Молниезащита и заземление. Устройство молниезащиты и ее заземления Одиночный стержневой молниеотвод назначение

Молниезащита и заземление. Устройство молниезащиты и ее заземления Одиночный стержневой молниеотвод назначение
Молниезащита и заземление. Устройство молниезащиты и ее заземления Одиночный стержневой молниеотвод назначение

Типы и устройство молниеотводов

Молниеотвод - устройство, устанавливаемое на зданиях и сооружениях и служащее для защиты от удара молнии. В быту также употребляется некорректное, но более благозвучное «громоотвод».

Во время грозы появляются большие индуцированные заряды, и у поверхности Земли возникает сильное электрическое поле. Напряжённость поля особенно велика возле острых проводников, и поэтому на конце молниеотвода зажигается коронный разряд.

Вследствие этого индуцированные заряды не могут накапливаться на здании и молнии не происходит. В тех же случаях, когда молния всё же возникает (такие случаи очень редки), она ударяет в молниеотвод и заряды уходят в Землю, не причиняя разрушений.

Здания и сооружения защищают от прямых ударов молнии различными по конструкции молниеотводами. Но любой из молниеотводов включает в себя четыре основные части: молниеприемник, непосредственно воспринимающий удар молнии; токоотвод, соединяющий молниеприемник с заземлителем; заземлитель, через который ток молнии стекает в землю; несущую часть (опору или опоры), предназначенную для закрепления молниеприемника и токоотвода.

В зависимости от конструкции молниеприемника различают молниеотводы:

Стержневые

Тросовые

Сетчатые

Комбинированные.

По числу совместно действующих молниеприемников их делят на:

Одиночные

Двойные

Многократные.

Кроме того, по месту расположения молниеотводы бывают:

Отдельно стоящие

Изолированные

Не изолированные

Защитное действие молниеотвода основано на свойстве молнии поражать наиболее высокие и хорошо заземленные металлические сооружения. Благодаря этому свойству более низкое по высоте защищаемое здание практически не поражается молнией, если оно входит в зону защиты молниеотвода. Зоной защиты молниеотвода называется часть пространства, примыкающая к нему и с достаточной степенью надежности (не менее 95%) обеспечивающая защиту сооружений от прямых ударов молнии.

Наиболее часто для защиты зданий и сооружений применяют стержневые молниеотводы.

Молниеприемник стержневого молниеотвода представляет собой вертикально расположенный стальной стержень любого профиля длиной 2… 15 м и площадью поперечного сечения не менее 100 мм 2 , укрепленный на опоре, расположенной, как правило, не ближе 5 м от защищаемого объекта. Молниеприемник соединяют с заземлителем токоотводом, выполненным из стальной проволоки диаметром не менее 6 мм, а в случае прокладки токоотвода в земле - не менее 10 мм. При устройстве молниеприемников непосредственно на крыше здания выполняют как минимум два токоотвода, а при ширине крыши более 12 м - четыре. Если длина защищаемого объекта более 20 м, то на каждые последующие 20 м длины требуется устанавливать дополнительные токоотводы; при ширине здания до 12 м - на обеих сторонах здания. Все соединения (молниеприемник - токоотвод, токоотвод - заземлитель) следует сваривать. В качестве стержневых молниеотводов необходимо максимально использовать существующие вблизи защищаемого объекта высокие сооружения: водонапорные башни, вытяжные трубы и т.п. Деревья, растущие на расстоянии не более 5 м от зданий III…V степеней огнестойкости, также можно использовать в качестве опоры молниеотвода, если на стене здания напротив дерева на всю высоту стены проложить токоотвод, приварив его к заземлителю молниеотвода.

Тросовые молниеотводы чаще всего применяют для защиты зданий большой длины и высоковольтных линий. Эти молниеотводы изготовляют в виде горизонтальных тросов, закрепленных на опорах, по каждой из которых прокладывают токоотвод. Молниеприемники тросовых молниеотводов выполняют из стального многопроволочного оцинкованного троса сечением не менее 35 мм 2 . Следует отметить, что стержневые и тросовые молниеотводы обеспечивают одинаковую степень надежности защиты.

В качестве молниеприемников можно использовать металлическую крышу, заземленную по углам и по периметру не реже чем через каждые 25 м, или наложенную на неметаллическую крышу сетку из стальной проволоки диаметром не менее 6 мм, имеющую площадь ячеек до 150мм 2 , с узлами, закрепленными сваркой, и заземленную так же, как металлическая крыша. К сетке или токопроводящей кровле присоединяют металлические колпаки над дымовыми и вентиляционными трубами, а в случае отсутствия колпаков - специально наложенные на трубы проволочные кольца .

Заземлители МЗС

МЗС нужен, чтобы отвести в землю ток молнии после ее удара в молниеприемник. Но для этой цели нет нужды в специальном контуре заземления. Току молнии некуда деваться. Он безо всякого заземлителя растечется в грунте после удара молнии в поверхность земли или, например, в дерево.

Может быть при низком сопротивлении заземления молниеотвод эффективнее притягивает молнию? Теория и эксперимент дают здесь отрицательный ответ. Для притяжения молнии важен рост плазменного канала от вершины объекта, так называемого встречного лидера. Развитие лидера сопровождается током через сопротивление заземления молниеотвода и на нем теряется напряжение. Однако потеря очень мала, потому что этот ток вряд ли превышает 10 - 20 А. Даже на сопротивлении заземления Rз = 000 Ом потеря напряжения составит 10 - 20 кВ - величина пренебрежимо малая по сравнению с потенциалом 20 - 100 кВ, который несет к земле канал молнии. Итак, рассмотренные причины отпадают. Остается одно - безопасность процесса растекания тока молнии в земле. При ударе в молниеотвод ток молнии может превысить 100 кА. Даже в случае качественного заземления молниеотвода с сопротивлением заземления Rз ~ 10 Ом речь пойдет о напряжении порядка 1000 кВ. Столь сильный подброс напряжения становится причиной больших напряжений. Прикосновения к металлоконструкциям молниеотвода, на достаточно большом расстоянии от молниеотвода возникают опасные шаговые напряжения, между зеземлителем и подземными коммуникациями (например, кабелями цепей управления) действуют высокие напряжения, достаточные для искрового пробоя грунта и ввода в эти коммуникации значительной доли тока молнии. При очень высоком напряжении возможен даже искровой пробой по воздуху на металлоконструкции объекта, которые этот молниеотвод призван защищать .

