Оковы для воды: Гидроэлектростанции - плюсы и минусы. Виды современных ГЭС: преимущества и недостатки Плюсы и минусы гэс

Оковы для воды: Гидроэлектростанции - плюсы и минусы. Виды современных ГЭС: преимущества и недостатки Плюсы и минусы гэс
Оковы для воды: Гидроэлектростанции - плюсы и минусы. Виды современных ГЭС: преимущества и недостатки Плюсы и минусы гэс

ПРЕИМУЩЕСТВА ГЭС:

Гибкость

Гидроэнергия является гибким источником электроэнергии, так как ГЭС может очень быстро адаптироваться к изменяющимся требованиям энергии, увеличивая или уменьшая производство электроэнергии. Гидротурбина имеет время запуска порядка нескольких минут. От 60 до 90 секунд требуется, чтобы принести устройство от холодного пуска до полной нагрузки; это гораздо меньше, чем для газовых турбин или паровых установок. Производство электроэнергии может также быть быстро уменьшено, когда есть избыточная мощность.

Электростанция Ffestiniog может развивать мощность 360 МВт в течении 60 секунд

Низкие затраты на электроэнергию

Основным преимуществом гидроэлектроэнергии является отсутствие стоимости топлива. Стоимость эксплуатации гидроэлектростанции почти невосприимчива к увеличению стоимости ископаемого топлива, таких как нефть, природный газ или уголь, и никакой импорт не требуется. Средняя стоимость электроэнергии от гидроэлектростанции больше, чем 10 мегаватт составляет от 3 до 5 центов США за киловатт-час.

Гидроэлектростанции имеют долгий срок эксплуатации , некоторые ГЭС все еще дают электроэнергию после 50-100 лет работы.

Затраты на оперативное обслуживание небольшие , требуется немного людей для контроля работы ГЭС.

Плотина может использоваться сразу в нескольких целях: накапливать воду для ГЭС, защищать территории от наводнений, создавать водоем.

Пригодность для промышленного применения

В то время как многие гидроэлектростанции поставляют энергию в сети общего потребления электроэнергии, некоторые создаются для обслуживания конкретных промышленных предприятий. Например, в Новой Зеландии электростанция была построена для снабжения электроэнергией алюминиевого завода в Тиваи Пойнт.

Снижение выбросов CO 2

Гидроэлектростанции не сжигают ископаемые виды топлива и непосредственно не производят углекислый газ. Хотя некоторый углекислый газ образуется в процессе производства и строительства проекта. Согласно исследованию Пауля Шеррера из Университета Штутгарта, гидроэнергетика производит меньше всего углекислого газа, среди прочих источников энергии. На втором месте был ветер, третьей стала ядерная энергия, энергия солнца оказалась на 4 месте.

Другие виды использования водохранилища

Водохранилища ГЭС часто предоставляют возможности для занятий водными видами спорта, и сами становятся туристическими достопримечательностями. В некоторых странах, аквакультура в водоемах является распространенным явлением. Вода из водоемов может идти на полив сельскохозяйственных культур, в ней можно разводить рыбу. Кроме того плотины помогают предотвратить наводнение.

НЕДОСТАТКИ ГЭС:

Повреждение экосистемы и потеря земли

Большие резервуары, необходимые для работы гидроэлектростанций приводят к затоплению обширных земель выше по течению от плотины, уничтожая долины лесов и болота. Потеря земли часто усугубляется уничтожением среды обитания окружающих территорий, занятое водохранилищем.
ГЭС могут привести к уничтожению экосистем, так как вода, проходя через турбины очищается от естественных наносов. Особенно опасны ГЭС на крупных реках , которые ведут к серьезным изменениям среды обитания.


На фото изображен водоем, возникший в результате строительства плотины

Заиление

Когда течет вода, более тяжелые частицы сплывают вниз по течению.
Это оказывает негативное влияние на плотины и впоследствии их электростанций, особенно на реках или в водосборных бассейнах с высокой степенью заиления. Ил может заполнить резервуар и уменьшить его способность контролировать наводнения, вызывая дополнительное горизонтальное давление на плотину. Уменьшение русла реки может привести к снижению вырабатываемой электроэнергии. К тому же даже жаркое лето или малое количество осадков может привести к уменьшению реки.

