми, могут выживать на Марсе. Но что же о будущих астронавтах людях?

Мужественный марсоход НАСА Mars Exploration Rover Opportunity процветал почти десятилетие, пересекая равнины Meridiani Planum, несмотря на продолжительную бомбардировку стерилизующей космической и солнечной радиацией от заряженных частиц благодаря его внутренностям, защищенным от радиации.

Как о людях? Какая судьба ожидает их на в смелой и вероятно долгой экспедиции продолжительностью в год в бесконечно экстремальной и решительно суровой окружающей среде на поверхности Красной Планеты, пропитанной радиацией - если кто-нибудь когда-нибудь доберется сюда с Земли? Сколько защиты необходимо людям?

Ответ на эти вопросы - один из ключевых квестов для марсохода Curiosity размером с внедорожник - прошло более 100 дней его 2-х летней главной миссии.

Предварительные данные выглядят многообещающими.

Curiosity пережил 8-ми месячное межпланетное путешествие и беспрецедентный маневр спуска через атмосферу на реактивном небесном кране для безопасного касания земли внутри кратера Гейла около возвышающихся слоистых холмов Mount Sharp высотой 5 км 6 августа 2012.

Теперь у есть задание оценить, предлагал ли когда-нибудь и пригодную для обитания микробных форм жизни среду - в прошлом или будущем. Характеристика естественно встречающихся уровней радиации, остающихся от галактического космического излучения и , будет адресована к вопросу как о микробах, так и об астронавтах. может разрушить органические молекулы около поверхности.

Исследователи используют инструмент Curiosity современного технического уровня Radiation Assessment Detector (RAD), чтобы отслеживать высоко энергетическую радиацию на ежедневной основе и помочь определить потенциал рисков для здоровья для реальной жизни, представленный для будущих исследователей-людей на марсианской поверхности.

"Атмосфера обеспечивает уровень защиты, и радиация от таких заряженных частиц меньше, когда атмосфера тоньше", сказал главный исследователь RAD Don Hassler из Юго-Западного Исследовательского Института в Боулдере, Коло. Смотрите графики ниже.

"Абсолютно, астронавты могут жить в этой среде. Она не сильно отличается от той, что астронавты могут испытывать на Международной Космической Станции. Реальный вопрос в том, что если сложить общий вклад в общую дозу астронавта на Марсе, миссия может иметь ограничения для вас, поскольку вы аккумулируете эти числа. Со временем вы достигните тех чисел", объяснил Hassler.

Первоначальные данные RAD первых двух месяцев на поверхности были продемонстрированы на медиа брифинге для репортеров в четверг 15 ноября 2012 и показывают, что радиация несколько ниже на поверхности Марса по сравнению с космической средой из-за защиты марсианской атмосферы.

Долгосрочные изменения радиации в кратере Гейла. График показывает изменение дозы радиации, измеренной Radiation Assessment Detector на марсоходе NASA Curiosity в течение 50 марсианских дней. (На Земле 10 марсианский день был 15 сентября и 60 день - 6 октября 2012). Мощность дозы (как от заряженных частиц, так и нейтральных частиц) была измерена, используя пластмассовый сцинтиллятор, и она показана красным. Предоставлено: NASA/JPL-Caltech/ SwRI.

RAD не обнаружил каких-либо больших солнечных вспышек с поверхности. "Это будет очень важно", сказал Hassler.

"Если бы там была массивная солнечная вспышка, она могла иметь острое воздействие, которое могло бы вызвать рвоту и потенциально подвергнуть миссию опасности с астронавтом в скафандре".

"В целом, атмосфера Марса уменьшает дозу радиации по сравнению с той, что мы видим в течение круиза к Марсу в два раза".

RAD работал и уже провел измерения радиации в течение межпланетного полета космического корабля по сравнению с новыми данными, теперь собранными на дне кратера Гейла.

Марсианское атмосферное давление немного меньше 1% от Земного. Оно чуть-чуть меняется в отношении атмосферных циклов в зависимости от температуры и цикла замерзания-таяния полярных ледяных шапок и результирующих ежедневных тепловых приливов.