  • Причины загораний комплектующих элементов
  • 1.4. Вероятностная оценка пожароопасных отказов в электротехнических устройствах
  • 1.5. Пожарная опасность комплектующих элементов электротехнических устройств
  • Глава 2
  • Нормативная оценка классов взрыво- и пожароопасных зон и их размеров
  • Аналитическая оценка классов взрыво- и пожароопасных зон и их размеров
  • 2.2. Классификация взрывоопасных смесей по группам и категориям
  • 2.3. Взрывозащищенное электрооборудование Классификация взрывозащищенного электрооборудования
  • Электрооборудование взрывозащищенное с видом взрывозащиты «взрывонепроницаемая оболочка»
  • Электрооборудование взрывозащищенное с защитой вида «е» (повышенной надежности против взрыва)
  • Электрооборудование взрывозащищенное с видом взрывозащиты «искробезопасная электрическая цепь»
  • Электрооборудование взрывозащищенное с видом взрывозащиты «масляное заполнение оболочки с токоведущими частями»
  • Электрооборудование взрывозащищенное с видом взрывозащиты «заполнение или продувка оболочки под избыточным давлением»
  • Электрооборудование взрывозащищенное с видом взрывозащиты «кварцевое заполнение оболочки»
  • Электрооборудование взрывозащищенное со специальным видом взрывозащиты
  • 2.4. Маркировка взрывозащищенного электрооборудования
  • 2.5. Зарубежное взрывозащищенное электрооборудование
  • 2.6. Особенности выбора, монтажа, эксплуатации и ремонта взрывозащищенного электрооборудования
  • 2.7. Особенности выбора, монтажа и эксплуатации электрооборудования пожароопасных зон и помещений с нормальной средой
  • 2.8. Контроль за противопожарным состоянием электроустановок
  • Глава 3 аппараты защиты в электроустановках
  • 3.1. Плавкие предохранители Принцип устройства и работы плавких предохранителей
  • Защитная характеристика предохранителя
  • Способы улучшения защитных характеристик предохранителей
  • Типы плавких предохранителей для установок напряжением до 1000 в
  • 3.2. Автоматические выключатели (автоматы)
  • Устройство и принцип работы небыстродействующих автоматов
  • Защитные характеристики автоматов
  • Типы установочных автоматов
  • 3.3. Тепловые реле
  • 3.4. Выбор аппаратов защиты
  • Требования к аппаратам защиты
  • Iср.Эл.М 1,25Iмакс;
  • Iкз (к) / Iн.Тепл 6;
  • Iкз (к) / Iн.Тепл 3.
  • Селективность (избирательность) действия аппаратов защиты
  • Выбор мест установки аппаратов защиты в зависимости от условий пожарной безопасности и технических условий
  • 3.5. Устройство защитного отключения (узо)
  • Глава 4 пожарная безопасность и методы расчета электрических сетей
  • 4.1. Нагрев проводников электрическим током
  • 4.2. Допустимая нагрузка на проводники по нагреву
  • 4.3. Пожарная опасность короткого замыкания в электрических сетях
  • 4.4. Противопожарная защита электрических сетей при проектировании
  • Расчет сетей по условиям нагрева. Выбор аппаратов защиты
  • Расчет сетей по потере напряжения
  • 4.5. Противопожарная защита электрических сетей при монтаже и эксплуатации
  • 4.6. Профилактика пожаров на вводах электрических сетей в здания и сооружения объектов агропромышленного комплекса
  • Глава 5 электродвигатели, трансформаторы и аппараты управления
  • 5.1. Общие сведения об электродвигателях
  • 5.2. Аварийные пожароопасные режимы работы электродвигателей
  • 5.3. Пожарная опасность трансформаторов
  • 5.4. Снижение пожароопасности электроизоляции обмоток элетродвигателей и трансформаторов
  • 5.5. Пожарная опасность электрических аппаратов управления
  • Глава 6 электроосветительные установки
  • 6.2. Осветительные приборы и светильники
  • 6.3. Системы и виды электрического освещения
  • 6.4. Расчет электрического освещения
  • 6.5. Пожарная опасность осветительных приборов
  • 6.6. Профилактика пожаров от осветительных приборов
  • Глава 7 заземление и зануление в электроустановках напряжением до 1000 в
  • 7.1. Опасность поражения электрическим током
  • 7.2. Заземление и зануление электроустановок как устройств электро- и пожарной безопасности
  • 7.3. Устройство заземлений и занулений
  • 7.4. Расчет заземляющих устройств
  • 7.5. Защитные заземления и зануления во взрывоопасных зонах
  • 7.6. Эксплуатация и испытания заземляющих устройств
  • Глава 8 молниезащита
  • 8.1. Молния и ее характеристики
  • 8.2. Пожаро- и взрывоопасность воздействия молнии
  • Воздействия прямого удара молнии
  • Вторичные воздействия молнии
  • 8.3. Классификация зданий и сооружений по устройству молниезащиты Категории молниезащиты
  • Обязательность устройства молниезащиты
  • Требования к устройствам молниезащиты
  • 8.4. Молниеотводы
  • Конструктивное выполнение молниеотводов
  • Зоны защиты молниеотводов
  • 8.5. Защита зданий и сооружений от прямых ударов молнии Защита зданий и сооружений I категории
  • Защита зданий и сооружений II категории
  • Защита взрывоопасных наружных технологических установок и открытых складов
  • Защита зданий и сооружений III категории
  • 8.6. Защита зданий и сооружений от вторичных воздействий молнии
  • 8.7. Эксплуатация устройств молниезащиты Испытания и приемка в эксплуатацию устройств молниезащиты
  • Контроль состояния и обслуживание устройств молниезащиты
  • Глава 9 защита взрывоопасных производств от разрядов статического электричества
  • 9.1. Общие представления об электризации
  • 9.2. Воспламеняющая способность искр статического электричества и его физиологическое воздействие на организм человека
  • 9.3. Приборы для измерения параметров статического электричества
  • 9.4. Способы устранения опасности статического электричества
  • Заземление
  • Уменьшение объемного и поверхностного удельных электрических сопротивлений
  • Ионизация воздуха
  • Дополнительные способы уменьшения опасности от статической электризации
  • 9.5. Эксплуатация устройств защиты от разрядов статического электричества
  • Глава 10 технико-экономическая эффективность решений противопожарной защиты электроустановок, молниезащиты и защиты от статического электричества
  • Приложения
  • Технические данные предохранителей
  • Технические данные автоматов серии а3100
  • Технические характеристики автоматов а3713б
  • Технические данные автоматов типа ап-50 с комбинированным расцепителем на переменный ток
  • Технические характеристики автоматов серии ва
  • Технические параметры однополюсных автоматов серии ае1000 и трехполюсных серии ае200
  • Технические данные магнитных пускателей серии пме и па
  • Допустимая потеря напряжения в осветительных и силовых сетях
  • Значение коэффициента с для определения (по упрощенной формуле) сечений проводников и потери напряжения в электропроводках
  • Коэффициенты использования вертикальных заземлителей ηв и горизонтальных соединительных полос ηг
  • Перечень стандартов на взрывозащищенное электрооборудование
  • Литература
  • 129366, Москва, ул. Б. Галушкина, 4
  • 8.4. Молниеотводы

    Средством защиты от прямых ударов молнии служит молниеотвод – устройство, рассчитанное на непосредственный контакт с каналом молнии и отводящее ее ток в землю.

    Конструктивное выполнение молниеотводов

    Здания и сооружения от прямых ударов защищают молниеотводами, каждый из которых конструктивно состоит из молниеприемника, непосредственно воспринимающего удар молнии, токоотвода, соединяющего молниеприемник с заземлителем, и заземлителя, через который ток молнии стекает в землю. Вертикальная конструкция (столб, мачта) или часть сооружения, предназначенная для закрепления молниеприемника и токоотвода, называется опорой молниеотвода.

    Опоры стержневых и тросовых молниеотводов, как отдельно стоящих, так и устанавливаемых на защищаемом объекте, могут быть деревянными, металлическими и железобетонными (рис. 8.9).