Выбросы метана (из водохранилищ)

Наибольшее воздействие оказывают ГЭС в тропических регионах, водоемы электростанций в тропических регионах производят значительные объемы метана. Это связано с наличием растительного материала в затопленных районах, распадающихся в анаэробной среде, и образующих метан и парниковый газ. Если верить докладу Всемирной комиссии по плотинам, в случаях, когда водохранилище большое по сравнению с генерирующей мощностью (менее 100 ватт на квадратный метр площади поверхности) и не была произведена очистка лесов в области водоема. То выбросы парниковых газов в резервуаре могут быть выше, чем у обычной ТЭС.

Новосибирский государственный университет

Высший колледж информатики

Реферат по безопасности жизнедеятельности

Тема: «Безопасность и экологичность гидроэнергетики»

Студент: Кисарова Валентина

Группа: 803С

Преподаватель: Хегай Э.Г.

Введение

Энергетика делится на традиционную и нетрадиционную. Традиционная энергетика базируется на использовании ископаемого горючего или ядерного топлива и энергии воды крупных рек. Она подразделяется на теплоэнергетику, электроэнергетику, ядерную энергетику и гидроэнергетику.

Многие тысячелетия верно служит человеку энергия, заключенная в текущей воде. Запасы ее на Земле колоссальны. Недаром некоторые ученые считают, что нашу планету правильнее было бы называть не Земля, а Вода - ведь около трех четвертей поверхности планеты покрыты водой. Огромным аккумулятором энергии служит Мировой океан, поглощающий большую ее часть, поступающую от Солнца. Здесь плещут волны, происходят приливы и отливы, возникают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что человечество в поисках энергии не могло пройти мимо столь гигантских ее запасов. Раньше всего люди научились использовать энергию рек.

Изобретение паровой машины, казалось бы, остановило многовековое триумфальное шествие водяных колес. Маленькие пыхтящие двигатели, которые можно было устанавливать где угодно, а не только на берегу реки, приводили в движение станки и кузнечные молоты и сукновальни, покусились даже на извечное предназначение водяных колёс - на орошение полей. Одно за другим шли на слом гигантские водяные колёса, казалось, многовековая история водяной энергетики близится к завершению. Но когда наступил золотой век электричества, произошло возрождение водяного колеса, правда, уже в другом обличье - в виде водяной турбины. Электрические генераторы, производящие энергию необходимо было вращать, а это вполне успешно могла делать вода.

Немного истории

Гидроэнергия, равно как солнечная энергия, используется очень давно. Упоминание об использовании энергии воды на водяных мельницах для помола зерна и дутья воздуха при выплавке металла относится к концу II в. до н. э. С течением столетий размеры и эффективность водяных колёс увеличились. В XI в. в Англии и Франции одна мельница приходилась на 250 человек. В это время сфера применения мельниц расширилась. Они стали использоваться в сукновальном производстве, при варке пива, распилке леса, для работы откачивающих насосов, на маслобойнях. Можно считать, что современная гидроэнергетика родилась в 1891 году. В этом году русский инженер Михаил Осипович Доливо-Добровольский, эмигрировавший в Германию по причине «политической неблагонадёжности», должен был демонстрировать на электротехнической выставке во Франкфурте-на-Майне изобретённый им двигатель переменного тока. Этот двигатель мощностью около 100 киловатт в эпоху господства постоянного электрического тока сам по себе должен был стать гвоздём выставки, но изобретатель решил для его питания построить ещё и совершенно неожиданное по тем временам сооружение - гидроэлектростанцию. В небольшом городке Лауффен Доливо-Добровольский установил генератор трёхфазного тока, который вращала небольшая водяная турбина. Электрическая энергия передавалась на территорию выставки по невероятно протяжённой для тех лет линий передачи длиной 175 километров (это сейчас линии передач длиной в тысячи километров никого не удивляют, тогда же подобное строительство было единодушно признано невозможным). Всего за несколько лет до этого события виднейший английский инженер и физик Осборн Рейнольдс в своих Канторовских лекциях неопровержимо, казалось бы доказал, что при передаче энергии по средствам трансмиссии потери энергии составляют всего лишь 1,4% на милю, в то время как при передачи электрической энергии по проводам на такое же расстояние потери составят 6%. Опираясь на данные опытов, он сделал вывод о том, что при использовании электрического тока на другом конце линии передачи вряд ли удастся иметь более15-20% начальной мощности. В то же время, считал он, можно быть уверенным в том, что при передаче энергии приводным тросом сохранится 90% мощности. Этот «неоспоримый» вывод был успешно опровергнут практикой работы первенца гидроэнергетики в Лауффене.

