Квантовая физика кот шредингера. Квантовый чеширский кот. Разгадка парадокса Кота Шрёдингера – копенгагенская интерпретация

Квантовая физика кот шредингера. Квантовый чеширский кот. Разгадка парадокса Кота Шрёдингера – копенгагенская интерпретация
Квантовая физика кот шредингера. Квантовый чеширский кот. Разгадка парадокса Кота Шрёдингера – копенгагенская интерпретация

Не ищите здесь «восточного мистицизма», сгибания ложек или экстрасенсорики. Ищите правдивую историю квантовой механики, истина в которой более удивительна, чем любой вымысел. Такова наука: она не нуждается в нарядах с плеча другой философии, ведь она и сама полна красот, таинств и сюрпризов. Эта книга пытается ответить на конкретный вопрос: «Что такое реальность?» И ответ (или ответы) может удивить вас. Возможно, вы в него не поверите. Но вы поймете, как смотрит на мир современная наука.

Ничто не реально

Кот, который фигурирует в заглавии, – это мифическое существо, но Шрёдингер существовал на самом деле. Эрвин Шрёдингер был австрийским ученым, в середине 1920-х годов сыгравшим огромную роль в создании уравнений определенной ветви науки, которая теперь называется квантовой механикой. Однако сказать, что квантовая механика – это лишь ветвь науки, едва ли верно, ведь она лежит в основе всей современной науки. Ее уравнения описывают поведение очень маленьких объектов – размера атомов и меньше – и представляют собой единственное описание мира мельчайших частиц. Без этих уравнений физики не смогли бы разработать проекты рабочих атомных электростанций (или бомб), создать лазеры или объяснить, каким образом не снижается температура Солнца. Без квантовой механики химия по-прежнему пребывала бы в Темных веках и вовсе не появилась бы молекулярная биология: не было бы ни знаний о ДНК, ни генной инженерии – ничего.

Квантовая теория – это величайшее достижение науки, гораздо более значительное и гораздо более применимое в прямом, практическом смысле, чем теория относительности. И все же она делает кое-какие странные предсказания. Мир квантовой механики действительно так необычен, что даже Альберт Эйнштейн счел его непонятным и отказался признавать все следствия теории, выведенные Шрёдингером и его коллегами. Как и многие другие ученые, Эйнштейн решил, что удобнее поверить в то, что уравнения квантовой механики были лишь своеобразным математическим трюком, который по случайности предоставил разумное объяснение поведению атомных и субатомных частиц, но в них содержится более глубокая истина, которая лучше соотносится с нашим обыденным чувством реальности. Ведь квантовая механика утверждает, что реального нет и мы не можем ничего сказать о поведении вещей, когда не наблюдаем их. Мифический кот Шрёдингера был призван прояснить различия между квантовым и обычным миром.

В мире квантовой механики перестают работать законы физики, знакомые нам из обычного мира. Вместо этого событиями управляют вероятности. Радиоактивный атом, например, может распасться и, скажем, выпустить электрон, а может и нет. Можно провести эксперимент, представив, что есть ровно пятидесятипроцентная вероятность того, что один из атомов сгустка радиоактивного вещества в определенный момент распадется и детектор зарегистрирует этот распад, если он произойдет. Шрёдингер, столь же расстроенный выводами квантовой теории, как и Эйнштейн, попытался продемонстрировать их абсурдность, представив, что такой эксперимент проходит в закрытой комнате или коробке, где находятся живой кот и флакон с ядом, причем если распад происходит, сосуд с ядом разбивается и кот погибает. В обычном мире вероятность смерти кота составляет пятьдесят процентов и, не заглядывая в коробку, мы можем смело заявить лишь одно: кот внутри либо жив, либо мертв. Но тут-то и проявляет себя странность квантового мира. В соответствии с теорией ни одна из двух возможностей, которые существуют для радиоактивного вещества, а следовательно, и кота, не представляется реальной, если не происходит наблюдения за происходящим. Атомный распад не случился и не не случился, кот не погиб и не не погиб, пока мы не заглянем в коробку, чтобы узнать, что произошло. Теоретики, которые принимают чистую версию квантовой механики, утверждают, что кот существует в некотором неопределенном состоянии, будучи при этом ни живым и ни мертвым, пока наблюдатель не заглянет в коробку и не увидит, как сложилась ситуация. Ничто не реально, если не установлено наблюдение.

Эта идея была ненавистна Эйнштейну, как и многим другим. «Бог не играет в кости», – сказал он, ссылаясь на теорию о том, что мир определяется совокупностью результатов по сути случайного «выбора» возможностей на квантовом уровне. Что же до нереальности состояния кота Шрёдингера, Эйнштейн не принял ее во внимание, предположив, что должен существовать некий глубинный «механизм», который определяет истинно фундаментальную реальность вещей. Он много лет пытался разработать опыты, которые помогли бы показать эту глубинную реальность в работе, но скончался раньше, чем вообще стало возможным провести подобный эксперимент. Возможно, это к лучшему, что он не дожил до того момента, когда стал ясен результат цепочки рассуждений, запущенной им.

Летом 1982 года группа ученых из университета Париж-Юг под руководством Алена Аспе завершила серию экспериментов, разработанных для выявления глубинной реальности, определяющей нереальный квантовый мир. Этой глубинной реальности – фундаментальному механизму – присвоили имя «скрытых параметров». Суть эксперимента заключалась в наблюдении за поведением двух фотонов, или частиц света, летящих в противоположных направлениях от источника. Полностью эксперимент описан в десятой главе, но в целом его можно считать проверкой реальности. Два фотона из одного источника могут фиксироваться двумя детекторами, которые измеряют свойство, называемое поляризацией. В соответствии с квантовой теорией этого свойства не существует, пока оно не измерено. В соответствии с идеей о «скрытых параметрах» каждый фотон обладает «реальной» поляризацией с момента своего возникновения. Так как два фотона вылетают одновременно, величины их поляризации зависят друг от друга, но природа зависимости, которая измеряется на деле, различается в соответствии с двумя представлениями о реальности.