    Деревянная опора обычно состоит из основной стойки и пасынков, выполненных из дерева или железобетона (последние предпочтительнее). Деревянные части, особенно подземные, антисептируют. Высота такого молниеотвода редко превышает 25 м. В землю опора зарывается на 0,1–0,2 ее полной высоты в зависимости от грунта. Для опор используют древесину хвойной породы (сосна, лиственница, ель, пихта). Диаметр бревна в верхнем срубе должен быть не менее 100 мм.

    Опоры высотой более 8-10 м выполняют на одном или двух пасынках (рис. 8.9, а ), высота которых зависит от высоты молниеотвода. Для увеличения срока службы деревянных опор рекомендуется применять железобетонные пасынки, особенно в грунтах, где процесс гниения наиболее интенсивен (в суглинках). Железобетонные пасынки изготовляют из бетона марки не ниже М200, армированного круглой сталью марки Ст 3 или Ст 5. В поперечнике пасынки могут быть прямоугольного двутаврового, круглого и других сечений.

    Рис. 8.9. Конструкции стержневых молниеотводов и молниеприемников:

    а – на деревянной опоре;б – металлический решетчатый типа М-25;в – на железобетонной опоре;г – молниеприемник из металлических труб, установленных на крыше;1 – опора (стойка);2 – молниеприемник;3 – подножник;4 – токопровод (спуск);5 – фланец;6 – оттяжка

    Металлическую опору для молниеотвода высотой 20-75 м (рис. 8.9, б ) чаще всего выполняют в виде жесткой решетчатой конструкции. Ее устанавливают на четырех железобетонных подножниках, наверху к ней приваривают молниеприемник и предохраняют от коррозии регулярной окраской. Такой молниеотвод не требует специального токоотвода, так как сам хорошо проводит ток.

    Железобетонные опоры могут быть различной формы (рис. 8.9, в ), арматура в них частично или полностью предварительно напряженная. Бетон может быть вибрированным или центрифугированным. На вершине опоры устанавливают молниеприемник и соединяют с токоотводом, который прокладывают по опоре. В некоторых случаях молниеприемник соединяют с арматурой, используемой в качестве токоотвода. Но именно эти места оказываются нередко ненадежными, так как требуется либо вывод части арматуры наружу, либо пропуск в нее соединительных проводников. На этих участках постепенно начинается разрушение, особенно в прибрежных районах морей. Железобетонные опоры экономически более выгодны, они проще в эксплуатации и долговечны. Опоры стержневых молниеотводов должны быть рассчитаны на механическую прочность как свободно стоящие конструкции, а опоры тросовых молниеотводов – с учетом натяжения троса и действия на него ветровой и гололедной нагрузки.

    Молниеотводы, устанавливаемые на сооружении, делятся на настенные и кровельные . Первые применяют чаще, их молниеприемники изготавливают из трубы или угловой стали и закрепляют посредством скоб, хомутов или кронштейнов. Молниеприемники кровельные (рис. 8.9, г ) чаще всего выполняют из труб разного диаметра и снабжают фланцами для крепления к крыше при помощи болтов. Дополнительная устойчивость достигается посредством оттяжек из полосовой или угловой стали. Высота таких молниеприемников колеблется от 5 до 10 м. Опорами стержневых молниеотводов могут служить стволы деревьев, растущих вблизи защищаемых зданий и сооружений. При этом если дерево находится на расстоянии менее 5 м от зданий и сооружений III, IV и V степени огнестойкости (II и III категория молниезащиты), то необходимо по стене защищаемого здания против ствола проложить токоотвод и присоединить под землей к заземлителю или же от молниеприемника токоотвод перебросить на другое дерево, на отдельную стойку, отстоящие от здания более чем на 5 м. Если дерево невысокое, то на него устанавливают шест с молниеприемником, это удешевляет молниезащиту. Кроме того, деревья создают дополнительное экранирование от заряженного облака.

    Для тросовых молниеотводов можно использовать те же опоры, но требуется иногда повышать их устойчивость оттяжками или подкосами. Выбор того или иного материала опор обуславливается в основном необходимой высотой молниеотводов, расчетными механическими нагрузками, а также экономическими соображениями. Следует также учитывать их сочетание с архитектурой защищаемого объекта, климатическими условиями.

    Молниеприемники стержневые, тросовые и в виде сетки непосредственно воспринимают прямой удар молнии и должны выдерживать ее термическое и динамическое воздействия, быть надежными в эксплуатации.

    Стержневые молниеприемники изготовляются из покрытой антикоррозийной защитой (оцинкование, лужение, покраска) круглой и угловой стали или из некондиционных водогазопроводных труб. Конец трубы сплющивают или надежно закрывают металлической пробкой. Наименьшее сечение молниеприемника должно быть 100 мм 2 (это позволяет выдержать термические и динамические воздействия тока молнии), а длина не менее 200 мм.

    В качестве молниеприемников можно использовать дымовые, выхлопные и другие металлические трубы объекта, дефлекторы (если они не выбрасывают горючие пары и газы), кровлю и другие металлические элементы сооружений.

    Применяют молниеприемники и в виде сетки, сваренной из круглой стали диаметром 6-8 мм или полосовой стали сечением не менее 48 мм 2 , уложенных на кровлю под гидро- или теплоизоляцию (если они несгораемые). Это не затруднит отток воды с кровли и очистку от снега. Шаг ячейки берут 66 м для зданий II категории, а для зданий III - 1212 м.

    Однако укладка сеток рациональна лишь в зданиях с горизонтальными крышами, где равновероятно поражение молнией любого их участка. При больших уклонах крыши наиболее вероятны удары молнии вблизи ее конька, и в этих участках укладка сетки по всей поверхности кровли приведет к неоправданным затратам металла. В этом случае более экономичен вариант установки стержневых или тросовых молниеприемников, в зону защиты которых входит весь объект. По этой причине укладка молниеприемной сетки рекомендуется на неметаллических кровлях с уклоном не более 1:8.

    Иногда возвышающиеся элементы кровли снабжают молниеприемниками, соединенными с сеткой посредством сварки. На деревьях молниеприемником может служить выступающий конец токоотвода в виде петли на участке до 400 мм от верхней точки. Тросовый молниеприемник выполняют из стального многопроволочного и только оцинкованного троса диаметром до 7 мм (сечение не менее 35 мм 2).

    Токоотводы молниеотводов применяют для соединения молниеприемников с заземлителями из стали любого профиля. Их рассчитывают на пропускание полного тока молнии без нарушений и существенного перегрева. Они должны быть оцинкованы, пролужены или окрашены для предупреждения коррозии. Не рекомендуется применять многопроволочный стальной трос, если у него не оцинкована каждая нить. Наименьшее сечение токоотводов, выполненных из угловой и полосовой стали и расположенных вне сооружения на воздухе, равно 48 мм 2 , для расположенных внутри – 24 мм 2 , а круглые токоотводы должны иметь наименьший диаметр 6 мм. Токоотводами могут служить арматура железобетонных конструкций, направляющие лифтов, пожарные лестницы, водопроводные, водосточные и канализационные трубы, колонны, стенки резервуаров, электрически надежно связанные по всей длине.

