Кто впервые определил скорость света? Школьная энциклопедия

Кто впервые определил скорость света? Школьная энциклопедия

Скоростью света называют расстояние, которое свет проходит за единицу времени. Эта величина зависит от того, в каком веществе распространяется свет.

В вакууме скорость света равна 299 792 458 м/с. Это наивысшая скорость, которая может быть достигнута. При решении задач, не требующих особой точности, эту величину принимают равной 300 000 000 м/с. Предполагается, что со скоростью света в вакууме распространяются все виды электромагнитного излучения: радиоволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение, гамма-излучение. Обозначают её буквой с .

Как определили скорость света

В античные времена учёные считали, что скорость света бесконечна. Позднее в учёной среде начались дискуссии по этому вопросу. Кеплер, Декарт и Ферма были согласны с мнением античных учёных. А Галилей и Гук полагали, что, хотя скорость света очень велика, всё-таки она имеет конечное значение.

Галилео Галилей

Одним из первых скорость света попытался измерить итальянский учёный Галилео Галилей. Во время эксперимента он и его помощник находились на разных холмах. Галилей открывал заслонку на своём фонаре. В тот момент, когда помощник видел этот свет, он должен был проделать те же действия со своим фонарём. Время, за которое свет проходил путь от Галилея до помощника и обратно, оказалось таким коротким, что Галилей понял, что скорость света очень велика, и на таком коротком расстоянии измерить её невозможно, так как свет распространяется практически мгновенно. А зафиксированное им время показывает всего лишь быстроту реакции человека.

Впервые скорость света удалось определить в 1676 г. датскому астроному Олафу Рёмеру с помощью астрономических расстояний. Наблюдая с помощью телескопа затмения спутника Юпитера Ио, он обнаружил, что по мере удаления Земли от Юпитера каждое последующее затмение наступает позже, чем было рассчитано. Максимальное запаздывание, когда Земля переходит на другую сторону от Солнца и удаляется от Юпитера на расстояние, равное диаметру земной орбиты, составляет 22 часа. Хотя в то время точный диаметр Земли не был известен, учёный разделил его приблизительную величину на 22 часа и получил значение около 220 000 км/с.

Олаф Рёмер

Результат, полученный Рёмером, вызвал недоверие у учёных. Но в 1849 г. французский физик Арман Ипполит Луи Физо измерил скорость света методом вращающегося затвора. В его опыте свет от источника проходил между зубьями вращающегося колеса и направлялся на зеркало. Отражённый от него, он возвращался назад. Скорость вращения колеса увеличивалась. Когда она достигала какого-то определённого значения, отражённый от зеркала луч задерживался переместившимся зубцом, и наблюдатель в этот момент ничего не видел.

Опыт Физо

Физо вычислил скорость света следующим образом. Свет проходит путь L от колеса до зеркала за время, равное t 1 = 2L/c . Время, за которое колесо делает поворот на ½ прорези, равно t 2 = T/2N , где Т - период вращения колеса, N - количество зубцов. Частота вращения v = 1/T . Момент, когда наблюдатель не видит света, наступает при t 1 = t 2 . Отсюда получаем формулу для определения скорости света:

с = 4LNv

Проведя вычисления по этой формуле, Физо определил, что с = 313 000 000 м/с. Этот результат был гораздо точнее.

Арман Ипполит Луи Физо

В 1838 г. французский физик и астроном Доминик Франсуа Жан Араго́ предложил использовать для вычисления скорости света метод вращающихся зеркал. Эту идею осуществил на практике французский физик, механик и астроном Жан Берна́р Лео́н Фуко́, получивший в 1862 г. значение скорости света (298 000 000±500 000) м/с.

Доминик Франсуа Жан Араго

В 1891 г. результат американского астронома Са́ймона Нью́кома оказался на порядок точнее результата Фуко. В результате его вычислений с = (99 810 000±50 000) м/с.

Исследования американского физика Альберта Абрахама Майкельсона, использовавшего установку с вращающимся восьмигранным зеркалом, позволили ещё точнее определить скорость света. В 1926 г. учёный измерил время, за которое свет проходил расстояние между вершинами двух гор, равное 35,4 км, и получил с = (299 796 000±4 000) м/с.