Но эра гидроэнергетики тогда ещё не наступила. Преимущества гидроэлектростанций очевидны - постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колёс мог бы оказать не малую помощь гидроэнергетикам. Однако постройка плотины крупной гидроэлектростанции оказалось задачей куда более сложной, чем постройка небольшой запруды для вращения мельничного колеса. Чтобы привести во вращение мощные гидротурбины, нужно накопить за турбиной огромный запас воды. Для постройки плотины требуется уложить такое количество материалов, что объём гигантских египетских пирамид по сравнению с ним покажется ничтожным. Поэтому в начале ХХ века было построено всего несколько гидроэлектростанций. Это было лишь началом. Освоение гидроэнергоресурсов осуществлялось быстрыми темпами, и в 30-е годы ХХ века была завершена реализация таких крупных проектов, как ГЭС Гувер в США мощностью 1,3 Гиговатт. Строительство подобных мощных ГЭС вызвало рост использования энергии в промышленно развитых странах, а это, в свою очередь, дало толчок программам освоения крупных гидроэнергетических потенциалов.

В настоящее время использование энергии воды по-прежнему остается актуальным, а основным направлением является производство электроэнергии.

Гидроэнергетика - плюсы и минусы

Гидроэлектростанции или сокращенно ГЭС строятся преимущественно на крупных реках. И имеют массу положительных и отрицательных сторон.

К положительным можно отнести то, что они используют возобновляемые природные ресурсы, «экономят» топливные ресурсы (в том числе и денежные средства на их добычу и транспортировку), требуют в 15-20 раз меньше обслуживающего персонала, нежели ТЭС (тепловые электростанции), значительный КПД (свыше 80 %), низкая себестоимость (в 5 – 6 раз меньше нежели ТЭС), позволяют регулировать сток воды,позволяют оградить прилегающие территории от катастрофических наводнений, улучшают условия для судоходства страны (территории), создают условия для развития массового культурного отдыха.

К минусам можно отнести стопроцентную привязанность к крупным рекам, затопление значительной части земель (лугов, населенных пунктов лесных массивов), происходит постепенное изменение микроклимата окружающих территорий, сокращаются стада ценных рыб, развиваются сине-зеленые водоросли.

Еще одним представителем ГЭ являются Гидроаккумулирующие электростанции или ГАЭС, которые возводятся только лишь в крупнейших промышленных густонаселенных районах, где располагается большое количество потребителей электроэнергии. Они в значительной мере снижают проблему нехватки электроэнергии (особенно в дневное время), строятся преимущественно на искусственных водоемах, следовательно причиняют незначительный вред окружающей флоре и фауне, являются обоснованными в плане финансовых затрат, однакоэкономически являются невыгодными (убыточными), т.к. при своей работе потребляют электроэнергии несколько больше, чем сами же производят.

При использовании гидроэнергоресурсов очень важен экологический аспект. Гидроэнергоресурсы - это запасы энергии текущей воды речных потоков и водоемов, расположенных выше уровня моря (а также энергии морских приливов).Строительство ГЭС во многих случаях сопровождается сооружением водохранилищ, которые подчас оказывают негативное влияние на экологическую обстановку, вносят ряд изменений в природу. Гидроэнергетика будущего должна при минимальном негативном воздействии на природную среду максимально удовлетворять потребности людей в электроэнергии. Поэтому проблемами сохранения природной и социальной среды при гидротехническом строительстве уделяется сегодня все большее внимание. В современных условиях особенно важен верный прогноз последствий подобного строительства. Результатом прогноза должны стать рекомендации по смягчению и преодолению неблагоприятных экологических ситуаций при строительстве ГЭС, сравнительная оценка экологической эффективности созданных или проектируемых гидроузлов. Таким образом, можно говорить о целесообразности образования новой, более узкой и сложной категории гидроэнергетических ресурсов - экологически эффективной части, дифференцированной по степени экологической нагрузки, вызванной использованием определенной доли гидроэнергопотенциала. К сожалению, на настоящий момент разработка методов определения экологического энергопотенциала практически не ведется, но очевидно, что развитие гидроэнергетики без детальных экологических экспертиз гидроэнергетических проектов способно подорвать и без того хрупкое экологическое равновесие в мире.

