Графический метод решения уравнений с параметрами. Задачи с параметром (графический прием решения) Введение. План решения задач с параметром графическим методом

Графический метод решения уравнений с параметрами. Задачи с параметром (графический прием решения) Введение. План решения задач с параметром графическим методом
Графический метод решения уравнений с параметрами. Задачи с параметром (графический прием решения) Введение. План решения задач с параметром графическим методом

Уравнения с параметрами по праву считаются одними из самых сложных задач в курсе школьной математики. Именно такие задачи и попадают из года в год в список заданий типа B и C на едином государственном экзамене ЕГЭ. Однако среди большого числа уравнений с параметрами есть те, которые с легкостью могут быть решены графическим способом. Рассмотрим этот метод на примере решения нескольких задач.

Найти сумму целых значений числа a, при которых уравнение |x 2 – 2x – 3| = a имеет четыре корня.

Решение.

Чтобы ответить на вопрос задачи, построим на одной координатной плоскости графики функций

y = |x 2 – 2x – 3| и y = a.

График первой функции y = |x 2 – 2x – 3| будет получен из графика параболы y = x 2 – 2x – 3 путем симметричного отображения относительно оси абсцисс той части графика, которая находится ниже оси Ox. Часть графика, находящаяся выше оси абсцисс, останется без изменений.

Проделаем это поэтапно. Графиком функции y = x 2 – 2x – 3 является парабола, ветви которой направлены вверх. Чтобы построить ее график, найдем координаты вершины. Это можно сделать по формуле x 0 = -b/2a. Таким образом, x 0 = 2/2 = 1. Чтобы найти координату вершины параболы по оси ординат, подставим полученное значение для x 0 в уравнение рассматриваемой функции. Получим, что y 0 = 1 – 2 – 3 = -4. Значит, вершина параболы имеет координаты (1; -4).

Далее нужно найти точки пересечения ветвей параболы с осями координат. В точках пересечения ветвей параболы с осью абсцисс значение функции равно нулю. Поэтому решим квадратное уравнение x 2 – 2x – 3 = 0. Его корни и будут искомыми точками. По теореме Виета имеем x 1 = -1, x 2 = 3.

В точках пересечения ветвей параболы с осью ординат значение аргумента равно нулю. Таким образом, точка y = -3 есть точка пересечения ветвей параболы с осью y. Полученный график изображен на рисунке 1.

Чтобы получить график функции y = |x 2 – 2x – 3|, отобразим симметрично относительно оси x часть графика, находящуюся ниже оси абсцисс. Полученный график изображен на рисунке 2.

График функции y = a – это прямая, параллельная оси абсцисс. Он изображен на рисунке 3. С помощью рисунка и находим, что графики имеют четыре общие точки (а уравнение – четыре корня), если a принадлежит интервалу (0; 4).

Целые значения числа a из полученного интервала: 1; 2; 3. Чтобы ответить на вопрос задачи, найдем сумму этих чисел: 1 + 2 + 3 = 6.

Ответ: 6.

Найти среднее арифметическое целых значений числа a, при которых уравнение |x 2 – 4|x| – 1| = a имеет шесть корней.

Начнем с построения графика функции y = |x 2 – 4|x| – 1|. Для этого воспользуемся равенством a 2 = |a| 2 и выделим полный квадрат в подмодульном выражении, написанном в правой части функции:

x 2 – 4|x| – 1 = |x| 2 – 4|x| - 1 = (|x| 2 – 4|x| + 4) – 1 – 4 = (|x |– 2) 2 – 5.

Тогда исходная функция будет иметь вид y = |(|x| – 2) 2 – 5|.

Для построения графика этой функции строим последовательно графики функций:

1) y = (x – 2) 2 – 5 – парабола с вершиной в точке с координатами (2; -5); (Рис. 1).

2) y = (|x| – 2) 2 – 5 – часть построенной в пункте 1 параболы, которая находится справа от оси ординат, симметрично отображается слева от оси Oy; (Рис. 2).

3) y = |(|x| – 2) 2 – 5| – часть построенного в пункте 2 графика, которая находится ниже оси x, отображается симметрично относительно оси абсцисс наверх. (Рис. 3).

Рассмотрим получившиеся рисунки:

Графиком функции y = a является прямая, параллельная оси абсцисс.

С помощью рисунка делаем вывод, что графики функций имеют шесть общих точек (уравнение имеет шесть корней), если a принадлежит интервалу (1; 5).

Это можно видеть на следующем рисунке:

Найдем среднее арифметическое целых значений параметра a:

(2 + 3 + 4)/3 = 3.

Ответ: 3.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Для каждого значения параметра a a решите неравенство | 2 x + a | ≤ x + 2 |2x+a| \leq x+2 .

Сначала решим вспомогательную задачу. Рассмотрим данное неравенство как неравенство с двумя переменными x x и a a и изобразим на координатной плоскости x O a xOa все точки, координаты которых удовлетворяют неравенству.

Если 2 x + a ≥ 0 2x+a \geq 0 (т. е. на прямой a = - 2 x a=-2x и выше), то получаем 2 x + a ≤ x + 2 ⇔ a ≤ 2 - x 2x+a \leq x+2 \Leftrightarrow a \leq 2-x .

Множество изображено на рис. 11.