Наиболее точное измерение было проведено в 1975 г. В этом же году Генеральная конференция по мерам и весам рекомендовала считать скорость света, равной 299 792 458 ± 1,2 м/с.

От чего зависит скорость света

Скорость света в вакууме не зависит ни от системы отсчёта, ни от положения наблюдателя. Она остаётся постоянной величиной, равной 299 792 458 ± 1,2 м/с. Но в различных прозрачных средах эта скорость будет ниже его скорости в вакууме. Любая прозрачная среда имеет оптическую плотность. И чем она выше, тем с меньшей скоростью распространяется в ней свет. Так, например, скорость света в воздухе выше его скорости в воде, а в чистом оптическом стекле меньше, чем в воде.

Если свет переходит из менее плотной среды в более плотную, его скорость уменьшается. А если переход происходит из более плотной среды в менее плотную, то скорость, наоборот, увеличивается. Этим объясняется, почему световой луч отклоняется на границе перехода двух сред.

Впервые скорость света определил в 1676 Оле Рёмер по изменению промежутков времени между затмениями спутника Юпитера Ио.

С явлением света мы впервые знакомимся ещё в 9 классе. В 11-м начинаем рассматривать интереснейший материал о том, что такое скорость света.
Оказывается, история открытия этого явления не менее интересна, чем само явление.


Нужды торговли, которая развивалась быстрыми темпами, и возрастающее значение мореплавания побудили французскую Академию наук заняться уточнением географических карт, для чего, в частности, требовался более надежный способ определения географической долготы. Оле Ремер - молодой датский астроном - был приглашен работать в новую парижскую обсерваторию.

Ученые предложили использовать для определения парижского времени и времени на борту корабля небесное явление, наблюдаемое ежедневно в один и тот же час. По этому явлению мореплаватель или географ мог бы узнать парижское время. Таким явлением, видимым с любого места на море или на суше, является затмение одного из четырех больших спутников Юпитера, обнаруженных Галилеем в 1609 году.

Спутник Ио проходил перед планетой, а затем погружался в ее тень и пропадал из поля зрения. Затем он опять появлялся как мгновенно вспыхнувшая лампа. Промежуток времени между двумя вспышками составил 42 часа 28 минут. Такие же измерения, проведенные полгода спустя, показали, что спутник опоздал, появившись из тени на 22 минуты позже по сравнению с моментом времени, который можно было рассчитать на основании знания периода обращения Ио. Скорость имеет неточный результат из-за неверного определения времени запаздывания.

В 1849 году французский физик Арман Ипполит Луи Физо поставил лабораторный опыт по измерению скорости света. Параметры установки Физо таковы. Источник света и зеркало располагались в доме отца Физо близ Парижа, а зеркало 2 — на Монмартре. Расстояние между зеркалами составляло 8,66 км, колесо имело 720 зубцов. Оно вращалось под действием часового механизма, приводимого в движение опускающимся грузом. Используя счетчик оборотов и хронометр, Физо обнаружил, что первое затемнение наблюдается при скорости вращения колеса 12,6 об/с.

Свет от источника проходил через зубья вращающегося колеса и, отразившись от зеркала, возвращался опять к зубчатому колесу. Допустим, что зубец и прорезь зубчатого колеса имеют одинаковую ширину и место прорези на колесе занял соседний зубец. Тогда свет перекроется зубцом и в окуляре станет темно. Используя метод вращающегося затвора, Физо получил значение скорости света: 3,14.105 км/с.

Весной 1879 года газета "Нью-Йорк Таймс" сообщила: "На научном горизонте Америки появилась новая яркая звезда. Младший лейтенант морской службы, выпускник Морской академии в Аннаполисе Альберт Майкельсон, которому еще нет и 27 лет, добился выдающегося успеха в области оптики: он измерил скорость света!" Примечателен тот факт, что на выпускных экзаменах в академии Альберту достался вопрос об измерении скорости света. Кто мог предположить, что через короткое время Майкельсон сам войдет в историю физики, как измеритель скорости света.