    Соединения токоотводов, специальных и естественных, должны быть сварными (внахлест). Количество их необходимо резко ограничить. Болтовые соединения допускают только для объектов сIII категорией устройства молниезащиты и тогда их не окрашивают, а лудят. С заземлителями токоотводы соединяют только сваркой, и площадь контакта во всех случаях не менее двух площадей сечения деталей, а длина – около шести диаметров проволоки или двойной ширины полосы или полки уголка. Если токоотводы присоединяют к отдельным заземлителям и они электрически связаны друг с другом, то на высоте около 1,5 м от поверхности земли устанавливают надежный болтовой зажим, позволяющий отсоединить токоотвод для контроля заземлителя (рис. 8.10). Токоотводы от молниеприемников прокладывают кратчайшим путем к заземлителю. От входов в здания их нужно располагать на таком расстоянии, чтобы с ними не могли соприкасаться люди. Необходимо избегать острых углов и тем более петель в токоотводе, так как значительные электродинамические усилия при больших токах молнии могут разорвать его на этих участках или вызвать искровое перекрытие между ближайшими точками петли. Металлическая кровля, короба и трубы могут быть соединены с токоотводами болтовыми зажимами (рис. 8.11).

    Заземляющие устройства являются важнейшим элементом в комплексе средств обеспечения защиты объектов от прямого удара молнии, заноса высоких потенциалов по коммуникациям и электростатической индукции. Основной частью их являются собственно заземлители, находящиеся в достаточно хорошо проводящей среде.

    Заземлитель молниезащиты – один или несколько заглубленных в землю проводников, предназначенных для отвода в землю токов молнии или ограничения перенапряжений, возникающих на металлических корпусах, коммуникациях при близких разрядах молнии. Они бывают одиночными (простыми) или сложными (комбинированными). К первым относятся трубы, электроды из круглой, полосовой, угловой и листовой стали, железобетонные подножки и сваи, а сложные образуются из комбинаций простых. Одиночные делятся на сосредоточенные и протяженные. У первых потенциал практически по длине не изменяется, у вторых потенциалы начала и конца отличаются друг от друга вследствие большой длины электродов, малого их сечения, высокого удельного сопротивления материалов или высокой удельной проводимости грунта.

    Рис. 8.11. Зажим для присоединения плоского (а ) и круглого (б ) токоотводов к металлической кровле:

    1 – токоотвод;2 – кровля;3 – свинцовая прокладка;4 – стальная пластина;5 – пластина с приваренным токоотводом

    Еще различают искусственные и естественные заземлители.

    Искусственные заземлители – специально проложенные в земле контуры из полосовой или круглой стали, сосредоточенные конструкции, состоящие из вертикальных и горизонтальных проводников.

    Естественные заземлители – заглубленные в землю металлические и железобетонные конструкции зданий и сооружений.

    Заземлители могут быть поверхностными и углубленными . Последние обычно изготовляют из круглой или полосовой стали и укладывают в глубокие котлованы или траншеи, чаще всего по периметру фундамента, если последний не может быть использован в качестве естественного заземлителя. Наконец, существуют вертикальные заземлители (обычно стержни из круглой или угловой стали и трубы, железобетонные подножники и сваи, забиваемые в землю, реже – стальные круглые стержни, ввинченные в грунт) и горизонтальные, изготовленные из любой профильной стали, закапываемые неглубоко в грунт.

    Вертикальные заземлители более эффективны, так как большая их часть располагается во влажных и менее промерзающих слоях почвы. Их длину берут от 2 до 5 м и применяют в глинистых или смешанных грунтах с удельным сопротивлением  менее 300 Омм и при сравнительно высоком уровне грунтовых вод. Если же верхние слои почвы обладают высоким  и этот уровень низок, то длину электродов увеличивают до 4-6 м. Наиболее употребительны и удобны заземлители из круглой стали диаметром 12-30 мм, угловой с шириной полок 40-50 мм, толщиной не менее 4 мм и трубы (чаще всего некондиционные или непригодные к дальнейшему использованию по назначению) с наружным диаметром 25-60 мм и толщиной стенки не менее 3,5 мм. Верхний конец вертикальных заземлителей располагают от поверхности земли на 0,5-1 м. На этом уровне высыхание или промерзание грунта затруднено.

    Горизонтальные заземлители используют в грунтах с длительно влажными верхними слоями, где трудно забивать вертикальные электроды (гористая местность, районы вечной мерзлоты). Если грунт обладает плохой проводимостью (песок), то траншею для горизонтальных заземлителей заполняют другим грунтом, удобренным солями или их растворами. Для электродов берут преимущественно полосовую сталь сечением не менее 160 мм 2 (404 мм) и реже круглую сталь эквивалентного сечения. Электроды укладывают на глубину 0,6-0,8 м в виде одного или нескольких симметричных лучей, длина каждого из них, считая от токоотвода, обычно не превышает 25-30 м. Чем больше удельное сопротивление грунта, тем больше длина луча и их число. Электроды любого типа соединяют между собой и с токоотводами только сваркой.

    Конструкция заземлителя зависит от типа молниеотвода, т.е. отдельно стоящего или установленного на здании.

    При отдельно стоящих молниеотводах приемлемыми, без расчета их импульсного сопротивления растеканию тока молнии r и, являются типовые конструкции заземлителей, приведенные в табл. 8.1 (см. также ).

    При расположении молниеотвода на защищаемом здании в качестве заземлителей рекомендуется широко использовать железобетонные фундаменты зданий и сооружений.

    Таблица 8.1

    Заземлитель

    Размеры, м

    Железобетонный подножник

    a  1,8

    b  0,4

    l  2,2

    Железобетонная свая

    d = 0,250,4

    l  5

    Стальной двухстержневой: полоса размером 404 мм стержни диаметром d = 1020 мм

    t  0,5

    l = 35

    c = 35

    Стальной трехстержневой: полоса размером 40 х 4 мм стержни диаметром d = 10  20 мм

    t  0,5

    l = 35

    Металлические и железобетонные конструкции зданий I категории по устройству молниезащиты могут быть использованы только для защитного заземления электроустановок и защиты от вторичных воздействий молнии. Для зданий II и III категории металлические и железобетонные конструкции используются и для защиты от прямых ударов молнии. Устройство молниезащиты зданий в железобетонном исполнении включает молниеприемную сетку, соединяемую сваркой с арматурой всех колонн. Ток молнии через нее попадает на арматуру колонн, затем стекает на арматуру фундамента и через защитный слой бетона – в землю.

    Основанием для использования арматуры железобетонных фундаментов в качестве заземлителей являются свойства бетона во влажном состоянии иметь проводимость, сопоставимую с проводимостью грунта, окружающего фундамент. При этом выполняются условия сохранения несущей способности здания и исключаются условия разрушения арматурных стержней и бетона от электрической коррозии, что обеспечивается уменьшением плотности тока, стекающего с арматуры фундамента, и ограничением его стекания через бетон в надземных конструкциях. Указанные меры включают объединение в единую систему всех железобетонных (или металлических) конструкций, соединение с помощью сварки всех элементов арматурного каркаса и создание непрерывной электрической цепи по арматуре.

    Битумные и битумно-латексные покрытия фундаментов не являются препятствием для использования их в качестве заземлителей.

    В средне- и сильноагрессивных грунтах, где защита железобетона от коррозии выполняется эпоксидными и другими полимерными покрытиями, а также при влажности грунта менее 3 % использовать железобетонные фундаменты в качестве заземлителей не допускается.

    При использовании в качестве заземляющих устройств все элементы металлических и железобетонных конструкций (фундаменты, колонны, фермы, стропильные, подстропильные и подкрановые балки) должны образовывать непрерывную электрическую цепь по металлу, а в железобетонных элементах (колоннах) дополнительно должны предусматриваться закладные детали (изделия) для присоединения электротехнического и технологического оборудования.

