Генное редактирование изменит мир быстрее, чем мы думаем. Редактор генома CRISPR: технология, которая изменит медицину

Генное редактирование изменит мир быстрее, чем мы думаем. Редактор генома CRISPR: технология, которая изменит медицину
Генное редактирование изменит мир быстрее, чем мы думаем. Редактор генома CRISPR: технология, которая изменит медицину

2017 год еще раз продемонстрировал огромные возможности генетического редактирования в медицине. Например, оно может изменить трансплантологию. Рост квалификации хирургов и новые технологии позволяют проводить фантастические операции, но все эти чудеса остаются маловостребованными из-за крайне низкого числа донорских органов. Так, в Великобритании пересадка сердца ежегодно требуется 15 000 пациентам, но получить ее могут только 150. Решением может стать использование органов , чей таким образом, чтобы не вызывать негативных последствий для рецепиента. Не менее острая проблема - распространение устойчивых к антибиотикам бактерий - также может быть решена с помощью CRISPR. Сразу несколько команд исследователей работают над тем, чтобы уничтожать подобные «супермикробы» с помощью .

Генное редактирование впервые полностью излечило от ВИЧ

Сообщения о том, что с помощью CRISPR исцелили то или иное заболевание, становятся привычными. Так, ученым удалось вылечить и - правда, пока только у мышей. Скептики часто с сомнением реагируют на результаты, продемонстрированные на грызунах, но и для них есть потрясающие новости - например, о том, как мальчику, страдающему от редкого заболевания, пересадили квадратный метр . Новая кожа, заменившая 80% старой, пораженной болезнью, была выращена из 3 кв. см, которые подвергли воздействию модифицированного вируса. Возможно, уже в этом году мы увидим компании, которые поставят генную терапию на поток и начнут лечить с ее помощью серповидно-клеточную анемию, талассемию и другие . И, конечно, CRISPR продолжат использовать для борьбы с раком - например, модифицируя человека так, чтобы они эффективнее находили и уничтожали злокачественные опухоли.

Ученые наконец осуществили с помощью генного редактирования то, что еще недавно считалось фантастикой - изменили геном непосредственно в . Метод использовали для лечения болезни Хантера - редкого генетического заболевания, связанного с нехваткой важного фермента в печени. В организм 44-летнего мужчины ввели миллиарды копий корректирующих генов и инструментов, необходимых для их внедрения; в данном случае это была не CRISPR, а метод цинкового пальца. Исследователи рисковали, но у пациента, перенесшего 26 операций, не было выбора. В случае успеха ученые проведут аналогичную терапию для больных гемофилией и фенилкетонурией. Также в прошлом году с помощью CRISPR был впервые генетически модифицирован жизнеспособный человеческий эмбрион - вначале в , а затем в . В обоих случаях зародыш избавили от нескольких мутаций, отвечающих за наследственные заболевания, но развиваться ему не позволили из этических соображений. Впрочем, реальность американской работы научные оппоненты.

CRISPR как оружие

Генетическое редактирование может стать и настоящим оружием. О применении его против людей речи, к счастью, пока не идет - имеются в виду животные-вредители, например, комары. Сами по себе эти насекомые в подавляющем большинстве безвредные, но они способны переносить различные заболевания - от желтой лихорадки до малярии. Эти болезни наносят многомиллиардный ущерб мировой экономике и убивают сотни тысяч людей в год. Специалисты предлагают отредактировать геном комаров так, чтобы они больше не могли переносить возбудителей заболеваний. Другой вариант - истребить их полностью или существенно сократить популяцию, выпуская бесплодных самцов. Такой подход разделяет компания DARPA, вложившая в исследования «боевой» CRISPR . Экологи с беспокойством следят за подобными инициативами: уничтожение целого вида может разрушить экосистемы, а наличие технологии, способной истреблять популяции, в руках правительства или бизнеса, представляет серьезную угрозу для окружающей среды.

Билл Гейтс: «Генная терапия рака искоренит инфекционные заболевания»

С куда большим сочувствием эксперты смотрят в сторону Новой Зеландии, где с помощью CRISPR планируется . Когда-то в этой стране не было млекопитающих кроме ластоногих и летучих мышей, но человек завез сюда крыс, кошек, горностаев и поссумов. Млекопитающие быстро превратились во вредителей, уничтожающих местную фауну - в первую очередь птиц, миллионы лет живших в мире без хищников. Многие виды уже вымерли, и чтобы сохранить оставшееся биоразнообразие, правительство Новой Зеландии готово на жесткие меры. По плану, к 2050 году на островах не должно остаться завезенных животных. Традиционно в борьбе с ними использовали яд и ловушки, но создание генетической системы, самостоятельно распространяющейся по популяции и сокращающей успех размножения, куда эффективнее и безопаснее для аборигенных видов. В настоящее время новозеландские ученые изучают, не нанесет ли генетическая война больше вреда, чем пользы.

Компания Monsanto давно превратилась в глазах общественности в синоним «корпорации зла» из голливудских фильмов и пугает многих не меньше, чем гипотетическое «генетическое оружие». Однако цели, которые она озвучивает, кажутся благими: так, биотехнологический гигант планирует использовать CRISPR, чтобы вывести , более урожайные и устойчивые к экстремальным условиями среды. Возможно, именно эта технология поможет нагревающейся Земли. Сельское хозяйство будущего будет использовать и генную модификацию животных - например, в Китае уже создали , заменив часть их генов генами мышей.

Соперники и наследники CRISPR

При все своих достоинствах, CRISPR - несовершенная технология. При разрезании ДНК и внедрении в геном нужного гена не исключены ошибки: например, можно случайно задеть соседний ген или вызвать мутацию. Этих недостатков лишена , которую предложили специалисты из Медицинского института Говарда Хьюза. Вместо того, чтобы вставлять и вырезать целые куски ДНК, они заменяют отдельные нуклеотиды в ней, переписывая «буквы», которыми записан геном. CRISPR часто сравнивают с ножницами - в таком случае новую технологию можно назвать «карандашом». Она идеальна для исправления единичных вредных мутаций.

Другая альтернатива - эукариотическое многократное генное редактирование (eMAGE) - также позволит внедрять новые гены, . А исследователи из стартапа утверждают, что научились заменять поврежденные участки генома на отредактированные, используя естественные механизмы клеточного деления. По их словам, им удалось с помощью особых вирусов сделать этот процесс управляемым. Правда, нам следует дождаться строгой научной проверки заявленных результатов. Во многих случаях вместо генной модификации эффективнее использовать так называемое . В таком случае цепочка РНК, фермент и активатор транскрипции располагаются у нужного гена и запускают его работу. Ген не нужно вырезать или вставлять - достаточно восстановить его функцию.