Теперь решим с помощью этого чертежа исходную задачу. Если мы фиксируем a a , то получаем горизонтальную прямую a = const a = \textrm{const} . Чтобы определить значения x x ,надо найти абсциссы точек пересечения этой прямой с множеством решения неравенства. Например, если a = 8 a=8 , то неравенство не имеет решений (прямая не пересекает множество); если a = 1 a=1 , то решениями являются все x x из отрезка [ - 1 ; 1 ] [-1;1] и т. д. Итак, возможны три варианта.

1) Если $$a>4$$, то решений нет.

2) Если a = 4 a=4 , то x = - 2 x=-2 .

ОТВЕТ

при $$a

при a = 4 a=4 - x = - 2 x=-2 ;

при $$a>4$$ - решений нет.

Найдите все значения параметра a a , при которых неравенство $$3-|x-a| > x^2$$ а) имеет хотя бы одно решение; б) имеет хотя бы одно положительное решение.

Перепишем неравенство в виде $$3-x^2 > |x-a}$$. Построим графики левой и правой частей на плоскости x O y xOy . График левой части - это парабола с ветвями вниз с вершиной в точке (0 ; 3) (0;3) . График пересекает ось абсцисс в точках (± 3 ; 0) (\pm \sqrt{3};0) . График правой части - это угол с вершиной на оси абсцисс, стороны которого направлены вверх под углом 45 ° 45^{\circ} к осям координат. Абсцисса вершины - точка x = a x=a .

а) Для того, чтобы неравенство имело хотя бы одно решение, необходимо и достаточно, чтобы хотя бы в одной точке парабола оказалась выше графика y = | x - a | y=|x-a| . Это выполнено, если вершина уголка лежит между точками A A и B B оси абсцисс (см. рис. 12 - точки A A и B B не включаются). Таким образом, надо определить, при каком положении вершины одна из ветвей уголка касается параболы.

Рассмотрим случай, когда вершина уголка находится в точке A A . Тогда правая ветвь уголка касается параболы. Её угловой коэффициент равен единице. Значит, производная функции y = 3 - x 2 y = 3-x^2 в точке касания равна 1 1 , т. е. - 2 x = 1 -2x=1 , откуда x = - 1 2 x = -\frac{1}{2} . Тогда ордината точки касания равна y = 3 - (1 2) 2 = 11 4 y = 3 - (\frac{1}{2})^2 = \frac{11}{4} . Уравнение прямой, имеющей угловой коэффициент k = 1 k=1 и проходящей через точку с координатами (- 1 2 ; 11 4) (-\frac{1}{2}; \frac{11}{4}) , следующее * {\!}^* : y - 11 4 = 1 · (x + 1 2) y - \frac{11}{4} = 1 \cdot (x+ \frac{1}{2}) , откуда y = x + 13 4 y = x + \frac{13}{4} .

Это уравнение правой ветви уголка. Абсцисса точки пересечения с осью x x равна - 13 4 -\frac{13}{4} , т. е. точка A A имеет координаты A (- 13 4 ; 0) A(-\frac{13}{4}; 0) . Из соображений симметрии точка B B , имеет координаты: B (13 4 ; 0) B(\frac{13}{4}; 0) .

Отсюда получаем, что a ∈ (- 13 4 ; 13 4) a\in (-\frac{13}{4}; \frac{13}{4}) .

б) Неравенство имеет положительные решения, если вершина уголка находится между точками F F и B B (см. рис. 13). Найти положение точки F F несложно: если вершина уголка находится в точке F F , то его правая ветвь (прямая, задаваемая уравнением y = x - a y = x-a проходит через точку (0 ; 3) (0;3) . Отсюда находим, что a = - 3 a=-3 и точка F F имеет координаты (- 3 ; 0) (-3;0) . Следовательно, a ∈ (- 3 ; 13 4) a \in (-3; \frac{13}{4}) .

ОТВЕТ

а) a ∈ (- 13 4 ; 13 4) ,       a\in (-\frac{13}{4}; \frac{13}{4}),\:\:\: б) a ∈ (- 3 ; 13 4) a \in (-3; \frac{13}{4}) .

* {\!}^* Полезные формулы:

­ - \-- прямая, проходящая через точку (x 0 ; y 0) (x_0;y_0) и имеющая угловой коэффициент k k , задаётся уравнением y - y 0 = k (x - x 0) y-y_0=k(x-x_0) ;

­ - \-- угловой коэффициент прямой, проходящей через точки (x 0 ; y 0) (x_0;y_0) и (x 1 ; y 1) (x_1;y_1) , где x 0 ≠ x 1 x_0 \neq x_1 , вычисляется по формуле k = y 1 - y 0 x 1 - x 0 k = \dfrac{y_1-y_0}{x_1-x_0} .

Замечание. Если надо найти значение параметра, при котором касаются прямая y = k x + l y=kx+l и парабола y = a x 2 + b x + c y = ax^2+bx+c , то можно записать условие, что уравнение k x + l = a x 2 + b x + c kx+l = ax^2+bx+c имеет ровно одно решение.Тогда другой способ найти значения параметра a a , при котором вершина уголка находится в точке А А, следующий: уравнение x - a = 3 - x 2 x-a = 3-x^2 имеет ровно одно решение ⇔ D = 1 + 4 (a + 3) = 0 ⇔ a = - 13 4 \Leftrightarrow D = 1 + 4(a+3) = 0 \Leftrightarrow a = -\dfrac{13}{4} .