"Мы видим ежедневное изменение дозы радиации, измеренной на поверхности, которая обратно пропорциональна давлению атмосферы. Атмосфера Марса действует как щит для радиации. Когда атмосфера становится толще, это обеспечивает больше защиты. Поэтому мы видим падения в дозе радиации на 3-5% каждый день", сказал Hassler.


Автопортрет Curiosity с Mount Sharp на песчаной дюне Rocknest в кратере Гейла. Curiosity использовал камеру Mars Hand Lens Imager (MAHLI) на роботизированной руке, чтобы отобразить себя и свое целевое место назначения Mount Sharp на заднем плане. Горы на фоне слева - это северная стена кратера Гейла. Эта цветная панорамная мозаика была собрана из необработанных фотографий, снятых на 85 марсианский день миссии (1 ноября 2012). Предоставлено: NASA/JPL-Caltech/MSSS/ /Marco Di Lorenzo.

Существуют также сезонные изменения в уровнях радиации, поскольку Марс движется в пространстве.

Команда RAD все еще обрабатывает данные о радиации.

"Есть калибровки и характеристики, которые мы завершаем, чтобы получить эти числа точными. Мы работаем над этим. И мы надеемся опубликовать их на встрече Американского Геофизического Союза в декабре".


Ежедневные циклы радиации и давления в кратере Гейла. Этот график показывает ежедневные изменения в марсианской радиации и атмосферном давлении, измеренные марсоходом Curiosity. Когда давление растет, общая доза радиации уменьшается. Когда атмосферное давление больше, оно обеспечивает лучший барьер с более эффективной защитой от радиации извне. В каждом максимуме давления, уровень радиации падает на 3-5%. Уровень радиации поднимается в конце графика из-за долгосрочной тенденции, которую ученые все еще изучают. Предоставлено: NASA/JPL-Caltech/SwRI.

Радиация - это фактор ограничения обитаемости жизни. RAD - это первый научный инструмент для прямого измерения радиации на поверхности другой планеты.

"Curiosity обнаруживает, что радиационная среда на Марсе чувствительна к марсианской погоде и климату", сделал вывод.

В отличие от Земли, Марс потерял свое магнитное поле около 3.5 миллиардов лет назад - и поэтому большую часть защитной способности от вредных уровней радиации энергетических частиц из космоса.

Гораздо больше данных нужно будет собрать RAD прежде чем какой-либо заключительный вывод по , и как долго и какой тип среды обитания, может быть получен.

Вот так: готовилось человечество оставить свои следы на пыльных марсианских дорожках, экспедицию собирало, но не тут-то было. На Марсе, выясняется, свирепствует радиация, и еще лететь туда-обратно три года в открытом космосе - можно получить смертельную дозу опасного излучения.

Дозы ионизирующего излучения измеряются в зивертах, и этих самых зивертов за всю жизнь можно получить между 1 и 3 единицами, в зависимости от возраста и пола, причем безопасный порог все время уменьшается стараниями медиков. По наблюдениям американского спутника Одиссей, радиация в окрестностях Марса в 2,5 раза выше, чем, например, на МКС.

У Земли имеется атмосфера и значительно более сильное магнитное поле, ограждающее ее жителей от космических напастей. Всего же за три года экспедиции астронавты получат около одного зиверта, что находится на границе допустимой дозы, и может вызвать совершенно непредсказуемые последствия для здоровья людей, вероятнее всего раковые заболевания.

Такие вот неутешительные факты были изложены на пресс-конференции экспертами НАСА, после чего все заинтересованные стороны надолго задумались. Пока что предлагается вести усиленный мониторинг солнечной радиации - основной угрозы для здоровья космонавтов - и своевременно предупреждать их о грядущих звездных штормах, дабы те заранее подыскали себе какое-нибудь укрытие в марсианских пенатах. Да еще уповать на то, что вспышки солнечного излучения, длящиеся до недели, окажутся не слишком направленными и обойдут Марс стороною.