    В качестве заземлителей молниезащиты допускается использовать все рекомендуемые ПУЭ заземлители электроустановок, за исключением нулевых проводов воздушных линий электропередачи напряжением до 1 кВ.

    Нормирование заземлителей молниезащиты. Принятый в инструкции подход к нормированию и выбору заземлителей молниезащиты зданий и сооружений учитывает, что одним из эффективных способов ограничения грозовых перенапряжений в цепи молниеотвода, а также на металлических конструкциях и оборудовании объекта является обеспечение низких сопротивлений заземлителей растеканию в земле токов молнии. Поэтому при выборе молниезащиты нормированию подлежит сопротивление заземлителя или другие его характеристики, связанные с его сопротивлением.

    До введения в нормативную практику для заземлителей молниезащиты нормировалось импульсное r и сопротивление растеканию токов молнии: его максимально допустимое значение было принято равным 10 Ом для зданий и сооружений I и II категорий и 20 Ом для зданий и сооружений III категории. При этом допускалось увеличение импульсного сопротивления до 40 Ом в грунтах с удельным сопротивлением более 500 Омм при одновременном удалении молниеотводов от объектов I категории на расстояние, гарантирующее от пробоя по воздуху и в земле. Для наружных установок максимально допустимое импульсное сопротивление было принято не более 50 Ом.

    Импульсное сопротивление заземлителя является количественной характеристикой сложных физических процессов при растекании в земле токов молнии. Его значение отличается от сопротивления заземлителя при растекании токов промышленной частоты и зависит от нескольких параметров тока молнии (амплитуда, крутизна, длина фронта), варьирующихся в широких пределах. С увеличением тока молнии импульсное сопротивление заземлителя падает, причем в возможном интервале распределение токов молнии (от единиц до сотен килоампер) его значение может уменьшаться в 2-5 раз.

    Поскольку при проектировании заземлителя нельзя предсказать значения токов молнии, которые будут через него растекаться, то, следовательно, невозможно оценить наперед соответствующие значения импульсных сопротивлений. С учетом этих условий нормирование заземлителей по их импульсному сопротивлению имеет очевидные неудобства. Разумнее выбирать конкретные конструкции (см. табл. 8.1) по следующему условию: импульсные сопротивления заземлителей во всем возможном диапазоне токов молнии не должны превышать указанных максимально допустимых значений.

    Такое нормирование было принято в инструкции , где для ряда типовых конструкций заземлителей (см. табл. 8.1) были подсчитаны импульсные сопротивления при колебаниях токов молнии от 5 до 100 кА и по результатам расчетов проведен отбор заземлителей, удовлетворяющих принятому условию.

    Наиболее распространенными и рекомендуемыми конструкциями заземлителей являются железобетонные фундаменты. К ним предъявляются дополнительные требования - исключение механических разрушений бетона при растекании через фундамент токов молнии. Исследования показали, что железобетонные конструкции выдерживают большие плотности растекающихся по арматуре токов молнии, что связано с кратковременностью этого растекания. Так, единичные железобетонные фундаменты (сваи длиной не менее 5 или подножники длиной не менее 2 м) способные без разрушения выдерживать токи молнии до 100 кА. Поэтому в табл. 8.1 заданы допустимые размеры единичных железобетонных заземлителей. Для фундаментов больших размеров с соответственно большей поверхностью арматуры опасная для разрушения бетона плотность тока маловероятна при любых возможных токах молнии.

    Нормирование параметров заземлителей по их типовым конструкциям имеет ряд достоинств: оно соответствует принятой в строительной практике унификации железобетонных фундаментов с учетом их повсеместного использования в качестве естественных заземлителей; при выборе молниезащиты не требуется выполнять расчеты импульсных сопротивлений заземлителей, что сокращает затраты и объем проектных работ.

    Опасность поражения током молнии. При растекании тока с заземлителя или с любого другого подземного металлического предмета в грунте образуется потенциальное (электрическое) поле. Распределение потенциала на поверхности земли при протекании тока молнии через трубчатый заземлитель показано на рис. 8.12. Оно зависит от геометрических размеров электрода, способа его установки, но не зависит от электрических свойств однородного грунта. На небольших удалениях от оси трубы потенциал уменьшается резко, после чего уменьшение делается более плавным. Считают, что на расстоянии x более 20 l потенциал на поверхности земли равен нулю. Наибольший потенциал появляется на самом заземлителе и он равен
    .

    Рис. 8.12. Изменение потенциала на поверхности земли у заземлителя при растекании тока молнии

    Если вблизи заземлителя будет находиться человек и расстояние между его ступнями равно S , то он подвергается действию шагового напряжения U ш, равного разности потенциалов U 1 и U 2 в точках 1 и 2 , где находятся ступни. Это может быть опасным для жизни. Еще более опасно, если одна нога окажется непосредственно на заземлителе или человек прикоснется к заземлителю. Тогда он подвергается большей разности потенциалов, равной U м - U 3 , и называемой напряжением прикосновения U пр .

    Снижения шагового напряжения и напряжения прикосновения можно добиться уменьшением сопротивления r и до значения ниже 10 Ом, что довольно трудно, и применением параллельно включенных добавочных электродов, выравнивающих потенциал внутри и вне контура заземлителей. Рациональным распределением вертикальных заземлителей, расположенных по контуру или лучам, и связывающих их горизонтальных электродов можно добиться безопасного распределения потенциала по любому направлению от точки присоединения токоотвода. Для безопасности рекомендуется ограждать или во время грозы не допускать людей к заземлителям ближе 5 м, располагать эти заземлители дальше от дорог, тротуаров или располагать под асфальтовым покрытием.

    Сначала разберемся в сути понятия. Молниеотвод обозначает одно и тоже, что Грозозащита или Молниезащита и отличается от Громоотвода , которым называют чаще только молниеприемную часть системы защиты зданий и сооружений. То есть молниеотвод - это «молниеприемник + токоотвод + заземление», или внешняя составляющая системы. Если посмотреть на схему любой комплексной молниезащиты, будь то частный дом или здание промышленного, офисно-административного назначения, то это ее часть, которая предназначена именно для защиты от прямых ударов молнии.

    Конструкции (виды) молниеотводов

    Всего существует 3-и базовые схемы: стержневой (рисунки а, б), тросовый (в) и молниеотвод в виде молниеприемной сетки (или сетчатый) (г). Комбинированная схема предполагает сочетание базовых вариантов.

    По количеству одинаковых молниеприемных частей - одиночный, двойной и т.д.

    По характеру и месту установки стержневые делятся на молниеприемные стержни, сборные стержневые, которые могут устанавливаться на фланцах, кронштейнах, специальных опорах или быть отдельно стоящими. Молниеприемные мачты как правило имеют телескопическую конструкцию и метод установки на или в грунт.

    Тросовый - это трос, натянутый между опорами. Контур может быть любым, в том числе замкнутым. К нему по сути относится и самый простой и дешевый вариант молниеотвода для частного дома или дачи, когда вместо троса на небольшом расстоянии от конька кровли натягивают проводник радиусом 8-10 мм (алюминиевый, стальной или медный в зависимости от материала и цвета кровли) на расстоянии не менее 20 мм от самого конька, выводят его концы за крайние точки на расстояние примерно 30 мм и загибают немного вверх.