Обратите внимание, что таким образом нельзя записать условие касания прямой с произвольным графиком. Например, прямая y = 3 x - 2 y = 3x - 2 касается кубической параболы y = x 3 y=x^3 в точке (1 ; 1) (1;1) и пересекает её в точке (- 2 ; - 8) (-2;-8) , т. е. уравнение x 3 = 3 x + 2 x^3 = 3x+2 имеет два решения.

Найдите все значения параметра a a , при каждом из которых уравнение (a + 1 - | x + 2 |) (x 2 + 4 x + 1 - a) = 0 (a+1-|x+2|)(x^2+4x+1-a) = 0 имеет а) ровно два различных корня; б) ровно три различных корня.

Поступим так же, как и в примере 25. Изобразим множество решений этого уравнения на плоскости x O a xOa . Оно равносильно совокупности двух уравнений:

1) a = | x + 2 | - 1 a = |x+2| -1 - это угол с ветвями вверх и вершиной в точке (- 2 ; - 1) (-2;-1) .

2) a = x 2 + 4 x + 1 a = x^2 + 4x + 1 - это парабола с ветвями вверх и вершиной в точке (- 2 ; - 3) (-2;-3) . См. рис. 14.

Находим точки пересечения двух графиков. Правая ветвь угла задаётся уравнением y = x + 1 y=x+1 . Решая уравнение

x + 1 = x 2 + 4 x + 1 x+1 = x^2+4x+1

находим, что x = 0 x=0 или x = - 3 x=-3 . Подходит только значение x = 0 x=0 (т. к. для правой ветви x + 2 ≥ 0 x+2 \geq 0). Тогда a = 1 a=1 . Аналогично находим координаты второй точки пересечения - (- 4 ; 1) (-4;1) .

Возвращаемся к исходной задаче. Уравнение имеет ровно два решения при тех a a , при которых горизонтальная прямая a = const a=\textrm{const} пересекает множество решений уравнения в двух точках. По графику видим, что это выполняется при a ∈ (- 3 ; - 1) ∪ { 1 } a\in (-3;-1)\bigcup\{1\} . Ровно три решения будут в случае трёх точек пересечения, что возможно только при a = - 1 a=-1 .

ОТВЕТ

а) a ∈ (- 3 ; - 1) ∪ { 1 } ;       a\in (-3;-1)\bigcup\{1\};\:\:\: б) a = - 1 a=-1 .

$$\begin{cases} x^2-x-a \leq 0,\\ x^2+2x-6a \leq 0 \end{cases} $$

имеет ровно одно решение.

Изобразим решения системы неравенств на плоскости x O a xOa . Перепишем систему в виде $$ \begin{cases} a \leq -x^2+x,\\ a \geq \dfrac{x^2+6x}{6} .\end{cases} $$

Первому неравенству удовлетворяют точки, лежащие на параболе a = - x 2 + x a = -x^2+x и ниже неё, а второму - точки, лежащие на параболе a = x 2 + 6 x 6 a = \dfrac{x^2+6x}{6} и выше неё. Находим координаты вершин парабол и точек их пересечения, а затем строим график. Вершина первой параболы - (1 2 ; 1 4) (\dfrac{1}{2};\dfrac{1}{4}) , второй параболы - (- 1 ; - 1 6) (-1; -\dfrac{1}{6}) , точки пересечения - (0 ; 0) (0;0) и (4 7 ; 12 49) (\dfrac{4}{7}; \dfrac{12}{49}) . Множество точек, удовлетворяющих системе, изображено на рис. 15. Видно, что горизонтальная прямая a = const a=\textrm{const} имеет с этим множеством ровно одну общую точку (а значит, система имеет ровно одно решение) в случаях a = 0 a=0 и a = 1 4 a=\dfrac{1}{4} .

ОТВЕТ

A = 0 ,   a = 1 4 a=0,\: a=\dfrac{1}{4}

Найдите наименьшее значение параметра a a , при каждом из которых система

$$\begin{cases} x^2+y^2 + 3a^2 = 2y + 2\sqrt{3}ax,\\ \sqrt{3}|x|-y=4 \end{cases} $$

имеет единственное решение.

Преобразуем первое уравнение, выделяя полные квадраты :

(x 2 - 2 3 a x + 3 a 2) + (y 2 - 2 y + 1) = 1 ⇔ (x - a 3) 2 + (y - 1) 2 = 1 .       18 (x^2- 2\sqrt{3}ax+3a^2)+(y^2-2y+1)=1 \Leftrightarrow (x-a\sqrt{3})^2+(y-1)^2=1. \:\:\:\left(18\right)

В отличие от предыдущих задач здесь лучше изобразить чертёж на плоскости x O y xOy (чертёж в плоскости “переменная - параметр” обычно используется для задач с одной переменной и одним параметром - в результате получается множество на плоскости. В данной задаче мы имеем дело с двумя переменными и параметром. Изобразить множество точек (x ; y ; a) (x;y;a) в трёхмерном пространстве - это трудная задача; к тому же, такой чертёж вряд ли получится наглядным). Уравнение (18) задаёт окружность с центром (a 3 ; 1) (a\sqrt{3};1) радиуса 1. Центр этой окружности в зависимости от значения a a может находиться в любой точке прямой y = 1 y=1 .