Результаты этого важнейшего эксперимента однозначны. Зависимость, предсказанная теорией скрытых параметров, не была обнаружена, а зависимость, предсказанная квантовой механикой, – была. Более того, как и предсказывала квантовая теория, измерения, проведенные на одном фотоне, оказывали мгновенный эффект на природу другого фотона. Некоторое взаимодействие неразрывно связывало фотоны, хотя они и разлетались в разные стороны со скоростью света, а теория относительности утверждает, что ни один сигнал не может передаваться быстрее, чем свет. Эксперименты доказали, что в мире нет глубинной реальности. «Реальность» в обыденном смысле не подходит для размышления о поведении фундаментальных частиц, которые составляют Вселенную, причем эти частицы в то же время, похоже, неразрывно связаны друг с другом в некоторое неделимое целое, где каждая знает, что происходит с другими.

Поиск кота Шрёдингера – это поиск квантовой реальности. Из этого короткого обзора может показаться, что поиск этот не увенчался успехом, так как в квантовом мире реальности в привычном смысле слова не существует. Но история на этом не заканчивается, и поиск кота Шрёдингера может привести нас к новому пониманию реальности, которая превосходит – и в то же время включает в себя – общепринятое толкование квантовой механики. Однако искать придется долго, и начать нужно с ученого, который, возможно, испугался бы сильнее Эйнштейна, будь у него шанс узнать данные нами сейчас ответы на мучившие его вопросы. Изучая три столетия назад природу света, Исаак Ньютон и не подозревал, наверное, что он уже ступил на путь, ведущий к коту Шрёдингера.

Часть первая

Кто не шокирован квантовой теорией, тот ее не понял.

Нильс Бор 1885-1962

Глава первая

Исаак Ньютон изобрел физику, и на ней покоится вся остальная наука. Хотя Ньютон, конечно, отталкивался от работ других, именно его публикация трех законов движения и теории гравитации свыше трех столетий назад вывела науку на путь, который в конце концов привел к покорению космоса, лазерам, атомной энергии, генной инженерии, пониманию химии и всего остального. На протяжении двух столетий ньютоновская физика (то, что сейчас называют «классической физикой») правила миром науки. Новые революционные идеи продвинули физику в двадцатом веке гораздо дальше Ньютона, однако без тех двух столетий научного роста эти идеи могли бы никогда не появиться. Эта книга не является историей науки: она рассказывает о новой физике – квантовой, а не о тех классических идеях. Однако даже в работе Ньютона трехсотлетней давности уже есть признаки того, что изменения неизбежны: они содержатся не в его трудах о движении планет и их орбитах, а в его исследованиях природы света.

«Любой, кто не шокирован квантовой теорией , не понимает её», - так сказал Нильс Бор, основатель квантовой теории.
Основа классической физики - однозначная запрограммированность мира, иначе лапласовский детерминизм, с появлением квантовой механики сменилась вторжением мира неопределенностей и вероятностных событий. И здесь, как нельзя кстати, оказались для физиков-теоретиков мысленные эксперименты. Это были пробные камни, на которых проверялись новейшие идеи.

«Кот Шрёдингера»- это мысленный эксперимент , предложенный Эрвином Шрёдингером, которым он хотел показать неполноту квантовой механики при переходе от субатомных систем к системам макроскопическим.

В закрытый ящик помещён кот. В ящике есть механизм, содержащий радиоактивное ядро, и ёмкость с ядовитым газом. Вероятность того, что ядро распадётся за 1 час, составляет 1/2. Если ядро распадается, оно приводит механизм в действие, он открывает ёмкость с газом, и кот умирает. Согласно квантовой механике, если над ядром не производится наблюдение, то его состояние описывается суперпозицией (смешением) двух состояний - распавшегося ядра и нераспавшегося ядра, следовательно, кот, сидящий в ящике, и жив, и мёртв одновременно. Если же ящик открыть, то экспериментатор может увидеть только какое-нибудь одно конкретное состояние - «ядро распалось, кот мёртв» или «ядро не распалось, кот жив».

Когда же система перестаёт существовать как смешение двух состояний и выбирает одно конкретное?

Цель эксперимента - показать, что квантовая механика неполна без некоторых правил, указывающих, при каких условиях происходит коллапс волновой функции (мгновенное изменение квантового состояния объекта, происходящее при измерении), и кот либо становится мёртвым, либо остаётся живым, но перестаёт быть смешением того и другого.

Поскольку ясно, что кот обязательно должен быть либо живым, либо мёртвым (не существует состояния, промежуточного между жизнью и смертью), то означает, что это верно и для атомного ядра. Оно обязательно будет либо распавшимся, либо нераспавшимся.

Статья Шредингера «Текущая ситуация в квантовой механике» с представлением мысленного эксперимента с котом вышла в немецком журнале «Естественные науки» в 1935 году с целью обсуждения ЭПР-парадокса.

Статьи Эйнштейна-Подольского-Розена и Шредингера обозначили странную природу «квантовой запутанности» (термин введен Шредингером), характерной для квантовых состояний, являющихся суперпозицией состояний двух систем (например, двух субатомных частиц).

Толкования квантовой механики

За время существования квантовой механики учеными были выдвинуты разные ее толкования, но наиболее поддерживаемые из всех на сегодня являются «копенгагенская» и «многомировая».

«Копенгагенская интерпретация» - это толкование квантовой механики сформулировали Нильс Бор и Вернер Гейзенберг во время совместной работы в Копенгагене (1927г.). Ученые попытались ответить на вопросы, возникающие вследствие свойственного квантовой механике корпускулярно-волнового дуализма, в частности на вопрос об измерении.