На рынок США вышел первый препарат для генной терапии

Технологии

Возможно, разумнее всего не отказываться от CRISPR, а улучшить ее. Например, вирус, доставляющий РНК и фермент в ядро клетки, может быть атакован иммунной системой, что снизит эффективность метода. Чтобы избежать этого, в качестве вектора можно использовать . Технология была испытана сотрудниками МТИ на мышах и показала отличную эффективность: нужные гены оказались отредактированы в 80% клеток. Также технологию можно модифицировать для иных целей. Например, лишить этот инструмент возможности вырезать куски ДНК, оставив только умение прикрепляться к нужной точке генома. В таком случае CRISPR станет идеальной меткой, указывающей расположение мутаций, которые затем можно будет рассмотреть с помощью атомно-силового микроскопа. Это позволит, например, выявлять , ведущие к различным заболеваниям. Метод будет более эффективным, нежели традиционные секвенирование и флуоресцентная гибридизация.

Страхи и сомнения

Как и любая новая технология, генное редактирование вызывает в обществе недоверие. Многие из нас до сих пор боятся есть продукты с ГМО, так что не стоит удивляться протестам против вмешательства в генетический код человека или популяций диких животных. Но если многие страхи легко списать на биологическую неграмотность, то у специалистов по этике есть более серьезные возражения. Что если, научившись редактировать геном эмбрионов ради борьбы с генетическими заболеваниями, мы станем производить на свет «дизайнерских» младенцев с заранее известным цветом глаз и уровнем интеллекта? Специалисты в области генетики считают эти страхи обоснованными, но . Во-первых, геном не определяет то, чем мы являемся, на 100% - не менее важную роль играют воспитание и среда, в которой мы развиваемся. Во-вторых, две других технологии, внедрение которых считали первыми шагами к антиутопиям в духе «Гаттаки», за десятилетия показали свою безопасность. Речь идет об ЭКО и амниоцентезе (анализе околоплодных вод и тканей плаценты). Скорее всего, так же будет и с CRISPR, хотя государственный контроль ее использованию не повредит.

И он уже осуществляется: так, продавать наборы для генетического редактирования в домашних условиях (которые, судя по всему, еще и совершенно бесполезны). Тем, кто хочет поиграть в генного инженера, лучше делать это под присмотром специалиста, например, на курсах, которые организует нью-йорский стартап . За $100 в месяц любой желающий сможет получить доступ к лаборатории и всему необходимому оборудованию. А за $400 можно пройти интенсивный четырехдневный курс технологии CRISPR на примере дрожжей. Хотя большинство участников приходят в лаборатории ради развлечения, с собой они уносят знания о генном редактировании и этических нормах при работе с ним.

Инфографика на конкурс «био/мол/текст»: CRISPR/Cas - система адаптивного иммунитета бактерий и архей, которая пригодилась и эукариотам. Мы попытались предельно ясно отразить этот механизм, породивший взрыв в биологическом сообществе и, вероятно, сильно изменивший будущее науки и человечества. Из этой инфографики вы узнаете краткую историю изучения, механизм и возможные применения системы CRISPR/Cas.

«Био/мол/текст»-2016

Эта работа заслужила приз зрительских симпатий конкурса «био/мол/текст »-2016.

В конкурсе участвовала только инфографика!
Текст написала Ольга Волкова .

Генеральным спонсором конкурса, согласно нашему краудфандингу , стал предприниматель Константин Синюшин , за что ему огромный человеческий респект!

Спонсором приза зрительских симпатий выступила фирма «Атлас ».

Спонсор публикации этой статьи - Дмитрий Геннадиевич Калашников.

Как устроена иммунная система прокариот?

Системы CRISPR-Cas обнаружены почти у всех известных архей и половины бактерий. Чаще они находятся на хромосоме, реже - в составе фагов (вирусов бактерий) и других мобильных генетических элементов . Эти системы состоят из двух основных блоков: CRISPR-кассеты и прилегающего к ней кластера генов cas . Кассета - это блок прямых почти палиндромных («зеркальных», взаимокомплементарных последовательностей, способных складываться в шпильки) повторов размером 24–48 пар нуклеотидов. Эти повторы перемежаются спейсерами - уникальными вставками примерно такой же длины. Спейсеры идентичны различным участкам фагов и других мобильных элементов, когда-либо проникавших в эту клетку или ее предков. Число повторов в разных системах варьирует от единиц до сотен.

Таким образом, CRISPR можно считать коллекцией разделенных повторами «фотографий» нарушителей клеточных границ. Составляется эта коллекция простым заимствованием их кусочков, а чтобы противостоять новой инвазии этих же молекулярных агентов, коллекция должна регулярно «просматриваться» и обновляться. Для этой функции нужна лидерная последовательность , предшествующая череде повторов. Она богата «легкоплавкими» АТ-пáрами и содержит промотор, контролирующий транскрипцию CRISPR-кассеты («просмотр коллекции»).

Гены cas кодируют белки, берущие на себя всю тяжесть работы по встраиванию спейсеров и уничтожению агентов с идентичными последовательностями (протоспейсерами ) и помогающие процессировать CRISPR-транскрипт: разделять фото-гирлянду на отдельные портреты. Функцию уничтожения выполняют Cas-белки, называемые эффекторными . В зависимости от типа эффекторов все CRISPR-системы разделяют на два класса: у I класса мишень уничтожается мультибелковым комплексом, а у II - одним крупным белком. Далее эти классы подразделяются на шесть типов . Большинство эффекторов атакует ДНК, лишь один - исключительно РНК , редкие - обе молекулы. Один организм может содержать несколько разных систем, а спейсеры различаются в разных клетках даже одной популяции .

К чему это приводит, можно узнать из конкурсной статьи о бактериофагах и вечной гонке вооружений в фаговом и бактериальном мирах: «Пожиратели бактерий: убийцы в роли спасителей » . Кстати, там много интересных авторских электронных изображений фагов.

Для решения инженерных задач больше всего подходит система II типа, относящаяся ко II классу, - она самая простая. Именно ее эффекторный белок называется Cas9 - то самое обозначение, что фигурирует в современных системах редактирования генома.

Как формируется CRISPR-опосредованный иммунитет?

Если в бактерию или архею, снабженную CRISPR-системой, проникает вирус, включается адаптационный функциональный модуль системы: специфические Cas-белки - у всех систем это как минимум Cas1 и Cas2 - вырезают из чужака понравившиеся фрагменты. Подобрать протоспейсер в некоторых случаях помогает и эффекторный белок. Белки выбирают участки рядом с особой последовательностью PAM (protospacer adjacent motif ) - всего несколько нуклеотидов, но неодинаковых для разных CRISPR-систем. Затем эти же адаптационные белки встраивают фрагмент в CRISPR-кассету, всегда с одной стороны - у лидерной последовательности. Так образуется новый спейсер, а заодно с ним - и новый повтор. Весь этот процесс называют адаптацией , или приобретением, а по сути это - запоминание врага. Информацию обо всех запомнившихся врагах получает при делениях всё потомство клетки.