Ученые опубликовали первые оценки уровня радиации на поверхности Марса

Астронавты за год жизни на Марсе подвергнутся воздействию около 15 рентген ионизирующего излучения, что ставит под сомнение возможность существования жизни внутри почвы Красной планеты, заявляют ученые в статье, опубликованной в журнале Science .

Высокий уровень радиации считается одним из главных препятствий на пути пилотируемых экспедиций на Марс. В частности, данные прибора RAD на борту марсохода, собранные во время полета к Красной планете, показали, что во время путешествия человек может получить дозу радиации, сопоставимую со смертельной.

С момента посадки на поверхность Марса в начале августа 2012 года, марсоход Curiosity непрерывно наблюдает за радиационным фоном на Красной планете при помощи RAD и отправляет собранные данные на Землю. Дональд Хасслер из Юго-Западного исследовательского института в городе Боулдер и его коллеги проанализировали статистику по уровню радиации на Марсе за последние 300 дней и перевели ее на понятный нам язык.

По их расчетам, за день организм человека или других живых существ будет накапливать около 0,21 миллизиверта ионизирующего излучения, что в десятки раз больше, чем аналогичные значения для Земли. Как отмечают авторы статьи, это значение всего в 2 раза меньше, чем уровень радиации в открытом космосе, измеренный во время полета Curiosity от Земли к Марсу.

В общей сложности, за год жизни на Красной планете такой путешественник накопит около 15 рентген ионизирующего излучения, что в 300 раз больше предельной годовой дозы для работников атомной промышленности. Это сильно ограничивает время пребывания возможных путешественников на поверхности Красной планеты, которые вряд ли смогут провести там больше 500 дней без риска для здоровья.

Другим интересным следствием этого открытия стало то, что, по словам Хасслера и его коллег, микробы не могут существовать в верхних слоях почвы Марса, где они могли теоретически выжить после испарения его океанов и атмосферы в глубокой древности Красной планеты.

Радиация на Марсе безопасна для людей

Прошло уже три месяца с тех пор, как марсоход Curiosity приземлился на Красную планету, чтобы определить, способен ли Марс поддерживать жизнь.

Один из факторов, ограничивающих условия обитаемости, важных для будущих пилотируемых миссий - был уровень радиации от космических лучей и солнечных частиц, который попадает на поверхность планеты.

Чтобы выяснить это, инструмент марсохода для измерения радиации, называемый RAD, собрал данные, касающиеся ежедневных циклов радиации, достигающих Curiosity .

Атмосфера Марса действует как щит для радиации на поверхности планеты. Ученые знают об этом, так как по мере того, как утолщается атмосфера, уровень радиации падает на 3-5 процентов.

Проблема состояла в том, что атмосфера Марса в 100 раз тоньше, чем на Земле, что говорит о более легком проникновении радиации и большей опасности для космонавтов.

Так смогут ли космонавты выжить в марсианской среде?

Совершенно точно, космонавты смогут жить в этой среде, - объявил главный исследователь Дан Хасслер. По крайней мере, какой-то ограниченный период времени.

Уровень радиации на поверхности Марса примерно вдвое меньше того, что ученые наблюдают во время полетов в дальний космос. Главная проблема - это накапливание радиации в течение длительного времени.

А вот что точно известно, так это то, что миссия на Марс будет долгой - около 3 лет, включая около 6 месяцев, чтобы туда добраться и еще шесть, чтобы вернуться. Существует предел с точки зрения суммарной дозы излучения, которое может испытать космонавт.

В обычный день, космонавт в глубоком космосе защищен от радиации. Лучевая болезнь не возникает сразу. Но сценарий может измениться, если космонавты столкнуться с событием, когда излучается большое количество радиации, как например при солнечной буре. Кроме того, космонавты будут подвержены более высокому уровню радиации по пути к планете, чем на ее поверхности.

Вопрос не состоит в том, отправимся ли мы на Марс. Важно, когда мы туда отправимся и как лучше защитить наших космонавтов, - объяснил Хасслер.