Второе уравнение системы y = 3 | x | - 4 y = \sqrt{3}|x|-4 задаёт угол со сторонами вверх под углом 60 ° 60^{\circ} к оси абсцисс(угловой коэффициент прямой - это тангенс угла наклона tg 60 ° = 3 \textrm{tg}{60^{\circ}} = \sqrt{3}), с вершиной в точке (0 ; - 4) (0;-4) .

Данная система уравнений имеет ровно одно решение, если окружность касается одной из ветвей уголка. Это возможно в четырёх случаях (рис. 16): центр окружности может находиться в одной из точек A A , B B , C C , D D . Поскольку нам надо найти наименьшее значение параметра a a , нас интересует абсцисса точки D D . Рассмотрим прямоугольный треугольник D H M DHM . Расстояние от точки D D до прямой H M HM равно радиусу окружности, поэтому D H = 1 DH=1 . Значит, D M = D H sin 60 ° = 2 3 DM=\dfrac{DH}{\textrm{sin}{60^{\circ}}} = \dfrac{2}{\sqrt{3}} . Координаты точки M M находятся как координаты точки пересечения двух прямых y = 1 y=1 и y = - 3 x - 4 y=-\sqrt{3}x-4 (левая сторона угла).

Получаем M (- 5 3) M(-\dfrac{5}{\sqrt{3}}) . Тогда абсцисса точки D D равна - 5 3 - 2 3 = - 7 3 -\dfrac{5}{\sqrt{3}}-\dfrac{2}{\sqrt{3}}=-\dfrac{7}{\sqrt{3}} .

Поскольку абсцисса центра окружности равна a 3 a\sqrt{3} , отсюда следует, что a = - 7 3 a=-\dfrac{7}{3} .

ОТВЕТ

A = - 7 3 a=-\dfrac{7}{3}

Найдите все значения параметра a a , при каждом из которых система

$$\begin{cases} |4x+3y| \leq 12a,\\ x^2+y^2 \leq 14ax +6ay -57a^2+16a+64 \end{cases} $$

имеет ровно одно решение.

Изобразим множества решений каждого из неравенств на плоскости x O y xOy .

Во втором неравенстве выделим полные квадраты:

x 2 - 14 a x + 49 + y 2 - 6 a y + 9 a 2 ≤ a 2 + 16 a + 64 ⇔ (x - 7 a) 2 + (y - 3 a) 2 ≤ (a + 8) 2         (19) x^2-14ax+49 + y^2-6ay + 9a^2 \leq a^2 + 16a + 64 \Leftrightarrow (x-7a)^2+(y-3a)^2 \leq (a+8)^2 \:\:\:\: (19)

При a + 8 = 0 a+8=0 (a = - 8 a=-8) неравенство (19) задаёт точку с координатами (7 a ; 3 a) (7a;3a) , т. е. (- 56 ; - 24) (-56;-24) . При всех остальных значениях a a (19) задаёт круг с центром в точке (7 a ; 3 a) (7a;3a) радиуса | a + 8 | |a+8| .

Рассмотрим первое неравенство.
1) При отрицательных a a оно не имеет решений. Значит, не имеет решений и система.

2) Если a = 0 a=0 , то получаем прямую 4 x + 3 y = 0 4x+3y=0 . Из второго неравенства при этом получается круг с центром (0 ; 0) (0; 0) радиуса 8. Очевидно, выходит более одного решения.

3) Если $$a>0$$, то данное неравенство равносильно двойному неравенству - 12 a ≤ 4 x + 3 y ≤ 12 a -12a \leq 4x+3y \leq 12a . Оно задаёт полосу между двумя прямыми y = ± 4 a - 4 x 3 y=\pm 4a -\dfrac{4x}{3} , каждая из которых параллельна прямой 4 x + 3 y = 0 4x+3y=0 (рис. 17).

Поскольку мы рассматриваем $$a>0$$, центр круга расположен в первой четверти на прямой y = 3 x 7 y = \dfrac{3x}{7} . Действительно, координаты центра - это x = 7 a x=7a , y = 3 a y=3a ; выражая a a и приравнивая, получаем x 7 = y 3 \dfrac{x}{7}=\dfrac{y}{3} , откуда y = 3 x 7 y = \dfrac{3x}{7} . Для того, чтобы система имела ровно одно решение, необходимо и достаточно, чтобы круг касался прямой a 2 a_2 . Это происходит, когда радиус окружности равен расстоянию от центра окружности до прямой a 2 a_2 . По формуле расстояния от точки до прямой * {\!}^{*} получаем, что расстояние от точки (7 a ; 3 a) (7a;3a) до прямой 4 x + 3 y - 12 a = 0 4x+3y-12a=0 равно | 4 · 7 a + 3 · 3 a - 12 a | 4 2 + 3 2 = 5 a \dfrac{|4\cdot 7a + 3\cdot 3a -12a|}{\sqrt{4^2+3^2}} = 5\left|a\right| . Приравнивая к радиусу круга, получаем 5 a = | a + 8 | 5{a} = |a+8| . Так как $$a>0$$, опускаем модули и находим, что a = 2 a=2 .