В копенгагенской интерпретации система перестаёт быть смешением состояний и выбирает одно из них в тот момент, когда происходит наблюдение. Эксперимент с котом показывает, что в этой интерпретации природа этого самого наблюдения - измерения - определена недостаточно. Некоторые полагают, что опыт говорит о том, что до тех пор, пока ящик закрыт, система находится в обоих состояниях одновременно, в суперпозиции состояний «распавшееся ядро, мёртвый кот» и «нераспавшееся ядро, живой кот», а когда ящик открывают, то только тогда происходит коллапс волновой функции до одного из вариантов. Другие догадываются, что «наблюдение» происходит, когда частица из ядра попадает в детектор; однако (и это ключевой момент мысленного эксперимента) в копенгагенской интерпретации нет чёткого правила, которое говорит, когда это происходит, и потому эта интерпретация неполна до тех пор, пока такое правило в неё не введено, или не сказано, как его можно ввести. Точное правило таково: случайность появляется в том месте, где в первый раз используется классическое приближение.

Таким образом, мы можем опираться на следующий подход: в макроскопических системах мы не наблюдаем квантовых явлений (кроме явления сверхтекучести и сверхпроводимости); поэтому, если мы накладываем макроскопическую волновую функцию на квантовое состояние, мы из опыта должны заключить, что суперпозиция разрушается. И хотя не совсем ясно, что́ значит, что нечто является «макроскопическим» вообще, про кота точно известно, что он является макроскопическим объектом. Таким образом, копенгагенская интерпретация не считает, что до открытия ящика кот находится в состоянии смешения живого и мёртвого.

В « многомировой интерпретации» квантовой механики, не считающей процесс измерения чем-то особенным, оба состояния кота существуют, но декогерируют, т.е. происходит процесс, при котором квантово-механическая система взаимодействует с окружающей средой и приобретает информацию, имеющуюся в окружающей среде, или иначе, « запутывается» с окружающей средой. И когда наблюдатель открывает ящик, он запутывается с котом и от этого образуются два состояния наблюдателя, соответствующие живому и мёртвому коту, и эти состояния не взаимодействуют друг с другом. Тот же механизм квантовой декогеренции важен и для «совместных» историй. В этой интерпретации только «мёртвый кот» или «живой кот» могут быть в «совместной истории.

Другими словами, когда ящик открывается, Вселенная расщепляется на две разные вселенные, в одной из которых наблюдатель смотрит на ящик с мёртвым котом, а в другой - наблюдатель смотрит на живого кота.

Парадокс "друга Вигнера"

Парадокс друга Вигнера – это усложнённый эксперимент парадокса «кота Шрёдингера». Лауреат Нобелевской премии, американский физик Юджин Вигнер ввел категорию «друзей». После завершения опыта экспериментатор открывает коробку и видит живого кота. Состояние кота в момент открытия коробки переходит в состояние «ядро не распалось, кот жив». Таким образом, в лаборатории кот признан живым. За пределами лаборатории находится «друг». Друг еще не знает, жив кот или мёртв. Друг признает кота живым только тогда, когда экспериментатор сообщит ему исход эксперимента. Но все остальные «друзья» еще не признали кота живым, и признают только тогда, когда им сообщат результат эксперимента. Таким образом, кота можно признать полностью живым только тогда, когда все люди во Вселенной узнают результат эксперимента. До этого момента в масштабе Большой Вселенной кот остается полуживым и полумёртвым одновременно.

Вышеописанное применяется на практике: в квантовых вычислениях и в квантовой криптографии. По волоконно-оптическому кабелю пересылается световой сигнал, находящийся в суперпозиции двух состояний. Если злоумышленники подключатся к кабелю где-то посередине и сделают там отвод сигнала, чтобы подслушивать передаваемую информацию, то это схлопнет волновую функцию (с точки зрения копенгагенской интерпретации будет произведено наблюдение) и свет перейдёт в одно из состояний. Проведя статистические пробы света на приёмном конце кабеля, можно будет обнаружить, находится ли свет в суперпозиции состояний или над ним уже произведено наблюдение и передача в другой пункт. Это делает возможным создание средств связи, которые исключают незаметный перехват сигнала и подслушивание.

Эксперимент (который в принципе может быть выполнен, хотя работающие системы квантовой криптографии, способные передавать большие объёмы информации, ещё не созданы) также показывает, что «наблюдение» в копенгагенской интерпретации не имеет отношения к сознанию наблюдателя, поскольку в данном случае к изменению статистики на конце кабеля приводит совершенно неодушевлённое ответвление провода.

А в квантовых вычислениях состоянием «шредингеровского кота» называется особое запутанное состояние кубитов, при котором они все находятся в одинаковой суперпозиции всех нулей или единиц.

( «Кубит» - это наименьший элемент для хранения информации в квантовом компьютере. Он допускает два собственных состояния, но при этом может находиться и в их суперпозиции. При любом измерении состояния кубита он случайно переходит в одно из своих собственных состояний.)

В реалиях! Малый брат «кота Шрёдингера»

Прошло уже 75 лет с тех пор, как появился «кот Шредингера», но до сих пор некоторые из следствий квантовой физики кажутся расходящимися с нашими обыденными представлениями о веществе и его свойствах. Согласно законам квантовой механики должно быть возможным создание такого состояния «кота», когда он будет одновременно и жив, и мёртв, т.е. будет находиться в состоянии квантовой суперпозиции двух состояний. Однако на практике создание квантовой суперпозиции такого большого количества атомов пока не удаётся. Трудностью является то, что чем больше атомов находиться в суперпозиции, тем менее устойчиво это состояние, поскольку внешние воздействия стремятся его разрушить.

Физикам из Венского университета (публикация в журнале «Nature Communications », 2011г.) впервые в мире удалось продемонстрировать квантовое поведение органической молекулы, состоящей из 430 атомов и находящейся в состоянии квантовой суперпозиции. Полученная экспериментаторами молекула больше похожа на осьминога. Размер молекул составляет порядка 60 ангстрем, а длина волны де Бройля для молекулы составляла всего 1 пикометр. Такой «молекулярный осьминог» оказался способным продемонстрировать свойства, присущие коту Шрёдингера.

Квантовое самоубийство

Квантовое самоубийство - мысленный эксперимент в квантовой механике, который был предложен независимо друг от друга Г. Моравеком и Б. Маршалом, а в 1998 году был расширен космологом Максом Тегмарком. Этот мысленный эксперимент, являясь модификацией мысленного эксперимента с котом Шрёдингера, наглядно показывает разницу между двумя интерпретациями квантовой механики: копенгагенской интерпретацией и многомировой интерпретацией Эверетта.