До Майкельсона только единицам (все они были французами) удалось измерить ее с помощью земных средств. А на американском континенте до него никто даже не пытался поставить этот трудный эксперимент.

Установка Майкельсона размещалась на двух горных вершинах, разделенных расстоянием 35,4 км. Зеркалом служила восьмигранная стальная призма на горе Сан Антонио в Калифорнии, сама установка находилась на горе Маунт-Вильсон. После отражения от призмы луч света попадал на систему зеркал, возвращающих его назад. Для того чтобы луч попадал в глаз наблюдателя, вращающаяся призма должна за время распространения света туда и обратно, успеть повернуться хотя бы на 1/8 оборота.

Майкельсон писал: "То, что скорость света - является категорией, недоступной человеческому воображению, и что с другой стороны ее возможно измерить с необыкновенной точностью, делает ее определение одной из самых увлекательных проблем, с которыми может столкнуться исследователь.
Наиболее точное измерение скорости света было получено в 1972 году американским ученым К. Ивенсоном с сотрудниками. В результате независимых измерений частоты и длины волны лазерного измерения ими было получено значение 299792456,2±0,2м/с.

Однако в 1983 г. на заседании Генеральной ассамблеи мер и весов было принято новое определение метра (это длина пути, проходимое светом в вакууме за 1/299792458 долю секунды), из которого следует что скорость света в вакууме абсолютно точно равна с=299 792 458 м/с.

1676 г. - Оле Ремер - астрономический метод
с= 2,22.108 м/с

1849г. - Луи Физо - лабораторный метод
с= 3,12.108 м/с

1879 г. Альберт Майкельсон - лабораторный метод
C= 3,001.108м/с

1983 г. Заседание Генеральной ассамблеи мер и весов
с=299792458 м/с


В экспериментах участвует Вселенная

Метод, с помощью которого Леверье , покорил воображение ученых. За движением Нептуна стали тщательно следить и вскоре обнаружили столь значительные различия между наблюдаемой и теоретической орбитами нового светила, что это могло быть объяснено только существованием еще одной планеты, расположенной за Нептуном!

18 февраля 1930 года молодой астроном Клайд Томбо из Ловелловской обсерватории в Америке наконец обнаружил (на расстоянии, почти в три раза превышающем радиус орбиты Нептуна) новую планету Солнечной системы, получившую название Плутон . Томбо тем самым подтвердил расчеты известных астрономов-теоретиков ПерсиваляЛовелла и Вильяма Пикеринга.

Поистине, как сказал знаменитый французский оптик и астроном Франсуа Араго, «…умственные глаза могут заменять сильные телескопы…».

Больших планет Солнечной системы стало девять: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Между Марсом и Юпитером расположено большое число маленьких планет, получивших название астероидов. Однако астрономы продолжают искать новые планеты.

Теоретические прогнозы показали, что пока на перемещения небесных тел в Солнечной системе не влияет притяжение далеких звезд и других планетарных систем нашей галактики. Солнце должно «привлекать» к себе малые и большие планеты. Сила тяготения Солнца распространяется на расстояние в 200 тысяч раз большее, чем путь от Земли до Солнца!

Не может быть, чтобы в таком огромном пространстве не было плотных небесных тел, хотя пока поиски десятой планеты Солнечной системы с помощью самых мощных современных телескопов не увенчались успехом…

Как мы видим, небесная механика неизменно подтверждает законы земной механики, выведенные Ньютоном. Движение небесных тел, как выяснилось еще во времена Ньютона, позволяет не только проверить закон всемирного тяготения, но и дает в руки исследователей прекрасный способ определения скорости света .

Странно, что о таком способе не догадался Галилей, предлагавший для этой цели лишь опыт с фонарями. Два человека стоят на большом удалении друг от друга с фонарями в руках и отмечают время, за которое свет внезапно зажженного фонаря преодолеет расстояние между ними. Опыт, к сожалению, совершенно неосуществимый из-за слишком большой скорости света…

Как измерили скорость света?

В сентябре 1676 года молодой датчанин Олаф Рёмер , работавший в Парижской обсерватории, представил Французской Академии наук доклад, в котором описал, как, пользуясь вращением Земли вокруг Солнца, можно определить скорость света.