ОТВЕТ

A = 2 a=2

* {\!}^{*} Пусть даны точка M (x 0 ; y 0) M (x_0;y_0) и прямая l l , заданная уравнением a x + b y + c = 0 ax+by+c=0 . Тогда расстояние от точки M M до прямой l l определяется формулой ρ = | a x 0 + b x 0 + c | a 2 + b 2 \rho = \dfrac{|ax_0+bx_0+c|}{\sqrt{a^2+b^2}} .

При каких значениях параметра a a система

$$\begin{cases} |x|+|y|=1,\\ |x+a|+|y+a|=1 \end{cases}$$ не имеет решений?

Первое уравнение системы задаёт на плоскости x O y xOy квадрат A B C D ABCD (чтобы его построить, рассмотрим x ≥ 0 x\geq 0 и y ≥ 0 y\geq 0 . Тогда уравнение принимает вид x + y = 1 x+y=1 . Получаем отрезок - часть прямой x + y = 1 x+y=1 , лежащую в первой четверти. Далее отражаем этот отрезок относительно оси O x Ox , а затем полученное множество отражаем относительно оси O y Oy)(см. рис. 18). Второе уравнение задаёт квадрат P Q R S PQRS , равный квадрату A B C D ABCD , но с центром в точке (- a ; - a) (-a;-a) . На рис. 18 для примера изображён этот квадрат для a = - 2 a=-2 . Система не имеет решений, если эти два квадрата не пересекаются.

Несложно видеть, что если отрезки P Q PQ и B C BC совпадают, то центр второго квадрата находится в точке (1 ; 1) (1;1) . Нам подойдут те значения a a , при которых центр расположен “выше” и “правее”, т. е. $$a1$$.

ОТВЕТ

A ∈ (- ∞ ; - 1) ∪ (1 ; + ∞) a\in (-\infty;-1)\bigcup(1;+\infty) .

Найдите все значения параметра b b , при которых система

$$\begin{cases} y=|b-x^2|,\\ y=a(x-b) \end{cases} $$

имеет хотя бы одно решение при любом значении a a .

Рассмотрим несколько случаев.

1) Если $$b2) Если b = 0 b=0 , то система принимает вид $$\begin{cases} y=x^2,\\ y=ax .\end{cases} $$

При любом a a пара чисел (0 ; 0) (0;0) является решением этой системы, следовательно, b = 0 b=0 подходит.

3) Зафиксируем некоторое $$b>0$$. Первому уравнению удовлетворяет множество точек, полученное из параболы y = x 2 - b y=x^2-b отражением части этой параболы относительно оси O x Ox (см. рис. 19а, б). Второе уравнение задаёт семейство прямых(подставляя различные значения a a , можно получить всевозможные прямые, проходящие через точку (b ; 0) (b;0) , кроме вертикальной), проходящих через точку (b ; 0) (b;0) . Если точка (b ; 0) (b;0) лежит на отрезке [ - b ; b ] [-\sqrt{b};\sqrt{b}] . оси абсцисс, то прямая пересекает график первой функции при любом угловом коэффициенте (рис. 19а). Иначе (рис. 19б) в любом случае найдётся прямая, не пересекающая данный график. Решая неравенство - b ≤ b ≤ b -\sqrt{b}\leq b \leq \sqrt{b} и учитывая, что $$b>0$$, получаем, что b ∈ (0 ; 1 ] b \in (0;1] .

Объединяем результаты: $$b \in $$.

ОТВЕТ

$$b \in $$

Найдите все значения a a , при каждом из которых функция f (x) = x 2 - | x - a 2 | - 3 x f(x) = x^2-|x-a^2|-3x имеет хотя бы одну точку максимума.

Раскрывая модуль, получаем, что

$$f(x) = \begin{cases} x^2-4x+a^2, \:\:\: x\geq a^2 ,\\ x^2-2x-a^2, \:\:\: x\leq a^2 . \end{cases} $$

На каждом из двух промежутков графиком функции y = f (x) y=f(x) является парабола с ветвями вверх.

Поскольку параболы с ветвями вверх не могут иметь точек максимума, единственная возможность заключается в том, что точкой максимума является граничная точка этих промежутков - точка x = a 2 x=a^2 . В этой точке будет максимум, если вершина параболы y = x 2 - 4 x + a 2 y=x^2-4x+a^2 попадёт на промежуток $$x>a^2$$, а вершина параболы y = x 2 - 2 x - a 2 y=x^2-2x-a^2 - на промежуток $$x\lt a^2$$ (см. рис. 20). Это условие задается неравенствами и $$2 \gt a^2$$ и $$1 \lt a^2$$, решая которые, находим что a ∈ (- 2 ; 1) ∪ (1 ; 2) a\in (-\sqrt{2};1)\bigcup(1;\sqrt{2}) .