Как реализуется CRISPR-опосредованный иммунитет?

Для поиска повторно вторгающихся агентов CRISPR-кассета должна экспрессироваться . В результате ее транскрипции образуется длинная молекула РНК - pre-crРНК . С помощью РНКазы III и, как правило, Cas-белков транскрипт нарезается по повторам на отдельные crРНК - молекулы, содержащие один спейсер и кусочки окружающих его повторов (один из них длиннее). В системах II типа для этого процесса, называемого созреванием , необходим еще один участник - tracrРНК (trans-activating CRISPR RNA ), которая закодирована рядом с cas -кластером .

Далее у систем I класса crРНК взаимодействует с комплексом Cas-белков, а у систем II класса crРНК либо дуплексы tracrРНК-crРНК связываются с одним белком-эффектором, например Cas9. Так образуется интерференционный функциональный модуль - рабочая иммунная единица, состоящая из направляющей РНК и эффекторного белка (или комплекса). Совокупность таких единиц «сканирует» клетку в поисках интервентов.

При обнаружении комплементарной crРНК последовательности, то есть протоспейсера, модуль «слипается» с ней и определяет, не помечена ли она как «своя», клеточная. Если нет, и если к ней прилегает тот самый PAM, то эффекторный белок, который представляет собой эндонуклеазу , разрезает обе цепи ДНК в строго определенных местах. Весь процесс называется интерференцией . В особом случае, у системы VI типа, происходит РНК-интерференция , потому что эффекторный белок является рибонуклеазой и разрушает РНК. Так или иначе, атакованные фаги или плазмиды выводятся из строя. Ну и появляется лишняя возможность «наворовать» новые спейсеры.

Какие проблемы могут возникнуть при реализации иммунного ответа? Не исключено, что по мере удаления от лидерной последовательности, то есть от CRISPR-промотора, шансы спейсера транскрибироваться и созреть уменьшаются. Кроме того, есть мнение, что удаленные спейсеры со временем могут накапливать мутации, препятствующие эффективной интерференции с мишенью, или вовсе удаляться. Но раз адаптация новых спейсеров происходит вблизи промотора, удаленные спейсеры представляют собой фото агентов, давно не нападавших на эту клеточную линию, и в постоянной боеготовности по отношению к ним клетка не нуждается. Настоящей же проблемой могут стать даже однонуклеотидные мутации мишени. В общем, комплементарность в этом деле превыше всего.

А не приручить ли нам чужой иммунитет?

Детально изучив принципы работы стрептококковой системы CRISPR-Cas9 (II тип), ученые подумали: а почему бы не попробовать с ее помощью корректировать геномы других организмов? Появились новые надежды относительно лечения генетических (и не только) заболеваний человека, ведь этот способ редактирования in vivo мог оказаться эффективнее уже вовсю тестируемых в то время нуклеаз ZFN и TALEN .

Всё, что требовалось для новой технологии, - это разместить на векторах ген белка Cas9 и CRISPR-кассету, где спейсеры сделать идентичными местам генома, которые нужно изменить. Меняя число и тип спейсеров, можно модифицировать сразу несколько разных участков генома. Довольно быстро поняли, что tracrРНК и crРНК можно безболезненно объединить в одну химерную молекулу sgРНК (single-guide RNA ), а РНКазу III в эукариотических клетках спокойно подменяют другие рибонуклеазы. Ну и еще потребовалось оптимизировать систему для эукариотических клеток: подправить кодонный состав и добавить ядерный «адрес», чтобы она четко следовала к месту работы - хромосомам.

Получилась простая и, что немаловажно, дешевая двухкомпонентная система: ген cas9 и CRISPR-кассета транскрибируются в клеточном ядре выбранного организма, CRISPR-транскрипт нарезается на отдельные sgРНК, которые объединяются с белками Cas9 и ищут цель. Когда sgРНК находит комплементарный участок в геноме организма, Cas9 разрезает «натупо» обе цепи ДНК. Всё, работа CRISPR-системы на этом окончена. Теперь эстафета передается репарационным системам самогό организма. Они решают, как лучше залатать разрез: то ли просто сшить куски (это будет негомологичное соединение концов , NHEJ ), то ли, если есть подходящая матрица с флангами, комплементарными участкам ДНК с двух сторон от разрыва, поставить «заплатку» (это будет гомологичная рекомбинация). Так вот, первый вариант выгоден, если нужно что-то вырезать, второй - если нужно что-то вставить или заменить дефектный участок ДНК на нормальный, который просто вводят на подходящем векторе. Иногда используют гомологию с парной хромосомой, если на ней нужный локус не дефектный.

Разумеется, технология пока не лишена недостатков. Cas9, например, может проявлять нецелевую активность, «закрывая глаза» на мелкие несоответствия между sgРНК и мишенью. По словам К. Северинова, основная проблема - это биоинформатическое предсказание мишеней, поскольку, помимо наличия участка PAM, необходимо учитывать массу факторов, включая состояние хроматина. Кроме того, сценарий, по которому пойдет репарация разреза, не всегда соответствует желаемому, поэтому сейчас активно ищут факторы, влияющие на выбор этого сценария клеткой. Помимо оптимизации CRISPR-Cas9 и механизмов ее доставки в нужные клетки, ведется апробирование других типов CRISPR-систем .

Спектр применений CRISPR-Cas9 и ее модификаций

Точки приложения CRISPR-технологии можно условно объединить в три крупные группы: «CRISPR - для исследований», «CRISPR - для биотехнологий» и «CRISPR - для терапии».

1. «CRISPR - для исследований» . Технология позволяет изучать роль конкретных генов в процессах развития и жизнедеятельности организмов. Как вариант - устанавливать роль генов и их перестроек в возникновении и прогрессировании генетических болезней и рака: этот инструмент позволяет создавать прекрасные модельные системы .

Если Cas9 лишают одного нуклеазного домена, то белок становится никазой (nCas9 ) - режет только одну цепь ДНК, - а если лишают сразу двух, то белок становится инактивированным, или «мертвым» (dead , dCas9 ). Такой белок ничего не режет, зато систему CRISPR-dCas9 можно использовать для репрессии целых наборов генов или как платформу для конструирования более сложных регуляторных и модифицирующих комплексов. Например, если к ней привязать активирующий домен, то экспрессия целевых генов активируется. Для эпигенетической модификации нужных зон достаточно добавить модифицирующий домен. А пометив dCas9 флюоресцентными белками , можно визуализировать разные области хромосом. Ясно, что регуляторные возможности системы будут востребованы и в медицине. Кроме того, разные варианты CRISPR-Cas открывают новые возможности для скрининга мишеней лекарств .