Радиация на Марсе не помешает колонизации красной планеты

Миссия, совершенная марсоходом «Кьюрсити», была завершена открытием, в процессе которой было выявлено, что радиация на Марсе не повлияет на длительный пилотируемый полет на планету. Это определенно хорошие новости для множества претендентов на колонизацию красной планеты по проекту датской компании Mars One.

Долгосрочное исследование включает в себя 360 дней, для совершения перелета туда и обратно, и пребывания на планете порядка 500 дней. Конечно же, космонавты получат дозу радиации в размере 1,01 зиверта, которая была установлена с помощью детектора на борту «Кьюрсити».

Конечно же, полученная доза радиации грозит увеличением развития рака, и составляет 3%, что не соответствует стандартам NASA. Но, в недалеком будущем планируется изменение этих данных, так как они предназначены для измерения на околоземной орбите.

По словам Дона Хасслера, из Юго-Западного исследовательского института в Боулдере:

NASA работает с Институтом медицины при Национальной академии наук над оценкой ограничений, необходимых для дальних космических полетов, например, миссии на Марс.

Проведенные 8 месяцев детектором излучения «Кьюрсити» в открытом космосе и 300 дней, проведенные на самой Планете, дали совершенно новые результаты, в ходе обработки которых была выявлена наиболее полная картина радиационного фона, как на пути к Марсу, так и на его поверхности.

Существует 2 формы радиации, учет которых и был осуществлен в процессе обработки - галактические космические лучи, появившиеся вследствие разрыва сверхновых, и энергетические частицы солнца, вследствие Солнечных геомагнитных бурь.

Доза радиации в день, которую космонавт будет получать в результате работы, составит 0,64 миллизиверта, по данным детектора. А в процессе перелета эта доза составит 1,84 миллизиверта в день.

Радиационный фон непостоянен, что делает невозможным вынести окончательный вердикт и подвести итоги, считает Хасслер. Конечно же, эти данные и их оценка помогут NASA в проектировании миссии на Марс, и поиске жизни на его поверхности. Но, эти же данные позволили ученому сделать предположение, что на Красной Планете отсутствует микробная жизнь.

По данным от марсохода Curiosity, уровень радиации на Марсе почти такой же, как и на низкой околоземной орбите, где находится Международная космическая станция. Но визит на Красную планету не становится от этого безопасным, так как лететь придется достаточно долго.

По сравнению с Землей, у Марса отсутствует магнитосфера, которая защищает планету от галактического и солнечного излучения. Впрочем, есть тонкая атмосфера, которая обеспечивает небольшую защиту. По словам одного из операторов Curiosity, это открытие стало первым в истории измерением радиационной обстановки на планете, отличной от Земли. Астронавты смогут жить в подобной среде.

От метеорологической станции ровера поступили данные о так называемом тепловом приливе. Атмосфера начинает нагреваться Солнцем, расширяясь и снижая давление. А на другой стороне в это время холодно, там атмосфера начинает опускаться и сжиматься.

Из-за вращения Марса, выпуклость с нагретым воздухом перемещается вместе со светлой стороной с востока на запад. Curiosity зафиксировал подобный эффект, следя за изменением атмосферного давления в течение суток. Также были отмечены ежедневные провалы в уровне заряженных частиц, совпадающие с повышением давления. Получается, что марсианская атмосфера все же обеспечивает защиту.

В настоящий момент ученые не могут дать оценку суточной дозе облучения на Красной планете. Однако понятно, что она будет несколько ниже уровня, зафиксированного космическим кораблем, который перевозил Curiosity. Именно это и становится главной проблемой: за три года перелета космонавты облучатся в семь раз сильнее, чем за это же время на МКС.

Совокупное облучение повышает риск возникновения различных раковых заболеваний, именно поэтому космическими агентствами устанавливаются лимиты на сроки пребывания в космосе. Необходимо получить точную величину марсианской дозы, что как следует защитить космонавтов во время перелета к Красной планете.

Ко всему этому, еще случаются солнечные вспышки, и Curiosity необходимо выяснить, насколько защищен от них Марс.