Фактически эксперимент представляет собой эксперимент с котом Шрёдингера с точки зрения кота.

В предложенном эксперименте на участника направлено ружьё, которое стреляет или не стреляет в зависимости от распада какого-либо радиоактивного атома. Вероятность, что в результате эксперимента ружьё выстрелит и участник умрёт, составляет 50 %. Если копенгагенская интерпретация верна, то ружьё в конечном итоге выстрелит, и участник умрёт.
Если же верна многомировая интерпретация Эверетта, то в результате каждого проведенного эксперимента вселенная расщепляется на две вселенных, в одной из которых участник остается жив, а в другой погибает. В мирах, где участник умирает, он перестает существовать. Напротив, с точки зрения неумершего участника, эксперимент будет продолжаться, не приводя к исчезновению участника. Это происходит потому, что в любом ответвлении участник способен наблюдать результат эксперимента лишь в том мире, в котором он выживает. И если многомировая интерпретация верна, то участник может заметить, что он никогда не погибнет в ходе эксперимента.

Участник никогда не сможет рассказать об этих результатах, так как с точки зрения стороннего наблюдателя, вероятность исхода эксперимента будет одинаковой и в многомировой, и в копенгагенской интерпретациях.

Квантовое бессмертие

Квантовое бессмертие - мысленный эксперимент, вытекающий из мысленного эксперимента с квантовым самоубийством и утверждающий, что согласно многомировой интерпретации квантовой механики существа, имеющие способность к самосознанию, бессмертны.

Представим, что участник эксперимента взрывает ядерную бомбу вблизи себя. Практически во всех параллельных Вселенных ядерный взрыв уничтожит участника. Но, несмотря на это, должно существовать небольшое множество альтернативных Вселенных, в которых участник каким-либо образом выживает (то есть Вселенных, в которых возможно развитие потенциального сценария спасения). Идея квантового бессмертия состоит в том, что участник остаётся в живых, и тем самым способен воспринимать окружающую реальность, по меньшей мере в одной из Вселенных в множестве, пусть даже количество таких вселенных чрезвычайно мало в сравнении с количеством всех возможных Вселенных. Таким образом, со временем участник обнаружит, что он может жить вечно. Некоторые параллели с этим умозаключением могут быть найдены в концепции антропного принципа.

Другой пример вытекает из идеи квантового самоубийства. В этом мысленном эксперименте участник направляет на себя ружьё, которое может либо выстрелить, либо нет в зависимости от результата распада какого-либо радиоактивного атома. Вероятность, что в результате эксперимента ружьё выстрелит и участник умрёт, составляет 50 %. Если Копенгагенская интерпретация верна, то ружьё в конечном итоге выстрелит, и участник умрёт.

Если же верна многомировая интерпретация Эверетта, то в результате каждого проведённого эксперимента вселенная расщепляется на две вселенных, в одной из которых участник остается жив, а в другой погибает. В мирах, где участник умирает, он перестает существовать. Напротив, с точки зрения не умершего участника, эксперимент будет продолжаться, не приводя к исчезновению участника, так как после каждого расщепления вселенных он будет способен осознавать себя только в тех вселенных, где он выжил. Таким образом, если многомировая интерпретация Эверетта верна, то участник может заметить, что он никогда не погибнет в ходе эксперимента, тем самым «доказывая» свое бессмертие, по крайней мере с его точки зрения.

Сторонники квантового бессмертия указывают на то, что эта теория не противоречит никаким известным законам физики (эта позиция далека от единодушного признания в научном мире). В своих рассуждениях они опираются на следующие два спорных допущения:
- верна многомировая интерпретация Эверетта, а не Копенгагенская интерпретация, так как последняя отрицает существование параллельных вселенных;
- все возможные сценарии, в которых в ходе эксперимента участник может умереть, содержат по крайней мере малое подмножество сценариев, где участник остаётся в живых.

Возможным аргументом против теории квантового бессмертия может быть то, что второе допущение не обязательно следует из многомировой интерпретации Эверетта, и оно может вступать в противоречие с законами физики, которые, как считается, распространяются на все возможные реальности. Многомировая интерпретация квантовой физики необязательно предполагает, что «всё возможно». Она лишь указывает на то, что в определённый момент времени вселенная может разделиться на некоторое число других, каждая из которых будет соответствовать одному из множества всех возможных исходов. К примеру, считается, что второе начало термодинамики справедливо для всех вероятных вселенных. Это означает, что теоретически существование этого закона препятствует образованию параллельных вселенных, где он нарушался бы. Следствием этого может быть достижение с точки зрения экспериментатора такого состояния реальности, где его дальнейшее выживание становится невозможным, так как это потребовало бы нарушения закона физики, который, по высказанному ранее допущению справедлив для всех возможных реальностей.

Например, при взрыве ядерной бомбы, описанном выше, достаточно трудно описать правдоподобный сценарий, не нарушающий основных биологических принципов, в котором участник останется в живых. Живые клетки просто-напросто не могут существовать при температурах, достигаемых в центре ядерного взрыва. Для того чтобы теория квантового бессмертия осталась справедливой, необходимо, чтобы либо произошла осечка (и тем самым не произошло ядерного взрыва), либо случилось какое-либо событие, которое основывалось бы на пока неоткрытых или недоказанных законах физики. Другим аргументом против обсуждаемой теории может служить наличие у всех существ естественной биологической смерти, которую невозможно избежать ни в одной из параллельных Вселенных (по крайней мере, на данном этапе развития науки)

С другой стороны, второе начало термодинамики является статистическим законом, и ничему не противоречит возникновение флуктуации (например, появление области с условиями, подходящими для жизни наблюдателя во вселенной, в целом достигшей состояния тепловой смерти; или в принципе возможное движение всех частиц, возникших в результате ядерного взрыва, таким образом, что каждая из них пролетит мимо наблюдателя), хотя такая флуктуация возникнет лишь в крайне малой части из всех возможных исходов. Аргумент, относящийся к неизбежности биологической смерти, также может быть опровергнут на основании вероятностных соображений. Для каждого живого организма в данный момент времени существует ненулевая вероятность, что он останется жив в течение следующей секунды. Таким образом, вероятность того, что он останется жив в течение следующего миллиарда лет, также отлична от нуля (поскольку является произведением большого числа ненулевых сомножителей), хотя и очень мала.