2. «CRISPR - для биотехнологий» . Здесь речь идет о применении CRISPR-Cas9 как минимум для трех целей:

3. «CRISPR - для терапии» . Здесь пределов для фантазии, кажется, и вовсе нет. Если говорить о наследственных заболеваниях, то CRISPR-Cas9 в культурах клеток или животных моделях уже «примерили» для серповидноклеточной анемии и β-талассемии , M2DS-синдрома и миодистрофии Дюшенна , муковисцидоза (исправили мутантный CFTR-локус в кишечных стволовых клетках человека) и тирозинемии , катаракты (у мышей устранили доминантную мутацию в гене Crygc ) и пигментного ретинита . Вообще, болезни глаз сейчас в центре внимания, потому что в глаза генетические конструкции легко доставлять .

Преимущества коррекции генома в зародышевой линии (как совокупности любых генеративных клеток, связывающих друг с другом поколения организмов) и стволовых клетках очевидны, но даже изменения, вносимые в соматические клетки уже развитых органов, дают эффект. Особенно если речь идет о борьбе с болезнями печени и мышц. О результатах терапевтического применения CRISPR-Cas9 в разных типах клеток рассказывает свежий обзор .

Отдельное перспективное направление - борьба с хроническими вирусными заболеваниями типа гепатитов и ВИЧ-инфекции. Если возбудитель сохраняется в организме в виде провируса (вирусной ДНК, встроенной в клеточный геном), то его можно просто вырезать. Именно так и поступил коллектив биологов из США, избавив лимфоциты человека от ВИЧ (об этом сообщили сразу две «биомолекулярные» статьи: «Битва века: CRISPR VS ВИЧ » и «CRISPR/Cas9 как помощник в борьбе с ВИЧ » ). Правда, ВИЧ - объект крайне изменчивый, и с ним еще придется поломать копья.

Можно помечтать, что в терапии опухолей найдут применение варианты недавно описанной CRISPR-системы VI типа - той, что уничтожает только РНК, причем, как оказалось, любую клеточную РНК без разбора: запустить такую систему в раковую клетку - это как наслать на нее проклятье .

CRISPR-Cas - это не только иммунитет

Оказывается, для бактерий и их эволюции эта система значит намного больше.

Неканонические активности CRISPR-систем или их отдельных компонентов возникали как побочные продукты их иммунной функции либо как самостоятельно отбираемые признаки. Скорее всего, CRISPR-кассеты и Cas-белки когда-то работали порознь, причем исходная задача последних состояла в регуляции экспрессии генов и репарации ДНК . Современные компоненты CRISPR-Cas замечены:

Инфографика выполнена совместно с Павлом Чирковым, магистром факультета политологии Санкт-Петербургского государственного университета. Одним файлом ее можно скачать .

Литература

  1. J. A. Doudna, E. Charpentier. (2014). The new frontier of genome engineering with CRISPR-Cas9 . Science . 346 , 1258096-1258096;
  2. Ruud. Jansen, Jan. D. A. van Embden, Wim. Gaastra, Leo. M. Schouls. (2002).

Этот текст - один из них. Технология CRISPR-Cas9 привлекает большое внимание как ученых, так и всех тех, кто интересуется биотехнологиями. Многие считают, что новый метод точного редактирования генов позволит создать в будущем совершенного человека. «Лента.ру» рассказывает о том, что представляет собой система CRISPR и следует ли ждать от нее чудес.

В начале февраля 2016 года стало известно, что правительство Великобритании разрешило ученым изменять ДНК человеческих эмбрионов в исследовательских целях с помощью системы CRISPR. Речь не идет о создании ГМО-людей, поскольку все модифицированные эмбрионы, полученные через экстракорпоральное оплодотворение, через 14 дней будут уничтожаться. Однако общественность сильно обеспокоилась. Например, директор национальной разведки США Джеймс Клэппер заявил, что потенциально технологии редактирования генома - это оружие массового поражения. Его пессимистический прогноз воплотили в новом сезоне сериала «Секретные материалы», где систему CRISPR использовали для глобального геноцида. Что же такое технология CRISPR, почему она вызывает столько ажиотажа среди ученых, опасений у общественности и что в действительности может дать человечеству?

Изображение: Steve Dixon / Feng Zhang / MIT

Антивирусная защита

CRISPR - это иммунная система бактерий и архей, спасающая микроорганизмы от вирусов. Впервые она была обнаружена японскими учеными в конце 1980-х годов у бактерии Escherichia coli (кишечная палочка). Они заметили, что в геноме бактерии присутствуют повторяющиеся последовательности, разделенные спейсерами - уникальными участками. Однако какую роль все это выполняет, тогда выяснить не смогли. Схожую генетическую структуру-кассету нашли позднее у другого микроорганизма - археи Haloferax mediterranei, а затем и у многих других прокариот. Такие участки стали называть акронимом CRISPR, то есть Clustered Regularly Interspaced Short Palindromic Repeats. По-русски - «короткие палиндромные повторы, регулярно расположенные группами».

Спустя более десяти лет генетики установили, что рядом с CRISPR-кассетами располагаются гены, которые кодируют белки, названные Cas. Известные спейсеры сравнили с последовательностями ДНК из обширных баз геномных данных. Оказалось, что спейсеры очень похожи на участки геномов вирусов-бактериофагов, а также плазмид - кольцевых молекул ДНК, обычно встречающихся у бактерий.

Группа биоинформатиков под руководством Евгения Кунина из Национального центра биотехнологической информации предложила механизм работы CRISPR-кассет и ассоциированных с ними белков Cas. Вирус, проникший в клетку бактерии, обнаруживается комплексом белков Cas, несущих с собой последовательность спейсера. Если последняя совпадает с участком ДНК вируса (протоспейсером), то белки Cas разрезают чужеродную ДНК, предотвращая инфекцию. Позже ученые сумели внести в CRISPR-кассету бактерии спейсер с фрагментом генома бактериофага и наблюдали, как микроорганизм успешно справился с вирусом. Это послужило одним из доказательств предложенной гипотезы.

Спейсеры в CRISPR-кассетах - это шаблон для производства crРНК, которая и отправляется вместе с Cas-белками в атаку на вирус. Откуда же спейсеры берутся? Когда бактерия сталкивается с неизвестным вирусом, она начинает вырезать различные участки ДНК из своего и чужого генома и вставлять их в кассету. Конечно, большинство таких кусков оказываются бесполезными и даже вредными, однако тот, что помогает организму побороть инфекцию, остается в CRISPR и передается потомкам бактерии.