Рёмер при своих исследованиях наблюдал перемещение одного из спутников Юпитера. Время полного оборота спутника вокруг планеты было строго постоянным и хорошо известным астрономам. Рёмер заметил: если Земля при своем вращении вокруг Солнца находится в наиболее удаленной от Юпитера точке орбиты, то вхождение спутника в тень Юпитера астрономы наблюдают на 22 минуты позже, чем в тот момент, когда Земля находится к Юпитеру ближе всего. Рёмер догадался о причине странного явления - свету нужно 22 минуты, чтобы преодолеть расстояние от ближайшей до наиболее далекой от Юпитера точки орбиты Земли. Зная время, которое тратит на это свет, и вычислив диаметр орбиты Земли, мы легко можем определить скорость света!

Вероятно, это был один из первых в истории науки случаев, когда ученый пользовался Вселенной как гигантской естественной лабораторией…

Рёмер получил значения скорости света, которые раза в полтора меньше современных значений этой величины. Но за это вряд ли можно его упрекнуть: мы же знаем, какими приборами измерял время его великий современник Галилео Галилей.

Астрономический способ измерения скорости света широко использовался физиками в течение трех веков, прошедших после наблюдений и расчетов Рёмера. Сейчас общепринятым считается значение скорости света в вакууме, равное 299,79 тысячи километров в секунду.

В XIX веке научились определять скорость света на Земле. Высокого совершенства достиг в этих экспериментах американский физик Альберт Майкельсон. Его сложный массивный прибор со множеством зеркал, удлинявших путь света, был размещен на каменной плите площадью 1,5 м 2 и толщиной 30 см. Чтобы избежать малейших возможных сотрясений прибора, подставка для плиты была заполнена ртутью.

Майкельсон установил, что скорость света не зависит от направления луча, на распространение света не влияет вращение Земли. Исключительная тщательность опытов Майкельсона, достигнутая в начале XIX века высокая точность в определении истинного значения скорости света, быть может, натолкнула Альберта Эйнштейна на мысль считать скорость света в вакууме самой высокой скоростью, которая возможна в Природе. Эта мысль составляет один из важнейших постулатов созданной Эйнштейном теории относительности - наиболее общей современной теории движения, в которую законы Ньютона вошли как частный случай.

Известно, что скорость света в вакууме конечна и составляет ≈300 000 км/c. На этих данных основана вся современная физика и все современные космические теории. Но ещё совсем недавно ученые были уверены, что скорость света бесконечна, и мы мгновенно видим то, что происходит в самых дальних уголках космоса.

О том, что такое свет, люди начали задумываться ещё в глубокой древности. Свет от пламени свечи, мгновенно распространяющийся по помещению, вспышки молний на небесах, наблюдение за кометами и другими космическими телами на ночном небе давало ощущение, что скорость света бесконечна. Действительно, трудно поверить, что, например, смотря на Солнце, мы наблюдаем его не в настоящем состоянии, а таким, какое оно было около 8 минут назад.

Но некоторые люди всё же подвергали сомнению устоявшуюся, казалось бы, истину о бесконечности скорости света. Одним из таких людей был Исаак Бенгман, который в 1629 году попробовал провести эксперимент по определению конечной скорости света. В его распоряжении не было, конечно же, ни компьютеров, ни высокочувствительных лазеров, ни высокоточных часов. Вместо этого ученый решил произвести взрыв. Наполнив емкость взрывчатым веществом, он на различном расстоянии от неё установил большие зеркала и попросил наблюдателей определить, в каком из зеркал вспышка от взрыва появится раньше. Учитывая, что за одну секунду свет способен обогнуть землю 7,5 раз, можно догадаться, что эксперимент закончился провалом.

Чуть позже небезызвестный Галилей, который тоже подвергал сомнению бесконечность скорости света, предложил свой эксперимент. Он поставил своего помощника с фонарем на один холм, а сам встал с фонарем на другой. Когда Галилей поднял крышку со своего фонаря, его помощник сразу же поднял крышку с противоположного фонаря. Конечно, этот эксперимент тоже не мог увенчаться успехом. Единственное, что Галилей мог предположить, было то, что скорость света намного быстрее человеческой реакции.