Естественно, лучший вариант - это подземная база или колония, в которой на поверхность выходят только роботы. Но все же стоит рассмотреть варианты, позволяющие выходить на поверхность и космонавту.

Источники: zona51.narod.ru, ria.ru, www.infoniac.ru, yvek.ru, tainy.net

ESA/ATG medialab

Приборы на борту орбитального зонда миссии «ЭкзоМарс» Trace Gas Orbiter (TGO) помогли ученым выяснить, что космонавты смогут совершить только один полет к Марсу без существенного риска для здоровья. Главную опасность представляет высокий уровень радиации, связанный с галактическими космическими лучами , говорится в статье, опубликованной в журнале Icarus .

Высокий уровень радиации считается одним из главных препятствий на пути пилотируемых экспедиций на Марс. В частности, данные прибора RAD на борту марсохода Curiosity, собранные во время перелета к красной планете, показали , что во время путешествия человек может получить дозу радиации, сопоставимую с предельно допустимой – примерно 0,66 зиверта, 95 процентов которой приходится на галактические космические лучи, и лишь 5 процентов - на излучение Солнца. Аналогичные результаты были получены в 2014 году в ходе наблюдений на лунной орбите при помощи детектора космических лучей CRaTER, установленного на борту зонда LRO. Как показали его замеры, риск онкологических заболеваний у космонавтов после 500-дневного полета к Марсу повысится на 4-5 процентов.

Игорь Митрофанов и его коллеги из Института космических исследований РАН, Института медико-биологических проблем РАН и Института космических исследований и технологий Болгарской академии наук пришли к схожим выводам, анализируя данные, собранные дозиметрическим модулем «Люлин-МО», установленным на борту российско-европейского зонда TGO, в октябре 2016 года. Модуль является частью российского нейтронного детектора FREND , и он, как и датчик RAD на борту Curiosity, был включен большую часть времени, которое зонд провел во время полета к четвертой планете Солнечной системы.

«Во время шестимесячного полета к Марсу и возвращения на Землю экипаж космического корабля получит примерно 60 процентов от дозы радиации, максимально допустимой для всей карьеры космонавта или астронавта, если полет будет осуществляться во время сниженной солнечной активности», - говорится в статье.


Прибор FREND с дозиметрическим модулем Люлин-МО

Как показали собранные данные, уровень радиации в открытом космосе был примерно на 20 процентов выше, чем во время полета Curiosity. Ученые связывают это расхождение с тем, что уровень солнечной активности в этот период был минимальным, что повысило частоту «обстрела» зонда и всех планет космическими лучами из межзвездной среды. Нечто похожее было зафиксировано зондом LRO во время двух последних солнечных минимумов.

В среднем, космонавт, путешествующий примерно год к Марсу, получит примерно 0,7 зиверта ионизирующего излучения (около 73 рентген). Космонавты на борту МКС получают примерно 0,3 зиверта в год, а на Земле годовая доза, которую получает человек, составляет около 2,4 миллизиверта. Как показывают расчеты ученых, одно путешествие к Марсу по самому быстрому маршруту «съест» чуть больше половины от максимальной общей дозы радиации, допустимой для космонавтов за всю карьеру.

Что интересно, уровень радиации на орбите Марса был еще выше, причем уровень облучения очень сильно зависел от того, закрывала ли планета «Экзомарс» от солнечного ветра.

Замеры на самой поверхности планеты пока еще не были проведены европейскими и российскими учеными – Митрофанов и его коллеги планируют осуществить их при помощи дозиметра «Люлин-МЛ», который будет установлен на посадочной платформе для европейского марсохода «Пастер», сейчас в НПО Лавочкина.

Сергей Кузнецов

Наука

Прошло уже три месяца с тех пор, как марсоход Curiosity приземлился на Красную планету, чтобы определить, способен ли Марс поддерживать жизнь.

Один из факторов, ограничивающих условия обитаемости, важных для будущих пилотируемых миссий – был уровень радиации от космических лучей и солнечных частиц, который попадает на поверхность планеты.