Изображение: Annual Review of Genetics

Проникая в святая святых

Выяснилось, что существует несколько разновидностей системы CRISPR-Cas. Одна из них кодирует не комплекс белков Cas, а всего лишь один - Cas9. Это универсальная молекула, выполняющая сразу несколько функций: она связывает чужеродную ДНК и разрезает ее. Именно в системе с белком Cas9 ученые увидели точный инструмент редактирования генома. В статье, опубликованной в журнале Science в 2012 году, Эммануэль Шарпентье и Дженнифер Дудна предложили в качестве crРНК искусственные последовательности, которые узнавали бы определенные участки ДНК. Тогда Cas9 вносил бы разрезы туда, куда это нужно ученым. Другая исследовательская группа примерно в это же время показала, что система CRISPR-Cas9 может работать с геномами не только в бактериях, но и в клетках других организмов, включая человека.

И до CRISPR-системы были известны способы редактирования генома. Например, с помощью нуклеаз, содержащих цинковые пальцы. Это искусственные ферменты, не существующие в природе и способные расщеплять цепочку ДНК. Цинковый палец - особый белковый модуль, включающий в себя один или несколько ионов цинка. Именно с помощью подобных структур ферменты взаимодействуют с ДНК, РНК и другими молекулами. Ученые соединили цинковый палец с другим модулем, разрезающим цепочку ДНК. Такие нуклеазы могут быть нацелены на определенные участки генома, где и производят разрезы. Проблема в том, что для каждого участка, куда нужно внести разрыв, необходимо синтезировать, выделить и проверить специфичный белок. Кроме того, применение нуклеаз сопряжено с большой вероятностью ошибок: часто разрывы происходили не в тех местах, что были нужны.

Система CRISPR-Cas гораздо удобнее. Функцию разреза на себя берет белок Cas9, одинаковый для любых локусов-мишеней. Все, что нужно сделать, это синтезировать crРНК, которая укажет белку, где именно внести двуцепочечный разрыв. После того как разрыв внесен, включаются системы восстановления ДНК. Во-первых, это механизм негомологичного соединения концов (non-homologous end joining, NHEJ), в результате чего возникают различные мутации, нарушающие функции генов. Если сделать множество таких разрывов, то можно добиться перестройки крупного участка ДНК.

Во-вторых - гомологичная рекомбинация (homologous recombination, HR), когда похожие или идентичные участки ДНК обмениваются между собой нуклеотидными последовательностями. Такой механизм используется для восстановления повреждений двойной цепи, называемых двунитевыми разрывами.

Что касается управляемого редактирования ДНК, то ученым больше подходит гомологичная рекомбинация. С помощью системы CRISPR-Cas можно внести разрывы так, чтобы убрать из ДНК целый участок. При этом генетики подсовывают созданную ими последовательность, которая встраивается на место удаленной. Таким образом можно «ремонтировать» мутации, вызывающие тяжелые заболевания. Ученые убирают дефектный участок гена и заменяют его на нормальный. Более того, можно вносить новые мутации, создавать различные варианты одного и того же гена, добавлять к нему специфические последовательности, что отражается на функциях кодируемого им белка.

Можно исправлять сразу множество дефектных генов. Для этого нужно лишь синтезировать соответствующие crРНК, чьи последовательности совпадают с нужными участками ДНК. Белки Cas9 связываются с crРНК и устремляются «чинить» гены. Следует уточнить, что когда мы говорим о совпадении, то имеем в виду комплементарное соответствие. Принцип комплементарности показывает, в каком случае между различными цепочками ДНК или РНК будут образовываться связи. Нуклеотид А связывается с нуклеотидом Т, а нуклеотид С - с G. Поэтому, например, фрагмент ACTG совпадает с TGAC.

Изображение: Nature

Оружие против болезней

Когда стало понятно, что CRISPR-систему можно использовать для редактирования генома человека, множество лабораторий по всему свету занялись активными исследованиями. Например, используют технологию для создания генно-модифицированных организмов. Одно из направлений - создание кисломолочных бактерий, которые могли бы сопротивляться атаке бактериофагов, уничтожающих культуры полезных микроорганизмов. Но пожалуй, одно из самых интересных применений CRISPR - борьба с ретровирусными инфекциями.

Ретровирусы - к ним относится ВИЧ - вставляют свой геном прямо в ДНК зараженной клетки. В журнале Scientific Reports опубликована работа, демонстрирующая, как с помощью CRISPR-Cas9 можно очистить пораженные ВИЧ Т-лимфоциты и даже воспрепятствовать повторному встраиванию вируса. Генетики просто-напросто внесли в культуру T-клеток гены, кодирующие crРНК и Cas9, которые, в свою очередь, успешно вырезали ДНК вируса из генома лимфоцитов.

Китайские ученые проводили эксперименты на эмбрионах человека еще до того, как подобные исследования разрешили в Великобритании. В апреле 2016 года генетики сообщили, что они изменили гены зародышей, чтобы сделать их неуязвимыми к ВИЧ. С помощью CRISPR они внесли ген, который встречается у людей, невосприимчивых к инфекции.

Пригодилась система CRISPR и в борьбе с раком. Например, в работе, опубликованной в Nature Biotechnology, показано, что с помощью модифицированного белка Cas9 можно отключать определенные гены и тем самым определять их роль в перерождении нормальных клеток в злокачественные. Если выяснится, что мутация в определенном гене способствует развитию рака, то следующий шаг - исправление дефекта с помощью генетических манипуляций.

CRISPR способен помочь в лечении рака крови - лейкемии. Вместо того чтобы искать донора костного мозга, можно взять образцы тканей кроветворного органа самого пациента, исправить дефективные стволовые клетки, избавив их от роковой мутации, а затем пересадить обратно. Если злокачественные клетки, оставшиеся в больном организме, уничтожить облучением, исправленные клетки получат возможность размножаться и производить здоровые клетки крови.

Ящик Пандоры

Опасна ли система CRISPR? На нынешнем уровне развития нет. Опасения в большей степени связаны с тем, что редактировать геном человека с целью лечения наследственных заболеваний пока еще рано. Технология пока еще сырая. Так, работы китайских ученых были раскритикованы за большое количество разрывов ДНК, возникших не в том месте. Кроме того, только в нескольких из полусотни эмбрионов была произведена правильная замена участка гена.

Если технология редактирования генома и избавит человечество от наследственных заболеваний, рака, вирусов, то это дело будущего, которое, возможно, гораздо дальше, чем думают оптимисты. Что же касается создания улучшенных людей и связанных с этим этических проблем, то это вообще за пределами того, на что способна система CRISPR.