ОТВЕТ

A ∈ (- 2 ; 1) ∪ (1 ; 2) a\in (-\sqrt{2};1)\bigcup(1;\sqrt{2})

Найдите все значения a a , при каждом из которых общие решения неравенств

y + 2 x ≥ a y+2x \geq a и y - x ≥ 2 a                 (20) y-x \geq 2a \:\:\:\:\:\:\:\: (20)

являются решениями неравенства

$$2y-x>a+3 \:\:\:\:\:\:\:\:\: (21)$$

Чтобы сориентироваться в ситуации, иногда бывает полезным рассмотреть какое-нибудь одно значение параметра. Сделаем чертёж, например, для a = 0 a=0 . Неравенствам (20)(фактически мы имеем дело с системой неравенств (20)) удовлетворяют точки угла B A C BAC (см. рис. 21) - точки, каждая из которых лежит выше обеих прямых y = - 2 x y=-2x и y = x y=x (или на этих прямых). Неравенству (21) удовлетворяют точки, лежащие выше прямой y = 1 2 x + 3 2 y = \dfrac{1}{2}x + \dfrac{3}{2} . Видно, что при a = 0 a=0 условие задачи не выполняется.

Что изменится, если мы возьмём другое значение параметра a a ? Каждая из прямых переместится и перейдёт в параллельную самой себе прямую, так как угловые коэффициенты прямых не зависят от a a . Чтобы выполнялось условие задачи, нужно, чтобы весь угол B A C BAC лежал выше прямой l l . Так как угловые коэффициенты прямых A B AB и A C AC по модулю больше углового коэффициента прямой l l , необходимо и достаточно, чтобы вершина угла лежала выше прямой l l .

Решая систему уравнений

$$\begin{cases} y+2x=a,\\ y-x=2a, \end{cases}$$

находим координаты точки A (- a 3 ; 5 a 3) A(-\dfrac{a}{3};\dfrac{5a}{3}) . Они должны удовлетворять неравенству (21), поэтому $$\dfrac{10a}{3}+\dfrac{a}{3} > a+3$$, откуда $$a>\dfrac{9}{8}$$.

ОТВЕТ

$$a>\dfrac{9}{8}$$

Уравнения с параметрами:графический метод решения

8-9 классы

В статье рассматривается графический метод решения некоторых уравнений с параметрами, который весьма эффективен, когда нужно установить, сколько корней имеет уравнение в зависимости от параметра a .

Задача 1. Сколько корней имеет уравнение | | x | – 2 | = a в зависимости от параметра a ?

Решение. В системе координат (x; y) построим графики функций y = | | x | – 2 | и y = a . График функции y = | | x | – 2 | изображен на рисунке.

Графиком функции y = a является прямая, параллельная оси Ox или с ней совпадающая (при a = 0).

Из чертежа видно, что:

Если a = 0, то прямая y = a совпадает с осью Ox и имеет с графиком функции y = | | x | – 2 | две общие точки; значит, исходное уравнение имеет два корня (в данном случае корни можно найти: x 1,2 = д 2).
Если 0 < a < 2, то прямая y = a имеет с графиком функции y = | | x | – 2 | четыре общие точки и, следовательно, исходное уравнение имеет четыре корня.
Если a = 2, то прямая y = 2 имеет с графиком функции три общие точки. Тогда исходное уравнение имеет три корня.
Если a > 2, то прямая y = a будет иметь с графиком исходной функции две точки, то есть данное уравнение будет иметь два корня.

если a < 0, то корней нет;
если a = 0, a > 2, то два корня;
если a = 2, то три корня;
если 0 < a < 2, то четыре корня.

Задача 2. Сколько корней имеет уравнение | x 2 – 2| x | – 3 | = a в зависимости от параметра a ?

Решение. В системе координат (x; y) построим графики функций y = | x 2 – 2| x | – 3 | и y = a .

График функции y = | x 2 – 2| x | – 3 | изображен на рисунке. Графиком функции y = a является прямая, параллельная Ox или с ней совпадающая (когда a = 0).

Из чертежа видно:

Если a = 0, то прямая y = a совпадает с осью Ox и имеет с графиком функции y = | x2 – 2| x | – 3 | две общие точки, а также прямая y = a будет иметь с графиком функции y = | x 2 – 2| x | – 3 | две общие точки при a > 4. Значит, при a = 0 и a > 4 исходное уравнение имеет два корня.
Если 0 < a < 3, то прямая y = a имеет с графиком функции y = | x 2 – 2| x | – 3 | четыре общие точки, а также прямая y=a будет иметь с графиком построенной функции четыре общие точки при a = 4. Значит, при 0 < a < 3, a = 4 исходное уравнение имеет четыре корня.
Если a = 3, то прямая y = a пересекает график функции в пяти точках; следовательно, уравнение имеет пять корней.
Если 3 < a < 4, прямая y = a пересекает график построенной функции в шести точках; значит, при этих значениях параметра исходное уравнение имеет шесть корней.
Если a < 0, уравнение корней не имеет, так как прямая y = a не пересекает график функции y = | x 2 – 2| x | – 3 |.

если a < 0, то корней нет;
если a = 0, a > 4, то два корня;
если 0 < a < 3, a = 4, то четыре корня;
если a = 3, то пять корней;
если 3 < a < 4, то шесть корней.

Задача 3. Сколько корней имеет уравнение

в зависимости от параметра a ?

Решение. Построим в системе координат (x; y) график функции но сначала представим ее в виде:

Прямые x = 1, y = 1 являются асимптотами графика функции. График функции y = | x | + a получается из графика функции y = | x | смещением на a единиц по оси Oy.

Графики функций пересекаются в одной точке при a > – 1; значит, уравнение (1) при этих значениях параметра имеет одно решение.