Получается, единственным выходом из положения было участие в эксперименте тел, достаточно сильно удаленных от Земли, но которые можно было бы наблюдать при помощи телескопов того времени. Такими объектами стали Юпитер и его спутники. В 1676 году астроном Оле Рёмер пытался определить долготу между различными точками на географической карте. Для этого он использовал систему по наблюдению за затмением одного из спутников Юпитера – Ио. Свои исследования Оле Рёмер вел с острова недалеко от Копенгагена, в то время как другой астроном Джованни Доменико Кассини наблюдал за этим же затмением из Парижа. Сравнив время начала затмения между Парижем и Копенгагеном, ученые определили разницу в долготе. Несколько лет подряд Кассини наблюдал за спутниками Юпитера из одного и того же места на Земле и заметил, что время между затмениями спутников становится короче, когда Земля находится к Юпитеру ближе, и длиннее, когда Земля отдалена от Юпитера. На основании своих наблюдений он предположил, что скорость света конечна. Это было абсолютно верное решение, но почему-то Кассани вскоре отказался от своих слов. Зато Рёмер воспринял идею с энтузиазмом, и даже сумел составить хитроумные формулы, учитывающие диаметр Земли и орбиту Юпитера. В результате он посчитал, что свету требуется около 22 минут, чтобы пересечь диаметр орбиты Земли вокруг Солнца. Его расчеты были неверны: по современным данным, свет проходит это расстояние за 16 минут и 40 секунд. Если бы вычисления Оле были бы точными, то скорость света составляла бы 135 000 км/c.

Позже, основываясь на вычислениях Рёнера, Христиан Гюйенс подставил в формулы более точные данные диаметра Земли и орбиты Юпитера. В итоге он получил скорость света равную 220 000 км/c, что намного ближе к верному значению.

Но не все ученые подсчитали гипотезу о конечности скорости света верной. Научные дебаты продолжались до 1729 года, когда было открыто явление световой абберации, которое подтвердило предположение о конечности скорости света и позволило более точно измерить её значение.

Это интересно: современные ученые и историки приходят к выводу, что, скорее всего, формулы Рёмера и Гюйенса были верными. Ошибка заключалась в данных об орбите Юпитера и диаметре Земли. Получается, ошибались не два астронома, а люди, предоставившие им информацию об орбите и диаметре.

Основное фото: depositphotos.com

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Скорость света в вакууме составляет «ровно 299,792,458 метров в секунду». Мы сегодня можем с точностью назвать эту цифру потому, что скорость света в вакууме является универсальной постоянной, которая была измерена при помощи лазера.

Когда речь идет об использовании данного инструмента в эксперименте, трудно поспорить с результатами. По поводу того, почему скорость света измеряется настолько целым числом, можно сказать, что это и неудивительно: длина метра определяется с помощью следующей константы: «Длина пути, проходимого светом в вакууме за промежуток времени 1/299,792,458 секунды».

Пару сотен лет назад было решено или, по крайней мере, предполагалось, что скорость света не имеет предела, хотя на самом деле она просто очень высока. Если бы от ответа зависело, станет ли она подругой Джастина Бибера, современная девушка-подросток ответила бы на этот вопрос так: «Скорость света чуть медленнее самой быстрой вещи во Вселенной».

Первым, кто обратился к вопросу о бесконечности скорости света, был философ Эмпедокл в пятом веке до н.э. Еще спустя столетие Аристотель не согласится с утверждением Эмпедокла, и спор будет длиться еще более 2,000 лет.

Голландский ученый Иссак Бэкмен был первым известным специалистом, кто в 1629 году придумал реальный эксперимент, чтобы проверить, есть ли у света какая-либо скорость. Живущий в столетии, далеком от изобретения лазера, Бэкмен понял, что основой эксперимента должен стать взрыв любого происхождения, поэтому в своих экспериментах он использовал детонирующий порох.