С помощью CRISPR прямо сейчас происходит грандиозный прорыв в генной инженерии: ученые планируют скоро научиться избавлять нас навсегда от любых болезней, с перспективой любых контролируемых мутаций и вечной жизни.

На публикацию этого поста нас натолкнуло видео “CRISPR: редактирование генов изменит все и навсегда”, в котором рассказывается о переднем крае науки в части генной модификации человека: речь идет не просто об избавлении от болезней типа СПИД, рак и многие другие, но и о создании безупречного нового вида людей, людей со сверхспособностями и бессмертии. И это происходит прямо сейчас на наших глазах.

Все эти перспективы открываются благодаря недавнему революционному открытию белка CRISPR–Cas9, но обо всем по порядку.

Раньше считалось, что ДНК в каждой нашей клетке – абсолютно идентичны и содержат нашу точную и неизменную копию – какую клетку бы ни взять, но оказалось, что это не так: ДНК в разных клетках немного разные и они меняются в зависимости от разных обстоятельств.

Открытию белка CRISPR – Cas9 помогли наблюдения за выжившими после атаки вирусов бактериями.

Древнейшая война на земле

Бактерии и вирусы соперничают с начала жизни: вирусы-бактериофаги охотятся на бактерии. В океане они убивают 40% от общего числа бактерий каждый день. Вирус делает это, вставляя свой генетический код в бактерию и использует её в качестве фабрики.

Бактерии пытаются безуспешно сопротивляться, но в большинстве случаев их защитные механизмы оказываются слишком слабыми. Но иногда бактерии выживают. Тогда они могут активировать свою самую эффективную противовирусную систему. Они сохраняют часть ДНК вируса в своём генетическом коде, ДНК-архиве “CRISPR”. Здесь она хранится до необходимого момента.

Когда вирус снова атакует, бактерия создает РНК-копию из ДНК архива и
заряжает секретное оружие – белок Cas9. Этот протеин сканирует бактерию на предмет вмешательства вируса, сравнивая каждую часть найденного ДНК с архивом. Когда находится 100% соответствие, он активируется и отрезает ДНК вируса, делая его бесполезным, таким образом защищая бактерию.

Белок Cas9 сканирует ДНК клетки на предмет внедрения вируса и заменяет испорченную часть здоровым фрагментом.

Что характерно, Cas9 очень точен, словно ДНК хирург. Переворот произошел, когда ученые поняли, что система CRISPR программируема – можно просто дать копию ДНК, которую нужно изменить, и поместить систему в живую клетку.

Помимо точности, дешевизны и простоты использования, CRISPR позволяет включать и выключать гены живых клеток и изучать конкретные последовательности ДНК.
Этот метод также работает с любыми клетками, микроорганизмами, растениями, животными или людьми.

Ученые выяснили, что Cas9 можно программировать на любые замены в любой части ДНК – и это открывает практически безграничные возможности для человечества.

Болезням конец?

В 2015-м ученые использовали CRISPR для удаления вируса ВИЧ из клеток пациентов,
и доказали, что это возможно . Годом позже они провели более амбициозный эксперимент с крысами с вирусом ВИЧ в практически всех их клетках.

Учёные просто ввели CRISPR в их хвосты, и смогли удалить более 50% вируса из клеток по всему телу. Возможно, через несколько десятилетий CRISPR поможет избавиться от ВИЧ и других ретровирусов – вирусов, которые прячутся внутри человеческой ДНК, вроде герпеса. Возможно CRISPR сможет победить нашего худшего врага, рак .

Рак является результатом появления клеток, отказывающихся умирать и продолжающих делиться, попутно прячась от иммунной системы. CRISPR дает нам средство редактировать наши иммунные клетки и делать их лучшими охотниками на раковые клетки.

Возможно через некоторое время лечение от рака будет всего лишь парой уколов с несколькими тысячами ваших собственных клеток, созданных в лаборатории, чтобы вылечить вас навсегда.

Возможно через некоторое время вопрос лечения рака – вопрос пары уколов модифицированных клеток.

Первое клиническое испытание такой терапии на пациентах-людях было одобрено в начале 2016-го в США. Менее чем через месяц китайские ученые объявили, что будут лечить пациентов с раком легких иммунными клетками, модифицированными по этой же технологии, в августе 2016 . Дело быстро набирает обороты.

А еще есть генетические заболевания, тысячи их. Они разнятся от слегка раздражающих до крайне смертельных или приносящих годы страданий. С мощными инструментами вроде CRISPR однажды мы сможем покончить с этим.

Более 3000 генетических заболеваний вызываются единственной заменой в ДНК.
Мы уже создаем модифицированную версию Cas9, которая исправляет такие ошибки и избавляет клетку от заболевания. Через пару десятилетий мы может быть сможем навсегда уничтожить тысячи заболеваний. Однако у всех эти медицинских применений один недостаток – они ограничены одним пациентом и умрут вместе с ним, если мы не используем их на репродуктивных клетках или на ранней стадии развития плода.

CRISPR вероятно будет использоваться куда шире. Например для создания модифицированного человека, спроектированного ребенка. Это принесет плавные но необратимые изменения в человеческом генофонде.

Спроектированные дети

Средства изменения ДНК человеческого плода уже существуют,
но технология находится на раннем этапе развития. Однако, ее применяли уже дважды. В 2015-м и 2016-м эксперименты китайских ученых с человеческими эмбрионами достигли частичного успеха на второй попытке.

Они выявили гигантские трудности в редактировании генов эмбрионов, но множество ученых уже работают над решением этих проблем. Это то же самое, что и компьютеры 70-х: в будущем они станут лучше.

Вне зависимости от ваших взглядов на генную инженерию, она коснётся всех. Модифицированные люди могут изменить геном всего нашего вида, потому что их привитые качества будут переданы их детям, и через поколения медленно распространятся, медленно меняя генофонд человечества. Это начнется постепенно.

Первые спроектированные дети не будут сильно отличаться от нас. Скорее всего, их гены будут изменены для избавления от смертельных наследственных заболеваний.
По мере развития технологий все больше людей начнут думать, что неиспользование генетической модификации неэтично, потому что это обрекает детей
на страдание и смерть, которые можно предотвратить.

Как только первый такой ребенок родится, откроется дверь, которую уже не удастся закрыть. Сначала некоторые черты никто не будет трогать, но по мере роста одобрения технологии и наших знаний о генетическом коде, будет расти будет и соблазн.
Если вы сделаете свое потомство иммунным к болезни Альцгеймера, почему бы вдобавок не дать им улучшенный метаболизм? Почему бы до кучи не наградить их отличным зрением? Как насчет роста или мускул? Пышных волос? Как насчет дара исключительного интеллекта для вашего ребенка?