В идее квантового бессмертия проблемно то, что согласно ей самосознающее существо будет «вынуждено» переживать чрезвычайно маловероятные события, которые будут возникать в ситуациях, при которых участник, казалось бы, должен погибнуть. Даже несмотря на то, что во многих параллельных вселенных участник умирает, те немногие вселенные, которые участник способен субъективно воспринимать, будут развиваться по крайне маловероятному сценарию. Это в свою очередь может в некотором роде вызвать нарушение принципа причинности, природа которого в квантовой физике еще недостаточно ясна.

Хотя идея квантового бессмертия вытекает большей частью из эксперимента с «квантовым самоубийством», Тегмарк утверждает, что при любых нормальных условиях всякое мыслящее существо перед смертью проходит через этап (от нескольких секунд до нескольких лет)уменьшения уровня самосознания, никак не связанный с квантовой механикой, и у участника нет никакой возможности для продолжительного существования посредством перехода из одного мира в другой, дающий ему возможность выжить.

Здесь сознающий себя разумный наблюдатель лишь в относительно малом числе возможных состояний, при которых он сохраняет самосознание, продолжает оставаться в, так сказать, «здоровом теле». Возможность того, что наблюдатель, сохранив сознание, останется искалеченным, значительно больше, чем если он останется цел и невредим. Любая система (в том числе живой организм) имеет гораздо больше возможностей функционировать неправильно, чем оставаться в идеальной форме. Эргодическая гипотеза Больцмана требует, чтобы бессмертный наблюдатель рано или поздно прошёл все состояния, совместимые с сохранением сознания, в том числе и те, в которых он будет ощущать непереносимые страдания, - и таких состояний будет значительно больше, чем состояний оптимального функционирования организма. Таким образом, как считает философ Дэвид Льюис, нам следовало бы надеяться, что многомировая интерпретация неверна.

Была своего рода «вторичность». Сам он редко занимался определенной научной проблемой. Его излюбленным жанром работы был отклик на чье-либо научное изыскание, развитие этой работы или ее критика. Несмотря на то, что сам Шредингер был индивидуалистом по характеру, ему всегда была необходима чужая мысль, опора для дальнейшей работы. Несмотря на этот своеобразный подход, Шредингеру удалось сделать немало открытий.

Биографические данные

Теория Шредингера сейчас известна не только студентам физико-математических факультетов. Она будет интересна всякому, кто испытывает интерес к популярной науке. Эта теория была создана известным физиком Э. Шредингером, который вошел в историю как один из создателей квантовой механики. Ученый родился 12 августа 1887 года в семье владельца фабрики по изготовлению клеенки. Будущий ученый, прославившийся на весь мир своей загадкой, увлекался в детстве ботаникой и рисованием. Первым его наставником был отец. В 1906 году Шредингер начал учебу в Венском университете, во время которой и начал восхищаться физикой. Когда настала Первая мировая война, ученый пошел на службу артиллеристом. В свободное время занимался изучением теорий Альберта Эйнштейна.

К началу 1927 года в науке сложилась драматическая ситуация. Э. Шредингер считал, что основанием теории о квантовых процессах должна служить идея о непрерывности волн. Гейзенберг, напротив, считал, что фундаментом для этой области знаний должна быть концепция о дискретности волн, а также идея о квантовых скачках. Нильс Бор не принимал ни одной из позиций.

Достижения в науке

За создание концепции волновой механики в 1933 году Шредингер получил Нобелевскую премию. Однако, воспитанный в традициях классической физики, ученый не мог мыслить иными категориями и не считал квантовую механику полноценной отраслью знания. Его не могло удовлетворить двойственное поведение частиц, и он пытался свести его исключительно к волновому. В своей дискуссии с Н. Бором Шредингер выразился так: «Если мы планируем сохранить в науке эти квантовые скачки, тогда я вообще жалею, что связал свою жизнь с атомной физикой».

Дальнейшие работы исследователя

При этом Шредингер был не только одним из создателей современной квантовой механики. Именно он был тем ученым, который ввел в научный обиход термин «объектность описания». Это возможность научных теорий описывать реальность без участия наблюдателя. Его дальнейшие исследования были посвящены теории относительности, термодинамическим процессам, нелинейной электродинамике Борна. Также ученым было сделано несколько попыток создать единую теорию поля. Кроме того, Э. Шредингер владел шестью языками.

Самая знаменитая загадка

Теория Шредингера, в которой фигурирует тот самый кот, выросла из критики ученого квантовой теории. Один из ее основных постулатов гласит, что пока за системой не производится наблюдение, она находится в состоянии суперпозиции. А именно, в двух и более состояниях, которые исключают существование друг друга. Состояние суперпозиции в науке имеет следующее определение: это способность кванта, которым может быть также электрон, фотон, или, например, ядро атома, находиться одновременно в двух состояниях или даже в двух точках пространства в тот момент, когда никто за ним не наблюдает.

Объекты в разных мирах

Простому человеку очень сложно понять такое определение. Ведь каждый объект материального мира может быть либо в одной точке пространства, либо в другой. Проиллюстрировать этот феномен можно следующим образом. Наблюдатель берет две коробки, и кладет в одну из них шарик для тенниса. Будет ясно, что в одной коробке он находится, а в другой - нет. Но если в одну из емкостей положить электрон, то верным будет следующее утверждение: эта частица находится одновременно в двух коробках, каким бы парадоксальным это ни казалось. Точно так же электрон в атоме не находится в строго определенной точке в тот или иной момент времени. Он вращается вокруг ядра, располагаясь на всех точках орбиты одновременно. В науке этот феномен называется «электронным облаком».

Что хотел доказать ученый?