    Молниеприемная сетка используется на плоских или крышах с незначительным уклоном.

    Итак, как мы сказали, система внешней молниезащиты может быть изолирована от сооружения (отдельно стоящие молниеотводы - стержневые или тросовые, а также соседние сооружения, выполняющие роль естественных молниеотводов), или может быть установлена на защищаемом здании и даже быть его частью.

    Расчет молниеотвода

    Выбор молниеотводов рекомендуют производить при помощи специальных компьютерных программ, способных на основании габаритов зданий, планов кровли и конструктивных элементов на ней вычислять вероятности прорыва молнии и зоны защиты. Вот почему надежнее обращаться в специализированные организации, которые быстро выдадут Вам различные варианты и конфигурации молниеотводов.

    Хотя, если конфигурация защищаемого объекта позволяет обойтись простейшими молниеотводами (одиночным стержневым, одиночным тросовым, двойным стержневым, двойным тросовым, замкнутым тросовым), размеры их можно определить самостоятельно, пользуясь заданными в Инструкциях СО 153-343.21.122-2003 и РД 34.21.122-87 зонами защиты.

    Объект считается защищенным, если он целиком попадет в зону защиты молниеприемного устройства, которой присвоен требуемый уровень надежности.

    Зона защиты одиночного стержневого молниеприемника (согласно СО 153-34.21.122-2003)

    Стандартной зоной защиты в этом случае является круговой конус с вершиной, которая совпадает с вертикальной осью молниеотвода. Размеры зоны в этом случае определены 2-мя параметрами: высотой конуса h 0 и радиусом его основания r 0 .

    В таблице ниже указаны их значения в зависимости от требуемой надежности защиты для молниеотводов высотой до 150 м от уровня земли. Для больших высот необходимо применение специальных программ и методик расчета.

    Для других типов и комбинаций молниеотводов вариации расчета зон защиты смотрите в главе 3.3.2 СО 153-343.21.122-2003 и Приложении 3 РД 34.21.122-87.

    Теперь, чтобы определить попадает ли ваш объект Х в зону защиты рассчитываем радиус горизонтального сечения r x на высоте h x и откладываем его от оси молниеприемника до крайней точки объекта.

    Правила определения зон защиты для объектов высотой до 60 м (согласно МЭК 1024-1-1)

    В Инструкции СО есть методика проектирования молниеотводов для обычных сооружений по стандарту МЭК 1024-1-1, которая может быть принята только, если расчеты по ней получаются более «жесткие», чем требования указанной Инструкции.

    По ней могут быть применены следующие 3-и способа для разных случаев:

    • метод защитного угла для простых по форме или маленьких частей больших сооружений
    • метод фиктивной сферы для сооружений сложной формы
    • защитная сетка в общем случае и в особенности для защиты поверхностей

    В таблице для разных категорий (уровней) молниезащиты (подробнее о категориях или классах здесь) приведены соответствующие значения параметров каждого из методов (радиус фиктивной сферы, предельно допустимые угол защиты и шаг ячейки сетки).

    Метод угла защиты для кровельных надстроек

    Величина угла выбирается по графику на диаграмме для соответствующей высоты молниеотвода, которая отсчитывается от защищаемой поверхности, и класса молниезащиты здания.

    Зона защиты, как уже было сказано выше, - это круговой конус с вершиной в верхней точке стержня молниепремника.

    Метод фиктивной сферы

    Применяется, когда сложно определить размеры зоны защиты для отдельных конструкций или частей здания по методу защитного угла. Ее границей является воображаемая поверхность, которую очерчивает сфера выбранного радиуса r (см. таблицу выше), если бы ее прокатили по вершине сооружения, обходя молниеотводы. Соответственно объект считается защищенным, если эта поверхность не имеет с ним общих точек пересечения или касания.

    Молниеприемная сетка

    Это проводник, уложенный сверху на кровлю с выбранным в зависимости от класса молниезащиты здания шагом ячейки. При этом все металлические элементы на крыше (зенитные фонари, вентиляционные шахты, воздухозаборники, трубы и т.п.) обязательно должны быть соединены с сеткой. Иначе для них необходимо смонтировать дополнительные молниеприемники. Более подробно о конструктивных особенностях и вариантах монтажа можно прочитать в материале «Молниезащита на плоской кровле» .

    Шаг ячейки по российским нормам выбирают исходя из категории молниезащиты здания (может быть меньше, но никак не больше).

    Молниеприемная сетка монтируется с соблюдением ряда условий:

    • проводники прокладывают наикратчайшими путями
    • при ударе молнии у тока для отвода к заземлению должна быть возможность выбора хотя бы 2-х разных путей
    • при наличии конька и наклоне кровли более, чем 1 к 10, проводник нужно обязательно проложить по нему
    • никакие части и элементы, выполненные из металла, не должны выступать за внешний контур сетки
    • обязателен внешний контур сетки из проводника, смонтированный по краю периметра крыши, а край крыши должен выступать за габариты здания

    Материалы и сечения проводников молниеотвода

    В качестве материалов, используемых для производства молниеприемного оборудования и токоотводов используются оцинкованная и нержавеющая сталь, медь и алюминий. К ним предъявляются требования коррозионной стойкости и механической прочности, если используется защитное покрытие, то оно должно иметь хорошую адгезию с основным материалом.

    В таблице указаны требования к профилю проводников и стержней по минимальной площади сечения и диаметра (согласно ГОСТ 62561.2-2014)

    Монтаж молниеотвода для частного дома и промышленного здания

    Рассмотрим какие же элементы монтажа включают в себя обычно система внешней молниезащиты. На рисунках ниже показаны примеры молниеотвода частного дома и промышленного здания.

    Соответсвующими номерами здесь обозначены следующие изделия и их наименования:

    Круглые и плоские проводники, тросы

    Компоненты молниезащиты на плоских кровлях, перемычки и компенсаторы

    Компоненты молниезащиты на скатных кровлях, кровельные держатели проводника

    Компоненты молниезащиты на металлических кровлях, кровельные держатели проводника

    Токоотводы, держатели токоотводов

    Стержни земляного ввода, соединительные проводники, смотровые колодцы, держатели проводников

    Клеммы для водосточных желобов, клеммы, соединительные компоненты

    Молниеприемники, компоненты

    Изолированная молниезащита

    Монтаж можно разделить на три этапа: устройство молниеприемной части внешней молниезащитной системы (молниеприемники и их элементы крепления), прокладка токоотводов (кровельная и фасадная часть здания) и земляные работы по устройству заземления. Как правило у всех компаний стоимость работ составляет некоторый процент от цены материалов.

    Компания МЗК-Электро предлагает отличные цены на молниеотводы и комплектующие. Ассортимент изделий на нашем складе составляет более 1.500 позиций, закупка осуществляется напрямую по дилерским контрактам у прямых производителей, что предполагает обязательную сертификацию и гарантию. Все изделия имеют необходимые сертификаты качества и гарантию. Мы также занимаемся проектированием и монтажом любых систем молниезащиты зданий и сооружений, как для частных домовладельцев, так и промышленных предприятий. Познакомиться с нашими ценами можно в соответствующем разделе .