Огромные перемены придут как результат накопления личных решений миллионов людей.
Это скользкий склон, и модифицированные люди могут стать новой нормой. Пока генная инженерия становится все более привычной, а наши знания улучшаются, мы можем подойти к искоренению главной причины смертности – старения.

2/3 из примерно 150 000 человек, умерших сегодня, умерли по причинам, связанным со старением.

Сегодня считается, что старение вызывается накоплением повреждений в наших клетках
вроде разрывов ДНК или износа систем, ответственных за исправление этих повреждений.
Но есть также и гены, которые напрямую влияют на наше старение.

Генная инженерия и прочая терапия могли бы остановить или замедлить старение. Возможно даже обратить его вспять.

Типичная реакция на возможность вечной жизни (как и любой другой привычной сейчас, но революционной несколько сотен лет назад технологии).

Вечная жизнь и “люди икс”

Мы знаем, что в природе есть животные, которые не стареют. Может, мы могли бы занять у них пару генов. Некоторые ученые считают что однажды старение будет искоренено. Мы все равно будем умирать, но только не в больнице в 90 лет, а через пару тысяч лет, прожитых в окружении наших любимых.

Вызов огромен и, возможно, цель недостижима, но можно допустить, что люди, живущие сегодня, могут оказаться первыми, кто вкусит плоды анти-возрастной терапии. Возможно, нужно всего лишь убедить смышленого миллиардера в необходимости помочь решить эту большую проблему.

Если смотреть на это шире, мы могли бы решить множество задач с помощью специально измененных людей, например которые могли бы лучше справляться с высококалорийной едой, и избавиться от таких недугов цивилизации как ожирение.

Владея модифицированной иммунной системой с перечнем потенциальных угроз,
мы могли бы стать неуязвимыми для большинства заболеваний, преследующих нас сегодня. Ещё позже мы смогли бы создать людей для длительных космических перелетов и для адаптации к различным условиям на других планетах, что было бы крайне полезно для поддержания нашей жизни во враждебной вселенной.

Несколько щепоток соли

Есть несколько главных препятствий, технологических и этических. Многие почувствуют страх перед миром, где мы отсеиваем несовершенных людей, а потомство выбираем на основе того, что считается здоровым.

Но мы уже живем в таком мире. Тесты на десятки генетических заболеваний или осложнений стали нормой для беременных женщин во многих странах. Часто одно подозрение на генетический дефект может привести к прерыванию беременности.
Возьмем для примера синдром Дауна, один из самых распространенных генетических дефектов: в Европе около 90% беременностей с установленным наличием этого отклонения прерываются.

Генетический отбор в действии: уже сейчас синдром Дауна диагностируется на ранней стадии развития эмбриона и 90% беременности с этим диагнозом прерывается.

Решение о прерывании беременности является очень личным, но важно понимать, что мы уже сегодня отбираем людей, основываясь на состоянии здоровья. Нет смысла притворяться, что это изменится, поэтому нам необходимо действовать осторожно и этично, несмотря на растущую свободу выбора благодаря дальнейшему развитию технологий.

Однако, все это перспективы отдаленного будущего. Несмотря на мощность CRISPR, метод не лишен недостатков. Могут случиться ошибки при редактировании, неизвестные ошибки могут произойти в любой части ДНК и остаться незамеченными.

Изменение гена может достичь нужного результата и вылечить от заболевания, но вместе с этим спровоцировать нежелательные изменения. Мы попросту недостаточно знаем о сложных взаимосвязях наших генов, чтобы избежать непредсказуемых последствий.

Работа над точностью и методами наблюдения очень важна в предстоящих клинических испытаниях. И раз уж мы обсудили возможное светлое будущее, также стоит упомянуть и более мрачное видение. Представьте, что может страна вроде Северной Кореи сделать с таким уровнем технологий?

Важно, чтобы технология генной модификации не попала в руки тоталитарным режимам, которые гипотетически могут использовать ее во вред человечеству – например, создать армию генетически модифицированных солдат.

Может она навечно продлить свое правление с помощью принудительной инженерии? Что остановит тоталитарный режим от создания армии модифицированных суперсолдат?

Ведь это в теории возможно. Сценарии вроде этого лежат в далеком будущем, если они вообще возможны, но подтверждение работоспособности концепции такой инженерии уже существует. Технология и правда настолько могущественна.

Подобное может стать поводом для запрета инженерии и связанных с ней исследований, но это определенно было бы ошибкой. Запрет на генную инженерию человека только приведёт науку в области с такими правилами и законами, с которыми нам было бы не по себе. Только участвуя в процессе, мы сможем быть уверены, что исследование ведется с осторожностью, разумом, контролем и прозрачностью.

Мы можем исследовать и внедрять в человека любые генные модификации.

Заключение

Чувствуете беспокойство? Почти в каждом из нас есть какое-то несовершенство. Позволили бы нам существовать в подобном новом мире? Технология несколько устрашает, но нам есть что выиграть, да и генная инженерия может быть очередной ступенью в эволюции разумных видов жизни.

Возможно мы покончим с болезнями, увеличим продолжительность жизни на века и отправимся к звездам. Не стоит мелко мыслить, говоря о такой теме. Каким бы ни было ваше мнение о генной инженерии, будущее наступает несмотря ни на что.

То, что раньше было научной фантастикой, вскоре станет нашей новой реальностью.
Реальностью, полной возможностей и препятствий.

Вы можете также посмотреть непосредственно само видео:

Если бы у вас была возможность уничтожить рак, вы бы сделали это? Избавить мир от ВИЧ-инфекции или истребить вид комаров, переносящих вирус Зика? CRISPR - новый метод редактирования генов, позволяющий ученым вырезать нежелательные фрагменты ДНК с хирургической точностью, способен на это. И именно эта технология может радикально изменить наш привычный мир уже в самом ближайшем будущем.
Сегодня мы поговорим как раз о CRISPR. Данная технология редактирования генов может не только значительно развить сферу медицины, но и избавить нас от известных проблем продовольственного снабжения. Возможности и потенциал CRISPR кажутся бесконечными, поэтому мы решили объединить наиболее интересные из них в одном материале.

Что такое CRISPR

CRISPR (также известный как «CRISPR-Cas9») - уникальный инструмент для редактирования генома. Позволяет генетикам и медицинским исследователям редактировать части генома путем удаления, добавления или изменения последовательных участков ДНК. Более того, CRISPR быстрее, дешевле и точнее, чем все предыдущие известные методы редактирования ДНК и имеет широкий спектр потенциальных применений.

На данный момент технология CRISPR является самым простым, универсальным и точным методом генетической манипуляции. Мир науки потрясен от одного только потенциала CRISPR, и это нисколько не преувеличено.