Таким образом, поведение маленьких и больших объектов реализуется по совершенно разным правилам. В квантовом мире существуют одни законы, а в макромире - абсолютно другие. Однако нет такой концепции, которая объясняла бы переход от мира материальных предметов, привычных для людей, к микромиру. Теория Шредингера и была создана, для того чтобы продемонстрировать недостаточность исследований в области физики. Ученый хотел показать, что есть наука, целью которой является описание небольших объектов, и есть область знаний, изучающая обычные предметы. Во многом благодаря работам ученого и произошло разделение физики на две области: квантовую и классическую.

Теория Шредингера: описание

Свой знаменитый мысленный эксперимент ученый описал в 1935 году. В его проведении Шредингер опирался на принцип суперпозиции. Шредингер подчеркивал, что пока мы не наблюдаем за фотоном, он может быть как частицей, так и волной; как красным, так и зеленым; как круглым, так и квадратным. Этот принцип неопределенности, который непосредственно вытекает из концепции квантового дуализма, Шредингер и использовал в своей известной загадке про кота. Смысл эксперимента вкратце состоит в следующем:

  • В закрытую коробку помещается кот, а также емкость, в которой содержится синильная кислота и радиоактивное вещество.
  • Ядро в течение часа может распадаться. Вероятность этого составляет 50%.
  • Если атомное ядро распадется, то это будет зафиксировано счетчиком Гейгера. Механизм сработает, и ящик с отравой будет разбита. Кот умрет.
  • Если же распада не произойдет, то кот Шредингера будет жив.

Согласно этой теории, пока не осуществляется наблюдение за котом, он находится одновременно в двух состояниях (мертв и жив), точно так же, как и ядро атома (распавшееся или не распавшееся). Конечно, это возможно только лишь по законам квантового мира. В макромире кот не может быть и живым, и мертвым одновременно.

Парадокс наблюдателя

Чтобы понять суть теории Шредингера, необходимо также иметь представление о парадоксе наблюдателя. Его смысл состоит в том, что объекты микромира могут находиться одновременно в двух состояниях только тогда, когда за ними не производится наблюдение. К примеру, в науке известен так называемый «Эксперимент с 2-мя щелями и наблюдателем». На непрозрачную пластинку, в которой были сделаны две вертикальные щели, ученые направляли пучок электронов. На экране, находившемся за пластиной, электроны рисовали волновую картину. Иными словами, они оставляли черные и белые полосы. Когда же исследователи захотели понаблюдать, каким образом электроны пролетают через щели, то частицы отобразили на экране всего лишь две вертикальные полосы. Они вели себя как частицы, а не как волны.

Копенгагенское объяснение

Современное объяснение теории Шредингера носит название копенгагенского. Исходя из парадокса наблюдателя, оно звучит следующим образом: до тех пор, пока никто не наблюдает за ядром атома в системе, оно находится одновременно в двух состояниях - распавшемся и нераспавшемся. Однако утверждение о том, что кот жив и мертв одновременно, крайне ошибочно. Ведь в макромире никогда не наблюдаются те же явления, что и в микромире.

Поэтому речь идет не о системе «кот-ядро», а о том, что между собой связаны счетчик Гейгера и ядро атома. Ядро может выбрать то или иное состояние в момент, когда производятся измерения. Однако данный выбор имеет место не в тот момент, когда экспериментатор открывает ящик с котом Шредингера. На самом деле, открытие ящика имеет место в макромире. Иными словами, в системе, которая очень далека от атомного мира. Поэтому ядро выбирает свое состояние именно в тот момент, когда оно попадает на детектор счетчика Гейгера. Таким образом, Эрвин Шредингер в своем мысленном эксперименте описал систему недостаточно полно.

Общие выводы

Таким образом, не совсем корректно связывать макросистему с микроскопическим миром. В макромире квантовые законы теряют свою силу. Ядро атома может находиться одновременно в двух состояниях только лишь в микромире. То же самое не может быть сказано относительно кота, поскольку он является объектом макромира. Поэтому только на первый взгляд создается впечатление, что кот переходит из суперпозиции в одно из состояний в момент открытия ящика. В действительности его судьба определяется в тот момент, когда атомное ядро взаимодействует с детектором. Вывод можно сделать такой: состояние системы в загадке Эрвина Шредингера никак не связано с человеком. Оно зависит не от экспериментатора, а от детектора - предмета, который «ведет наблюдение» за ядром.

Продолжение концепции

Теория Шредингера простыми словами описывается так: пока наблюдатель не смотрит на систему, она может находиться одновременно в двух состояниях. Однако еще один ученый - Юджин Вигнер, пошел дальше и решил довести концепцию Шредингера до полного абсурда. "Позвольте! - сказал Вигнер, - А что если рядом с экспериментатором, наблюдающим за котом, стоит его коллега?" Напарник не знает о том, что именно увидел сам экспериментатор в тот момент, когда открыл коробку с котом. Кот Шредингера выходит из состояния суперпозиции. Однако никак не для коллеги наблюдателя. Только в тот момент, когда последнему станет известна судьба кота, животное можно окончательно назвать живым или мертвым. Кроме того, на планете Земля живут миллиарды людей. И самый последний вердикт можно будет вынести только тогда, когда результат эксперимента станет достоянием всех живых существ. Конечно, всем людям можно рассказать судьбу кота и теорию Шредингера кратко, однако это очень долгий и трудоемкий процесс.

Принципы квантового дуализма в физике так и не были опровергнуты мысленным экспериментом Шредингера. В каком-то смысле каждое существо можно назвать ни живым и ни мертвым (находящимся в суперпозиции) до тех пор, пока есть хотя бы один человек, за ним не наблюдающий.

Джон Гриббин

В поисках кота Шредингера. Квантовая физика и реальность

Мне все это не нравится, и я сожалею, что вообще был в этом замешан.

Эрвин Шрёдингер 1887-1961

Ничто не реально.