Чтобы выяснить это, инструмент марсохода для измерения радиации, называемый RAD, собрал данные, касающиеся ежедневных циклов радиации, достигающих Curiosity .

Атмосфера Марса действует как щит для радиации на поверхности планеты. Ученые знают об этом, так как по мере того, как утолщается атмосфера, уровень радиации падает на 3-5 процентов.

Проблема состояла в том, что атмосфера Марса в 100 раз тоньше, чем на Земле , что говорит о более легком проникновении радиации и большей опасности для космонавтов.

Жизнь на Марсе: уровень радиации

Так смогут ли космонавты выжить в марсианской среде?

"Совершенно точно, космонавты смогут жить в этой среде ", - объявил главный исследователь Дан Хасслер. "По крайней мере, какой-то ограниченный период времени".

Уровень радиации на поверхности Марса примерно вдвое меньше того, что ученые наблюдают во время полетов в дальний космос . Главная проблема - это накапливание радиации в течение длительного времени.


А вот что точно известно, так это то, что миссия на Марс будет долгой - около 3 лет, включая около 6 месяцев, чтобы туда добраться и еще шесть, чтобы вернуться. Существует предел с точки зрения суммарной дозы излучения, которое может испытать космонавт.

В обычный день, космонавт в глубоком космосе защищен от радиации. Лучевая болезнь не возникает сразу. Но сценарий может измениться, если космонавты столкнуться с событием, когда излучается большое количество радиации, как например при солнечной буре. Кроме того, космонавты будут подвержены более высокому уровню радиации по пути к планете, чем на ее поверхности .


Пока ученые продолжают проводить измерения, а заключение об уровне радиации еще предстоит сделать.

"Вопрос не состоит в том, отправимся ли мы на Марс. Важно, когда мы туда отправимся и как лучше защитить наших космонавтов", - объяснил Хасслер.

Марсоход Curiosity: фото с Марса

1. Снимок высокого разрешения марсохода Curiosity, сделанный с помощью его роботизированной руки

По данным от марсохода Curiosity, уровень радиации на Марсе почти такой же, как и на низкой околоземной орбите, где находится Международная космическая станция. Но визит на Красную планету не становится от этого безопасным, так как лететь придется достаточно долго.

По сравнению с Землей, у Марса отсутствует магнитосфера, которая защищает планету от галактического и солнечного излучения. Впрочем, есть тонкая атмосфера, которая обеспечивает небольшую защиту. По словам одного из операторов Curiosity, это открытие стало первым в истории измерением радиационной обстановки на планете, отличной от Земли. Астронавты смогут жить в подобной среде.

От метеорологической станции ровера поступили данные о так называемом тепловом приливе. Атмосфера начинает нагреваться Солнцем, расширяясь и снижая давление. А на другой стороне в это время холодно, там атмосфера начинает опускаться и сжиматься.

Из-за вращения Марса, выпуклость с нагретым воздухом перемещается вместе со светлой стороной с востока на запад. Curiosity зафиксировал подобный эффект, следя за изменением атмосферного давления в течение суток. Также были отмечены ежедневные провалы в уровне заряженных частиц, совпадающие с повышением давления. Получается, что марсианская атмосфера все же обеспечивает защиту.

В настоящий момент ученые не могут дать оценку суточной дозе облучения на Красной планете. Однако понятно, что она будет несколько ниже уровня, зафиксированного космическим кораблем, который перевозил Curiosity. Именно это и становится главной проблемой: за три года перелета космонавты облучатся в семь раз сильнее, чем за это же время на МКС.

Совокупное облучение повышает риск возникновения различных раковых заболеваний, именно поэтому космическими агентствами устанавливаются лимиты на сроки пребывания в космосе. Необходимо получить точную величину марсианской дозы, что как следует защитить космонавтов во время перелета к Красной планете.

Ко всему этому, еще случаются солнечные вспышки, и Curiosity необходимо выяснить, насколько защищен от них Марс.

Естественно, лучший вариант – это подземная база или колония, в которой на поверхность выходят только роботы. Но все же стоит рассмотреть варианты, позволяющие выходить на поверхность и космонавту.