Как это работает?
Система CRISPR-Cas9 состоит из двух ключевых молекул, которые вводят изменение (мутацию) в ДНК. Это:

  • Фермент, называемый «Cas9» . Данная молекула CRISPR действует как пара «молекулярных ножниц». Cas9 может вырезать нити ДНК в определенном месте в геноме, чтобы затем можно было добавить или удалить фрагменты ДНК.
  • Часть РНК, называемая «гРНК» (гидовая РНК) . гРНК состоит из небольшого фрагмента предварительно разработанной последовательности РНК (длиной около 20 оснований), расположенного в более длинном участке ДНК. Этот участок связывается с ДНК и РНК для «направления» Cas9 в правую часть генома.
Так что же может CRISPR и почему эта технология изменит мир?

Укрепление продовольственной культуры

Методы технологии CRISPR позволяют ученым навсегда забыть о ГМО-продуктах и слабой пищевой культуре, подверженной ошибкам и различным заболеваниям. С помощью CRISPR можно вывести пищевую промышленность на новый уровень - наращивать производство, одновременно избавляя продукты от трифосфатов (пищевой стабилизатор, признанный вредным для здоровья человека). В таком случае также отпадает необходимость в использовании вредных пестицидов - препаратов для борьбы с вредителями растений.

Министерство сельского хозяйства США отрицательно отреагировало на продукты, подверженные редактированию CRISPR. Жители тем временем встали на защиту своих урожаев и выразились против генетически модифицированных продуктов. Тем не менее, CRISPR-продукты - это не ГМО. Посредством этой технологии можно удалять потенциально опасные гены и делать продукты здоровыми, качественными и долговечными.

Уничтожение рака

Редактирование генов человека с помощью CRISPR по-прежнему является очень противоречивым. Однако, эта технология может улучшить иммунотерапию рака и даже вырезать гены, вызывающие раковые клетки, прежде чем они начнут наносить смертельный ущерб человеческому телу.

В 2016 году Национальные институты здравоохранения начали исследование по уничтожению трех различных видов рака на людях через технологию редактирования генов CRISPR. Проект получил поддержку интернет-миллиардера Шона Паркера (Sean Parker) и был возглавлен опытными учеными из Университета Пенсильвании.

Результаты исследования станут известны не скоро, поскольку проект все еще ждет одобрения со стороны FDA (Управление по контролю за качеством пищевых продуктов и лекарственных препаратов).

Избавление от комаров с вирусом Зика

Ученым уже удалось реализовать возможность искоренения комаров вида Aedes Aegypti (желтолихорадочный), которые могут распространять вирус Зика. Технология CRISPR же способна уничтожить целый вид в одном поколении.

Несмотря на то, что CRISPR может уничтожить вредоносный вид комаров прямо сейчас, идея эта является довольно спорной. Существует единственный, но очень существенный аргумент против использования редактирования генома для комаров - это создание непредвиденной экологической катастрофы. Человечество еще не полностью понимает, какую роль играют москиты в окружающей среде, поэтому просто убрать их как вид нельзя. Иначе последствия неизбежны, и самое страшное - никто не знает, что случится.

Второй возможный вариант развития событий - использование CRISPR может привести к ошибке и непреднамеренно создать новый, усовершенствованный вид супер-комаров. Например, они будут абсолютно невосприимчивыми к современным технологиями. Или дефектная ДНК может каким-то образом перейти к другим насекомым и, опять же, вызвать экологическую катастрофу.

Лекарства от всех болезней

Потенциал технологии CRISPR может привести к созданию усовершенствованных лекарственных препаратов со способностью модифицирования клеток в организме. Примерное представление возможностей таких лекарств - лечение практически всех болезней, простых и сложных, редких и унаследованных.

В прошлом году компания Bayer заключила сделку с CRISPR Therapeutics - стартапом команды новаторов, открывших технологию Cas9 Emmanuelle Charpentiere для создания лекарств с использованием этой технологии. Вскоре появились другие фармацевтические компании, открывшие двери для создания эффективнейших лекарств.

Как итог - CRISPR вполне может устроить революцию в фармацевтической промышленности.

Исцеление слепых

В конце прошлой осени ученые опубликовали первое исследование, в котором CRISPR применяется для исцеления слепоты. Инструмент для редактирования генов использовался на крысах для замены некачественной генетики, вызывающей слепоту, с помощью рабочего набора здоровых генов.

Исследование, проведенное в Институте Салк в Калифорнии, привело к частичному восстановлению зрения.

Также в другом исследовании, которое проводилось Колумбийским и Айовским университетами в начале 2016 года, ученые смогли показать, что можно успешно вылечить человека с врожденным генетическим дефектом зрения используя технологию CRISPR.

Таким образом, через редактирование генома человеку можно восстановить зрение. В реальности это звучит как чудо, но это более чем возможно.

Устранение ВИЧ-инфекции

В настоящее время людей со смертельной ВИЧ-инфекцией лечат с помощью токсичной смеси антиретровирусных препаратов. Они подавляют вирус, тем самым не давая ему себя реплицировать и превратиться в полномасштабный СПИД. CRISPR может , что доказало недавнее исследование, о котором мы писали на Трешбоксе.

Исследование с участием мышей показало, что CRISPR можно запрограммировать на уничтожение любого в носителе с невероятной точностью. Речь идет и о возможном удалении первичной ДНК ВИЧ-1 из организма. В конечном счете, если полностью вырезать ДНК вируса, можно остановить его распространение.

Следующим этапом исследования станет повторение процесса на приматах, после чего начнутся испытания на людях. Люди будущего смогут жить без боязни приобретения иммунодефицита.

Удаление генетических заболеваний до рождения

На прошлой неделе ученые из Университета здоровья и науки штата Орегон опубликовали документ, в котором изложили способ успешного использования CRISPR для уничтожения генетически унаследованной сердечной мутации у эмбрионов человека. Проще говоря, еще даже не родившийся ребенок может появиться на свет без унаследованных заболеваний.

Зародышам разрешалось расти в течение нескольких дней, но технология дала положительный результат. Это был первый случай, когда ученые использовали CRISPR на человеческих эмбрионах. Тогда же ученые смогли впервые продемонстрировать, что технология редактирования генома может производить здоровые эмбрионы.

Представьте себе мир, в котором люди рождаются без болезней. CRISPR - ключ к такому будущему.

Заключение

Как вы можете видеть, CRISPR - действительно удивительная технология, способная в корне изменить текущие методы лечения. Несмотря на то, что сейчас на базе этой технологии в основном проводятся только разнообразные исследования и тестирования, невероятные результаты есть уже сейчас. Они опубликованы в сети и доступны для просмотра любому желающему. И они вселяют надежду на лучшее будущее для человечества.