Джон Леннон 1940-1980

IN SEARCH OF SCHRÖDINGER’S CAT

Quantum Physics and Reality


Перевод с английского З. А. Мамедьярова, Е. А. Фоменко


© 1984 by John and Mary Gribbin

Благодарности

Мое знакомство с квантовой теорией состоялось более двадцати лет назад, еще в школе, когда я обнаружил, что теория оболочечного строения атома магическим образом объясняла всю периодическую систему элементов и практически всю химию, с которой я мучился на множестве скучных уроков. Я сразу же начал копать дальше, прибег к помощи библиотечных книг, как утверждалось, «слишком сложных» для моей скромной научной подготовки, и сразу же заметил прекрасную простоту объяснения атомного спектра с позиции квантовой теории и впервые открыл для себя, что лучшее в науке одновременно прекрасно и просто, а этот факт слишком многие учителя – случайно или нарочно – скрывают от своих учеников. Я чувствовал себя прямо как герой романа «Поиск» Ч. П. Сноу (хотя и прочитал его гораздо позже), который открыл то же самое:

Я заметил, как перепутанные случайные факты вдруг встали на свои места… «Но это истина, – сказал я себе. – Это прекрасно. И это истина». (Издание А, 1963, с. 27.)

Отчасти благодаря этому озарению в университете я решил изучать физику. В положенный срок мои амбиции осуществились, и я стал студентом университета Сассекса в Брайтоне. Но там простоту и красоту глубинных идей затмило многообразие деталей и математических методов решения конкретных проблем с помощью уравнений квантовой механики. Применение этих идей к миру современной физики давало, пожалуй, примерно такое же представление о глубинной красоте и истине, какое дает пилотирование Boeing 747 о дельтапланеризме. Хотя сила изначального озарения по-прежнему оказывала наиболее существенное влияние на мою карьеру, долгое время я не обращал внимания на квантовый мир и открывал для себя другие прелести науки.

Угольки того раннего интереса разгорелись вновь благодаря сочетанию нескольких факторов. В конце 1970-х и начале 1980-х годов начали появляться книги и статьи, которые с переменным успехом пытались объяснить странный квантовый мир далекой от науки аудитории. Некоторые из так называемых «популярных текстов» были так чудовищно далеки от правды, что я не мог даже вообразить, что найдется читатель, который поймет истинность и красоту науки, изучив их, а потому захотел рассказать все как есть. В то же время появились сведения о длительных сериях научных экспериментов, которые доказали реальность ряда самых странных аспектов квантовой теории, и эти сведения заставили меня снова отправиться в библиотеки и освежить свое представление об этих удивительных вещах. И наконец, однажды на Рождество представители ВВС пригласили меня принять участие в радиопрограмме в качестве своеобразного научного оппонента Малкольма Маггериджа, который только что объявил о своем обращении в католичество и был главным гостем в то праздничное время. После того как этот великий человек высказал свою точку зрения, подчеркнув загадочность христианства, он повернулся ко мне и сказал: «Но здесь есть тот, кто знает все ответы – или утверждает, что знает их все». Время было ограниченно, и я постарался дать достойный отпор, указав, что наука не утверждает, будто располагает всеми ответами, и как раз религия, а не наука, полностью полагается на безграничную веру и убеждение, что истина известна. «Я ни во что не верю», – сказал я и начал было объяснять свою позицию, но в этот момент программа подошла к концу. Все рождественские каникулы друзья и знакомые напоминали мне об этих словах, а я часами твердил, что отсутствие у меня безграничной веры во что-либо не мешает мне жить нормальной жизнью, используя вполне разумную рабочую гипотезу о том, что солнце вряд ли исчезнет за одну ночь.

Все это помогло мне разложить по полочкам собственные мысли о сущности науки в процессе длительных дискуссий о базовой реальности – или нереальности – квантового мира, и этого оказалось достаточно, чтобы я убедился, что могу написать книгу, которую вы теперь держите в руках. Работая над ней, я проверил многие из более тонких аргументов в ходе своих регулярных появлений в научной радиопрограмме Вещательной корпорации Британских вооруженных сил, ведущим которой был Томми Вэнс. Пытливые вопросы Тома быстро вскрывали несовершенства моей презентации, и с их помощью я смог организовать свои идеи лучшим образом. Основным источником справочных материалов, которые я использовал при написании книги, стала библиотека университета Сассекса, где содержится, пожалуй, одна из лучших коллекций книг по квантовой теории в мире, а более редкие материалы мне подобрала Мэнди Кэплин из журнала New Scientist, которая настойчиво слала мне сообщения по телетайпу, в то время как Кристина Саттон скорректировала мое неверное представление о физике частиц и теории поля. Моя жена не только оказала мне неоценимую помощь при обзоре литературы и организации материала, но и смягчила множество острых углов. Я также благодарен профессору Рудольфу Пирлсу за то, что он в деталях объяснил мне кое-какие тонкости эксперимента с часами в коробке и парадокса Эйнштейна – Подольского – Розена.

Всем хорошим, что есть в этой книге, она обязана: «сложным» текстам по химии, названий которых я уже не помню и которые я обнаружил в Библиотеке графства Кент в возрасте шестнадцати лет; горе-«популяризаторам» квантовых идей, убедившим меня в том, что я смогу описать их лучше; Малкольму Маггериджу и ВВС; библиотеке университета Сассекса; Томми Вэнсу и BFBS; Мэнди Кэплин и Кристине Саттон и особенно Мин. Любые жалобы, касающиеся тех недостатков, что все же остались в этой книге, должны быть, конечно, адресованы мне.

Джон Гриббин

Июль 1983 года

Введение

Если сложить все книги и статьи о теории относительности, написанные для простых людей, то стопка, вероятно, дотянется до Луны. «Все знают», что теория относительности Эйнштейна – это самое великое достижение науки XX столетия, и все ошибаются. Однако если сложить все книги и статьи о квантовой теории, написанные для простых людей, то они легко поместятся на моем столе. Это не значит, что о квантовой теории не слышали за стенами академий. Квантовая механика даже стала популярна в определенных слоях: при помощи нее пытались объяснить телепатию и сгибание ложек, в ней черпали вдохновение для множества научно-фантастических историй. В популярной мифологии квантовая механика связывается – если связывается вообще – с оккультизмом и экстрасенсорным восприятием, то есть странной, эзотерической ветвью науки, которую никто не понимает и которой никто не может найти практического применения.