    Расчет стоимости

    Выберете размер... 10х15 15х15 20х15 20х20 20х30 30х30 30х40

    Выберете размер... 10 12 14 16 18 20 22

    Наши объекты

      АО "Мосводоканал", Физкультурно-оздоровительный комплекс дома отдыха «Пялово»

      Адрес объекта: Московская область, Мытищинский район, дер. Пруссы, д. 25

      Вид работ: Проектирование и монтаж системы внешней молниезащиты.

      Состав молниезащиты: По плоской кровле защищаемого сооружения уложена молниеприемная сетка. Две дымоходные трубы защищены посредством установки на них молниеприемных стержней длиной 2000 мм и диаметром 16 мм. В качестве молниеприемного проводника использована сталь горячего цинкования диаметром 8 мм (сечение 50 кв.мм в соответствии с РД 34.21.122-87). Токоотводы проложены за водосточными трубами на хомутах с зажимными клеммами. Для токоотводов использован проводник из стали горячего цинкования диаметром 8 мм.

      ГТЭС Терешково

      Адрес объекта: г. Москва. Боровское ш., коммунальная зона «Терешково».

      Вид работ: монтаж системы внешней молниезащиты (молниеприемная часть и токоотводы).

      Комплектующие: производства фирмы OBO Bettermann.

      Исполнение: Общее количество проводника из стали горячего цинкования для 13 сооружений в составе объекта составило 21.5000 метров. По кровлям прокладывается молниеприемная сетка с шагом ячейки 5х5 м, по углам зданий монтируются по 2 токоотвода. В качестве элементов крепления использованы стеновые держатели, промежуточные соединители, держатели для плоской кровли с бетоном, скоростные соединительные клеммы.

    Молниеотвод - это система технических элементов, основным предназначением которых является защита от разряда молнии. Молниеотвод обеспечивает защиту отдельных зданий либо комплекса зданий и сооружений - трубопроводов, мостов, подземной и наземной инфраструктуры, заглубленных зданий.

    В обиходе это устройство получило другое наименование - громоотвод. С чисто технической точки зрения оно неверно, однако давно закрепилось в русском языке и является общеупотребительным.

    Из чего состоит устройство

    Вне зависимости от вида, любой молниеотвод состоит из следующих конструктивных элементов:

    • молниеприемника;
    • токоотвода (токовод, спуск);
    • заземлителя.

    К ней предъявляются особо жесткие требования. Нормируются все расстояния - от молниеотводов до защищаемого объекта, расстояние между перемычками индукционной защиты и так далее.

    Молниеприемник, как правило, стержневой либо тросовый. Внутренняя защита осуществляется присоединением металлоконструкций - станков, балок, троллея, любых других элементов - непосредственно к заземлителю, либо через заземляющий контакт электрооборудования. Общее сопротивление заземлителя не может быть больше 10 Ом.

    Вторая категория

    II категория молниеотводов предназначена для обеспечения защиты такого же уровня в местностях с меньшим количеством гроз в год, либо для зданий с меньшей взрыво- и пожароопасностью, например, для объектов класса B-Ia, B-I6, B-IIa, В-Iг (электроустановки).

    Этот вид молниеотводов монтируется подобно молниезащите I категории с тем отличием, что в качестве приемника может применяться уложенная непосредственно на крышу стальная сеть из прутьев определенного сечения (не менее 6 мм) и с определенным шагом сетки.

    Укладка производится на негорючую поверхность. Требования к соблюдению рабочих расстояний менее жесткие, так, дистанция от молниеотвода до здания может быть любой. Спуски монтируются аналогично более высокому классу.

    В роли «земли» может выступать фундамент из железобетона, если сопротивление грунта не более 500 Ом. Конкретные особенности прокладки молниеотвода зависят от типа защищаемого здания - производственный цех, административное здание, хранилище жидкого топлива или резервуар для газа, электроустановка и другое. Величина импульсного сопротивления на «земле» не может быть больше 10 Ом.

    Третья категория

    III категория видов молниеотводов применяется, если в местности общая продолжительность гроз более 20 ч в год, а также для объектов, соответствующих классу П-III по электробезопасности и III-V классу огнестойкости. К примеру, это детские сады, ясли, школы, кинотеатры, больницы, другие социально значимые учреждения, в которых, тем не менее, нет легко воспламеняющихся или способных взрываться устройств или материалов.

    Этот вид молниеотвода отличается тем, что не обеспечивает защиты от электромагнитной и электрической индукции - только от возгорания вследствие прямого поражения молнией и от возникновения на металлических частях и других проводящих элементах опасного напряжения.

    Технологически выполненный по этой категории молниеотвод отличается от системы по II категории только большим шагом сетки - он может составлять 12*12 м - и порогом импульсного сопротивления - оно может составлять 20 Ом. Отдельно стоящие емкости с ГСМ, кроме бензина, а также трубы и некоторые другие элементы можно защищать с применением заземлителя импульсным сопротивлением до 50 Ом.

    В молниеотводе, выполненном в соответствии с III категорией, допустимо использовать соединение с помощью скрутки, если соединяемые элементы это позволяют.

    Во всех случаях должен быть основан на количестве ожидаемых ударов молнии в год. Чем он выше, тем выше и категория. Допустимо не подключать к громоотводу помещения из несгораемых материалов, считающиеся невзрывоопасными.

    Если в здании есть помещения, относящиеся к разным классам пожаро- и электробезопасности, то категория молниеотвода выбирается максимальная из необходимых. Отдельных громоотводов II и III, например, категории в одном и том же здании не делают.

    Документация

    Поскольку молнии несут реальную опасность пожара и поражения электрическим током находящихся в здании людей, на устройства молниезащиты существуют свои ГОСТы и инструкции по монтажу молниеотводов всех видов. Несоблюдение стандартов, как и несоблюдение любых подобных правил, может быть чревато несчастным случаем.

    Тем не менее, единого всеобъемлющего госстандарта на молниеотводы нет. Для каждого конкретного проекта строители руководствуются частными случаями, описанными в различных ПУЭ и ГОСТах для защиты электроустановок, зданий и сооружений.

    На международном уровне применение молниеотводов всех видов регламентирует документ МЭК 62305.4 . Основными нормативными актами в России являются РД 34.21.122-87 и CO 153-343.21.122-2003. На молниеотвод выполняется соответствующая сопроводительная документация. Он сдается при вводе в эксплуатацию здания или сооружения, как соответствующий элемент защиты.

    Молниезащита дома:

    Молния не зря относится к наиболее опасным явлениям природы. По своей сути, она является огромным электрическим разрядом, который возникает в атмосфере. Для молнии характерна очень яркая вспышка, в сопровождении громовых раскатов. Ее действие нередко приводит к выходу из строя всевозможного электрооборудования и электронных устройств. Молния вызывает повреждения строений, из-за нее часто возникают пожары, а людей поражает электрический ток.

    В связи с тем, что молнии в природе - довольно частое явление, на первый план выходит молниезащита дома и других строений от возможных повреждений. Для этого разработаны комплексные меры, по предотвращению прямого попадания в здание электрического заряда.

    Главные функции молниезащиты

    По своему прямому назначению защита частного дома от молний может быть внутренней или внешней. Внешняя функция защиты заключается в перехвате молнии с последующим отводом в землю электрического заряда. Таким образом, здание надежно защищается от повреждений, а людям, находящимся в нем, становится не страшно поражение током.