Бэкмен расположил зеркала на разном расстоянии от места взрыва и позже спросил у наблюдавших людей, видят ли они разницу в восприятии вспышки света, отражающейся в каждом из зеркал. Как можно догадаться, эксперимент был "неубедительным". Аналогичный, более известный опыт, но без использования взрыва, возможно, был проведен или, по крайней мере, придуман Галилео Галилеем только десятилетие спустя, в 1638 году. Галилей, как и Бэкмен, подозревал, что скорость света не бесконечна, и в некоторых своих работах делал ссылку на продолжение эксперимента, но уже с участием фонарей. В своем эксперименте (если он когда-либо его проводил!) он разместил два фонаря в миле друг от друга и пытался разглядеть, была ли задержка. Результат эксперимента тоже был неубедительным. Единственное, что Галилей смог предположить, так это, что если свет и не был бесконечным, то он был слишком быстрым, и опыты, проводимые в таком маленьком масштабе, были обречены на провал.

Так продолжалось до тех пор, пока к серьезным экспериментам со скоростью света не приступил датский астроном Олаф Ремер. Эксперименты с фонарями на холме, проводимые Галилеем, выглядели как научный проект школьника по сравнению с опытами Ремера. Он установил, что эксперимент должен проводиться в открытом космосе. Таким образом, он сосредоточил свое внимание на наблюдении за планетами и представил свои новаторские взгляды 22 августа 1676 года.

В частности, во время изучения одного из спутников Юпитера Ремер заметил, что время между затмениями изменяется в течение года (в зависимости от того, движется Юпитер в направлении Земли или от нее). Заинтересовавшись этим, Ремер делал тщательные записи о времени, когда спутник Ио, за которым он наблюдал, появлялся в поле зрения, и сравнивал, как это время соотносилось с моментом, когда он обычно ожидался. Через некоторое время Ремер заметил, что так же, как Земля, вращаясь вокруг Солнца, становится дальше от Юпитера, время, когда Ио попадает в поле зрения, будет сильнее отставать от времени, отмеченного ранее в записях. Ремер (правильно) предположил, что это происходит из-за того, что свету необходимо больше времени, чтобы пройти расстояние от Земли до Юпитера, если само расстояние увеличивается.

К сожалению, произведенные им расчеты погибли в огне во время пожара в Копенгагене в 1728 году, но у нас есть большой объем сведений о его открытии из историй современников, а также из докладов других ученых, использовавших расчеты Ремера в своих работах. Суть их в том, что с помощью многих расчетов, связанных с диаметром Земли и орбиты Юпитера, Ремер смог сделать вывод, что свету потребуется около 22 минут, чтобы пройти расстояние, равное диаметру орбиты Земли вокруг Солнца. Христиан Гюйгенс позже преобразует эти вычисления в более понятные цифры, показывая, что, по оценке Ремера, свет проходит около 220,000 километров в секунду. Эта цифра еще намного отличается от современных данных, но мы вскоре к ним вернемся.

Когда коллеги Ремера по университету выразили озабоченность по поводу его теории, он спокойно ответил им, что затмение 9 ноября 1676 года произойдет на 10 минут позднее. Когда так и случилось, сомневающиеся были поражены, ведь небесное тело подтвердило его теорию.

Коллеги Ремера были крайне изумлены его вычислениям, так как даже сегодня его оценка скорости света считается удивительно точной, учитывая, что она была сделана за 300 лет до того, как придумали лазеры и Интернет. И пусть 80,000 километров – это слишком медленно, но, беря во внимание состояние науки и технологий в то время, результат действительно впечатляет. К тому же Ремер полагался лишь на собственные догадки.

Что еще более удивляет, причина слишком маленькой скорости была не в расчетах Ремера, а в том, что не было точных данных об орбитах Земли и Юпитера в то время, когда он проводил свои вычисления. Это означает, что ученый ошибся только потому, что другие ученые были не так умны, как он. Так что, если вы поместите существующие современные данные в оригинальные вычисления, которые он проводил, расчеты скорости света будут верными.

И хотя вычисления были технически неправильными, а Джеймс Брэдли нашел более точное определение скорости света в 1729 году, Ремер вошел в историю как человек, доказавший первым, что скорость света можно определить. Он сделал это, наблюдая за движением гигантского газообразного шара, расположенного на расстоянии около 780 миллионов километров от Земли.