Эта книга написана в противовес такому восприятию того, что по сути является самой фундаментальной и важной областью научного знания. Своим происхождением эта книга обязана нескольким обстоятельствам, которые возникли летом 1982 года. Во-первых, я только что дочитал книгу о теории относительности под названием «Искривления пространства» и решил, что пора взяться за демистификацию другой великой ветви науки двадцатого века. Во-вторых, в то время меня все больше раздражали неверные идеи, которые бытовали под именем квантовой теории в среде людей, далеких от науки. Великолепная книга «Дао физики» Фритьофа Капры способствовала появлению множества подражателей, которые не понимали ни физики, ни дао, но чувствовали, что можно сделать деньги, связав западную науку с восточной философией. И наконец, в августе 1982 года из Парижа пришли новости о том, что группа ученых успешно провела важнейший эксперимент, который подтвердил – для тех, кто все еще сомневался, – точность квантово-механического представления о мироздании.

Не ищите здесь «восточного мистицизма», сгибания ложек или экстрасенсорики. Ищите правдивую историю квантовой механики, истина в которой более удивительна, чем любой вымысел. Такова наука: она не нуждается в нарядах с плеча другой философии, ведь она и сама полна красот, таинств и сюрпризов. Эта книга пытается ответить на конкретный вопрос: «Что такое реальность?» И ответ (или ответы) может удивить вас. Возможно, вы в него не поверите. Но вы поймете, как смотрит на мир современная наука.

Ничто не реально

Кот, который фигурирует в заглавии, – это мифическое существо, но Шрёдингер существовал на самом деле. Эрвин Шрёдингер был австрийским ученым, в середине 1920-х годов сыгравшим огромную роль в создании уравнений определенной ветви науки, которая теперь называется квантовой механикой. Однако сказать, что квантовая механика – это лишь ветвь науки, едва ли верно, ведь она лежит в основе всей современной науки. Ее уравнения описывают поведение очень маленьких объектов – размера атомов и меньше – и представляют собой единственное описание мира мельчайших частиц. Без этих уравнений физики не смогли бы разработать проекты рабочих атомных электростанций (или бомб), создать лазеры или объяснить, каким образом не снижается температура Солнца. Без квантовой механики химия по-прежнему пребывала бы в Темных веках и вовсе не появилась бы молекулярная биология: не было бы ни знаний о ДНК, ни генной инженерии – ничего.

Как гипотетическом примере того, как вполне привычный нам в обыденной жизни, макроскопический объект (кот) мог бы проявлять квантовые свойства.

Самая соль этих свойств состоит в так называемом квантовом перепутывании или запутанности (англ. "entanglement"). Название этого явления, в общем, отражает его суть. Действительно, в рассмотренном примере перепутанными (иначе говоря, жёстко связанными друг с другом) оказываются состояния радиоактивного ядра и кота. Важным аспектом именно квантового перепутывания является наличие неопределённости в этих состояниях. Т.е., мы не знаем жив ли кот или нет, не знаем также, распалось или нет ядро. Однако нам достоверно известно, что распадётся ядро - умрёт кот, не распадётся - кот будет жив.

Интерес к этому явлению среди современных учёных большой, и связан он с идеей создания квантового компьютера, а также организацией безопасных каналов связи. Это и заставляет раз за разом предпринимать попытки создания в лабораториях если не котов, то хотя бы котят Шрёдингера, т.е. объекты более осязаемые и крупные (мезоскопические), а, значит, поддающиеся более простому контролю, чем отдельные микрочастицы, но проявляющие те же самые свойства квантового перепутывания, что и Шрёдингеровский кот.

Но и менее экзотических, чем лабораторные Шрёдингеровские котята, примеров квантового перепутывания природой создано предостаточное количество. Пожалуй, наиболее доступное проявление перепутанности имеет место всё в том же, любимом всеми нами, атоме. Возьмём самый простой из атомов - первый элемент таблицы Менделеева - водород. Как и все прочие атомы, состоит он из ядра и электронов, но прелесть именно атома водорода в том, что электрон у него всего один, а ядро представляет собой, опять же, единственную и почти совсем элементарную частицу - протон, отличающуюся от электрона, главным образом, положительным знаком электрического заряда и весьма нехилой массой (превышающей массу электрона почти в 2000 раз).

В одном из своих я рассказывал о том, что некоторые микрочастицы, в частности, электрон обладают такой характеристикой как спин, или, если пользоваться простой аналогией, крутятся вокруг своей оси в каком-либо из двух направлений (по или против часовой стрелки), которое, в свою очередь, определяется одним из двух значений так называемой проекции спина. Так вот протон, как и электрон, имеет спин и может "вращаться" вправо или влево. Притом, оказывается, что "наиболее комфортным" состоянием с наименьшей энергией для электрона и протона, образующих атом водорода, является то, в котором вращаются они в противоположных направлениях, как бы компенсируя спины друг друга, так что общая его проекция равна нулю (этот факт, кстати, используется для различных астрофизических наблюдений).

В этой-то особенности водорода и кроется заветная перепутанность и крохотный, размером с атом, Шрёдингеровский котёнок. Действительно, пока мы не поставили соответствующих экспериментов и не измерили проекции спина частиц, мы не знаем, вращается ли протон вправо или влево. То же самое мы можем сказать и об электроне. Однако, что знаем мы точно, так это то, что если электрон вращается против часовой стрелки, то протон - по ней, и наоборот.

В своей знаменитой статье 1935 года А.Эйнштейн, Б.Подольский и Н.Розен указали на изъяны квантовой теории, которая оперирует подобными запутанными состояниями (их называют EPR-парами по первым буквам фамилий авторов статьи), в частности, приводящий к кажущемуся противоречию с теорией относительности и парадоксальному нарушению причинно-следственных связей. Но об этом уже в .

А так квантовое запутывание представляют себе некоторые художники...