При a = – 1, a = – 2 графики пересекаются в двух точках; значит, при этих значениях параметра уравнение (1) имеет два корня.
При – 2 < a < – 1, a < – 2 графики пересекаются в трех точках; значит, уравнение (1) при этих значениях параметра имеет три решения.

если a > – 1, то одно решение;
если a = – 1, a = – 2, то два решения;
если – 2 < a < – 1, a < – 1, то три решения.

Замечание. При решении уравнения (1) задачи 3 особо следует обратить внимание на случай, когда a = – 2, так как точка (– 1; – 1) не принадлежит графику функции но принадлежит графику функции y = | x | + a .

Перейдем к решению другой задачи.

Задача 4. Сколько корней имеет уравнение

x + 2 = a | x – 1 | (2)

в зависимости от параметра a ?

Решение. Заметим, что x = 1 не является корнем данного уравнения, так как равенство 3 = a · 0 не может быть верным ни при каком значении параметра a . Разделим обе части уравнения на | x – 1 |(| x – 1 | № 0), тогда уравнение (2) примет вид В системе координат xOy построим график функции

График этой функции изображен на рисунке. Графиком функции y = a является прямая, параллельная оси Ox или с ней совпадающая (при a = 0).

если a Ј – 1, то корней нет;
если – 1 < a Ј 1, то один корень;
если a > 1, то два корня.

Рассмотрим наиболее сложное уравнение.

Задача 5. При каких значениях параметра a уравнение

a x 2 + | x – 1 | = 0 (3)

имеет три решения?

Решение. 1. Контрольным значением параметра для данного уравнения будет число a = 0, при котором уравнение (3) примет вид 0 + | x – 1 | = 0, откуда x = 1. Следовательно, при a = 0 уравнение (3) имеет один корень, что не удовлетворяет условию задачи.

2. Рассмотрим случай, когда a № 0.

Перепишем уравнение (3) в следующем виде: a x 2 = – | x – 1 |. Заметим, что уравнение будет иметь решения только при a < 0.

В системе координат xOy построим графики функций y = | x – 1 | и y = a x 2 . График функции y = | x – 1 | изображен на рисунке. Графиком функции y = a x 2 является парабола, ветви которой направлены вниз, так как a < 0. Вершина параболы - точка (0; 0).

Уравнение (3) будет иметь три решения только тогда, когда прямая y = – x + 1 будет касательной к графику функции y=a x 2 .

Пусть x 0 - абсцисса точки касания прямой y = – x + 1 с параболой y = a x 2 . Уравнение касательной имеет вид

y = y(x 0) + y "(x 0)(x – x 0).

Запишем условия касания:

Данное уравнение можно решить без использования понятия производной.

Рассмотрим другой способ. Воспользуемся тем, что если прямая y = kx + b имеет единственную общую точку с параболой y = a x 2 + px + q, то уравнение a x 2 + px + q = kx + b должно иметь единственное решение, то есть его дискриминант равен нулю. В нашем случае имеем уравнение a x 2 = – x + 1 (a № 0). Дискриминант уравнения

Задачи для самостоятельного решения

6. Сколько корней имеет уравнение в зависимости от параметра a ?

1) | | x | – 3 | = a ;
2) | x + 1 | + | x + 2 | = a ;
3) | x 2 – 4| x | + 3 | = a ;
4) | x 2 – 6| x | + 5 | = a .

1) если a <0, то корней нет; если a =0, a >3, то два корня; если a =3, то три корня; если 0<a <3, то четыре корня;
2) если a <1, то корней нет; если a =1, то бесконечное множество решений из отрезка [– 2; – 1]; если a > 1, то два решения;
3) если a <0, то корней нет; если a =0, a <3, то четыре корня; если 0<a <1, то восемь корней; если a =1, то шесть корней; если a =3, то три решения; если a >3, то два решения;
4) если a <0, то корней нет; если a =0, 4<a <5, то четыре корня; если 0<a < 4, то восемь корней; если a =4, то шесть корней; если a =5, то три корня; если a >5, то два корня.

7. Сколько корней имеет уравнение | x + 1 | = a (x – 1) в зависимости от параметра a ?

Указание. Так как x = 1 не является корнем уравнения, то данное уравнение можно привести к виду .

Ответ: если a Ј –1, a > 1, a =0, то один корень; если – 1<a <0, то два корня; если 0<a Ј 1, то корней нет.

8. Сколько корней имеет уравнение x + 1 = a | x – 1 |в зависимости от параметра a ?

Построить график (см. рисунок).

Ответ: если a Ј –1, то корней нет; если – 1<a Ј 1, то один корень; если a >1, то два корня.

9. Сколько корней имеет уравнение

2| x | – 1 = a(x – 1)

в зависимости от параметра a ?

Указание. Привести уравнение к виду

Ответ: если a Ј –2, a >2, a =1, то один корень; если –2<a <1, то два корня; если 1<a Ј 2, то корней нет.

10. Сколько корней имеет уравнение

в зависимости от параметра a ?

Ответ: если a Ј 0, a і 2, то один корень; если 0<a <2, то два корня.

11. При каких значениях параметра a уравнение

x 2 + a | x – 2 | = 0

имеет три решения?

Указание. Привести уравнение к виду x 2 = – a | x – 2 |.

Ответ: при a Ј –8.