    Внутренняя защита дома предохраняет приборы и оборудование от возможных скачков напряжения, возникающих в сети. Такие скачки возникают, когда электромагнитное поле изменяет свою напряженность в том месте, куда пришелся удар молнии. Для защиты применяются специальные устройства, способные нейтрализовать импульсные перенапряжения.

    Внешняя молниезащита дома разделяется на активную и пассивную. Использование активной защиты началось сравнительно недавно. Однако, она уже выявила ряд серьезных преимуществ в сравнении с обычной пассивной схемой молниезащиты. Основное отличие заключается в наличии молниеприемника. Во время грозы, он производит ионизацию окружающего пространства, тем самым существенно увеличивая радиус своего действия. Данное устройство совершенно безопасно, для его использования не требуются дополнительные затраты. Следует более подробно рассмотреть основные способы защиты от молний.

    Как защититься от молнии

    В активной системе защиты установка молниеприемника осуществляется выше, чем один метр, над самой высокой частью здания и, практически, не портит его внешний вид. В итоге, получается большая защищаемая площадь и незначительный расход материалов для устройства элементов защиты.

    Активная защита от молний является достаточно эффективной с экономической точки зрения. Она требует меньшего количества молниеприемных и токоотводящих элементов. Данная система отличается довольно простым монтажом.

    Однако, в настоящее время, более широко применяется традиционная пассивная защита. Для ее устройства применяются металлические элементы, которые используются в качестве молниеприемников. Их установка производится на крышах и других, наиболее подходящих частях домов.

    В , где кровли имеют очень большую площадь, молниеприемники устраиваются из металлических сеток или тросов. Такие конструкции не подходят для частных домов, поэтому, их можно подробно не рассматривать.

    В загородных домах и на дачах чаще всего используется классическая конструкция молниеотвода, основой которой являются металлические стержни. В некоторых случаях они могут комбинироваться с сеткой из металла. Иногда, молниеприемником может служить сама металлическая крыша. Чтобы молния при ударе не прожгла ее, толщина кровельного металла должна составлять от 4 миллиметров и выше.

    Огромный практический опыт использования пассивной молниезащиты частных домов позволил осуществить разработку специальной технической документации. Ее использование позволяет точно рассчитать все параметры защитной системы и расход материалов для любого дома или дачи. Точные расчеты обеспечивают ее долговременную и надежную работу.

    Монтаж внешней молниезащиты

    В качестве недостатков пассивной системы, можно отметить громоздкость конструкции, которая нередко портит внешний вид дома, высокую материалоемкость и значительно меньшую зону покрытия по сравнению с активным вариантом.

    Однако, когда другие варианты неприемлемы и не могут быть использованы с технической точки зрения, наиболее целесообразным будет применение классических стержневых молниеотводов.

    Устройство стержневого молниеотвода

    Стержневые молниеотводы еще называются громоотводами. Классическая конструкция включает в себя молниеприемник, токоотвод и заземлитель.

    Молниеприемник представляет собой металлический стержень, располагающийся в зоне возможных действий молнии. Для токоотвода используется проводник с большим сечением. С его помощью производится соединение молниеприемника и заземлителя. Сам заземлитель изготавливается из одного или нескольких проводников, которые закапываются в землю.

    Все элементы громоотводы закрепляются и соединяются между собой независимо от самого здания. Чем больше высота дома, тем выше вероятность удара молнии. Поэтому, защищаемый объект должен иметь молниеотвод, расположенный на значительной высоте. Иногда защитная конструкция устраивается возле здания, но по высоте она все равно должна превосходить его.

    Данная конструкция получила широкое применение, благодаря простоте и надежности, а также возможности установки практически в любых местах. Кроме громоотвода, в пассивную систему входит заземление, без которого не будут выполняться защитные функции. Его устройство осуществляется по определенным схемам, поэтому, на заземлении стоит остановиться подробнее.

    Устройство заземления в системе молниезащиты

    Основной конструкцией заземления является заземляющий контур. Он состоит из вертикальных и горизонтальных заземлителей. Вертикальные заземлители имеют длину от 3 до 5 метров. Однако, при высоком удельном сопротивлении грунта, их размер может быть гораздо больше. Поэтому, вертикальные заземлители изготавливаются из стальных стержней, покрытых медью. Каждый из них имеет латунную муфту с резьбой, для того, чтобы, при необходимости, состыковать их между собой и погрузить в грунт на значительную глубину, вплоть до 20 метров. На большой глубине значение удельного сопротивления грунта остается неизменным, не зависит от влияния погоды и перепадов температур. Для установки вертикальных конструкций может использоваться вибромолот.

    Горизонтальные заземлители изготавливаются из стальных полос или прутков, с сечением 160 мм2. Все заземлители в местах пересечений и соединений свариваются внахлест. Нахлест для круглых конструкций составляет не менее двух диаметров, а плоские конструкции должны перехлестываться на две ширины. Особое внимание следует обращать на непрерывность сварочного шва. Чтобы избежать существенных разрушений от воздействия молнии на границе земли и воздуха, конструкции заземлителей необходимо тщательно изолировать. Изоляция должна производиться на 10 см выше и настолько же ниже уровня земли. После изоляции грунтом, эти места покрываются эмалью в два слоя. Все места сварки подвергаются тщательной обработке специальным антикоррозийным составом.

    Надежное соединение и токоотвода осуществляется с помощью специально разработанных электрозажимов, значительно ускоряющих и упрощающих проведение монтажных работ.

    Устройство внутренней молниезащиты частного дома

    Для внутренней молниезащиты частного дома устанавливаются специальные устройства для защиты электрических сетей и подключенного к ним оборудования. Данная защита необходима при скачках напряжения, появляющихся в результате удара молнии. Избыточное напряжение в сети может возникнуть как при непосредственном воздействии молнии, так и во время растекания заряда, перехваченного системой молниеотвода. В это время изменяется напряженность электромагнитного поля, вызывающая в сети импульсный ток. При таком перенапряжении могут выйти из строя даже электроприборы, находящиеся в выключенном состоянии, со шнуром в розетке.

    Повреждающие факторы могут быть разными, поэтому, внутренняя защита разделяется на следующие классы:

    1. 1-й класс. Цепи управления, питания и сигнализации предохраняются от возможных повреждений. Местом установки является главный ввод кабеля.
    2. 2-й класс. Используется для страховки первого класса и устанавливается в главном .
    3. 3-й класс. Выполняет локальные функции по гашению высокочастотных остаточных колебаний и перепадов напряжения, не ликвидированных двумя первыми линиями защиты. Местом их установки являются распределительные щиты вспомогательного назначения.
    4. В комбинированных устройствах сочетаются защитные свойства 1 и 2 класса.

    В большинстве случаев, чтобы обеспечить безопасную эксплуатацию электрических сетей, достаточно установить защиту 1-го класса. Однако, если в доме имеется дорогостоящее или ценное оборудование, то осуществляется дополнительная защита, путем установки защитных устройств 3-го класса непосредственно перед этим оборудованием. В распределительный щит, питающий эти устройства, монтируется защита 2-го класса.

    Таким образом, устройство молниезащиты в современных частных домах, наполненных дорогостоящей аппаратурой, совсем нелегкое дело. Здесь не поможет установка громоотвода, выполненная кустарным способом. Для устройства нормальной защиты необходимы квалифицированные специалисты, способные произвести все необходимые расчеты.