12. При каких значениях параметра a уравнение

a x 2 + | x + 1 | = 0

имеет три решения?

Указание. Воспользоваться задачей 5. Данное уравнение имеет три решения только в том случае, когда уравнение a x 2 + x + 1 = 0 имеет одно решение, причем случай a = 0 не удовлетворяет условию задачи, то есть остается случай, когда

13. Сколько корней имеет уравнение

x | x – 2 | = 1 – a

в зависимости от параметра a ?

Указание. Привести уравнение к виду –x |x – 2| + 1 = a

в зависимости от параметра a ?

Указание. Построить графики левой и правой частей данного уравнения.

Ответ: если a <0, a >2, то два корня; если 0Ј a Ј 2, то один корень.

16. Сколько корней имеет уравнение

в зависимости от параметра a ?

Указание. Построить графики левой и правой частей данного уравнения. Для построения графика функции найдем промежутки знакопостоянства выражений x + 2 и x:

Ответ: если a >– 1, то одно решение; если a = – 1, то два решения; если – 3<a <–1, то четыре решения; если a Ј –3, то три решения.

Уравнения с параметрами по праву считаются одними из самых сложных задач в курсе школьной математики. Именно такие задачи и попадают из года в год в список заданий типа B и C на едином государственном экзамене ЕГЭ. Однако среди большого числа уравнений с параметрами есть те, которые с легкостью могут быть решены графическим способом. Рассмотрим этот метод на примере решения нескольких задач.

Найти сумму целых значений числа a, при которых уравнение |x 2 – 2x – 3| = a имеет четыре корня.

Решение.

Чтобы ответить на вопрос задачи, построим на одной координатной плоскости графики функций

y = |x 2 – 2x – 3| и y = a.

График первой функции y = |x 2 – 2x – 3| будет получен из графика параболы y = x 2 – 2x – 3 путем симметричного отображения относительно оси абсцисс той части графика, которая находится ниже оси Ox. Часть графика, находящаяся выше оси абсцисс, останется без изменений.

Проделаем это поэтапно. Графиком функции y = x 2 – 2x – 3 является парабола, ветви которой направлены вверх. Чтобы построить ее график, найдем координаты вершины. Это можно сделать по формуле x 0 = -b/2a. Таким образом, x 0 = 2/2 = 1. Чтобы найти координату вершины параболы по оси ординат, подставим полученное значение для x 0 в уравнение рассматриваемой функции. Получим, что y 0 = 1 – 2 – 3 = -4. Значит, вершина параболы имеет координаты (1; -4).

Далее нужно найти точки пересечения ветвей параболы с осями координат. В точках пересечения ветвей параболы с осью абсцисс значение функции равно нулю. Поэтому решим квадратное уравнение x 2 – 2x – 3 = 0. Его корни и будут искомыми точками. По теореме Виета имеем x 1 = -1, x 2 = 3.

В точках пересечения ветвей параболы с осью ординат значение аргумента равно нулю. Таким образом, точка y = -3 есть точка пересечения ветвей параболы с осью y. Полученный график изображен на рисунке 1.

Чтобы получить график функции y = |x 2 – 2x – 3|, отобразим симметрично относительно оси x часть графика, находящуюся ниже оси абсцисс. Полученный график изображен на рисунке 2.

График функции y = a – это прямая, параллельная оси абсцисс. Он изображен на рисунке 3. С помощью рисунка и находим, что графики имеют четыре общие точки (а уравнение – четыре корня), если a принадлежит интервалу (0; 4).

Целые значения числа a из полученного интервала: 1; 2; 3. Чтобы ответить на вопрос задачи, найдем сумму этих чисел: 1 + 2 + 3 = 6.

Ответ: 6.

Найти среднее арифметическое целых значений числа a, при которых уравнение |x 2 – 4|x| – 1| = a имеет шесть корней.

Начнем с построения графика функции y = |x 2 – 4|x| – 1|. Для этого воспользуемся равенством a 2 = |a| 2 и выделим полный квадрат в подмодульном выражении, написанном в правой части функции:

x 2 – 4|x| – 1 = |x| 2 – 4|x| - 1 = (|x| 2 – 4|x| + 4) – 1 – 4 = (|x |– 2) 2 – 5.

Тогда исходная функция будет иметь вид y = |(|x| – 2) 2 – 5|.

Для построения графика этой функции строим последовательно графики функций:

1) y = (x – 2) 2 – 5 – парабола с вершиной в точке с координатами (2; -5); (Рис. 1).

2) y = (|x| – 2) 2 – 5 – часть построенной в пункте 1 параболы, которая находится справа от оси ординат, симметрично отображается слева от оси Oy; (Рис. 2).

3) y = |(|x| – 2) 2 – 5| – часть построенного в пункте 2 графика, которая находится ниже оси x, отображается симметрично относительно оси абсцисс наверх. (Рис. 3).

Рассмотрим получившиеся рисунки:

Графиком функции y = a является прямая, параллельная оси абсцисс.

С помощью рисунка делаем вывод, что графики функций имеют шесть общих точек (уравнение имеет шесть корней), если a принадлежит интервалу (1; 5).

Это можно видеть на следующем рисунке:

Найдем среднее арифметическое целых значений параметра a:

(2 + 3 + 4)/3 = 3.

Ответ: 3.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.