На волне интереса к возобновляемым источникам энергии в мире то тут, то там возводятся плотины гидроэлектростанций, некоторые из них поражают воображение своей грандиозностью. Но, отдавая должное смелым инженерным решениям, следует помнить, что удерживаемые плотинами огромные массы воды таят в себе страшную разрушительную мощь.

Гидроэнергетические объекты оказывают существенное влияние на окружающую природную среду. Это влияние является локальным. Однако сооружение каскадов крупных водохранилищ, намечая переброска части стока рек Сибири в Среднюю Азию и другие крупные водохозяйственные мероприятия могут изменить природные условия в региональном масштабе.

В период эксплуатации происходит разносторонне влияние гидроэнергетических объектов на окружающую среду. Наиболее существенное влияние на природу оказывают водохранилища:

  1. Создание водохранилищ ведёт за собой затопление территории. В зону затопления могут попасть сельскохозяйственные угодья, месторождения полезных ископаемых, промышленные и гражданские сооружения, памятники старины, дороги, лесные массивы, места постоянного обитания животных и растений и т. д. Наиболее заселены и освоены прирусловые участки реки и районы в устьях притоков. На склонах гор мало сельскохозяйственных угодий, обычно там отсутствуют промышленные объекты. Поэтому создание водохранилищ в горных условиях приносит значительно меньший ущерб, чем на равнинах.
  1. Подтопление. Подтопление прилежащих к водохранилищу земель происходит вследствие подъёма уровня грунтовых вод. В зоне избыточного увлажнения подтопление влечёт за собой негативны последствия - переувлажнение корней растений и их отмирание. С изменением водно-воздушного режима почвы может произойти заболачивание и оглеение почв, что ухудшает качество почвы и снижает её продуктивность. В засушливых районах подтопление улучшает условия произрастания растений при соответствующих глубинах почвенных вод. В неблагоприятных условиях может происходить засоление почвы.
  2. Переработка берегов. Вследствие подъёма и снижения уровня воды в водохранилище при регулировании стока и волновых явлений проходит переработка берегов водохранилища, Она заключается в размыве и обрушении крутых склонов, срезке мысов и кос. Размеры переработки берегов зависят от их геологического строения, режима уровней воды и глубины водохранилища, конфигурации берегов, господствующих ветров и т. п. Относительная стабилизация берегов происходит через 5-20 лет после наполнения водохранилища.
  3. Качество воды. Вследствие снижения скорости течения и уменьшения перемещения воды по глубине существенно изменяются физико-химические характеристики. На качество в годы в водохранилище влияет заселённость зоны затопления, видовой и возрастной состав леса, подлеска и лесной подстилки, наличие притоков, режим и глубина сработки водохранилища и т. п. При создании водохранилищ необходимо тщательно изучить Совместное влияние всех факторов с учётом перспектив строительства каскадов ГЭС и принимать меры для поддержания качества воды. Качество воды - характеристика состава и свойств воды, определяющая пригодность её для конкретных видов водопользования. Должна производиться тщательная очистка сточных вод, поступающих в водохранилище. Использовать прилегающие земли в сельском хозяйстве надо, применяя передовые методы агротехники, ограничивающие вынос удобрений в водохранилище.
  4. Влияние водохранилищ на микроклимат. Водохранилища повышают влажность воздуха, изменяют ветровой режим прибрежной зоны, а также температурный и ледяной режим водотока. Это приводит к изменению природных условий, а также жизни и хозяйственной деятельности населения, обитания животных, рыб. Степень влияния крупных водохранилищ на микроклимат различна для отдельных регионов страны.
  5. Влияние водохранилищ на фауну. Многие животные из зоны затопления вынуждены мигрировать на территорию с более с высокими отметками. При этом видовой состав и численность животных значительно уменьшается. В ряде случаев водохранилища способствуют обогащению фауны новыми видами водоплавающих птиц и в особенности рыб: карасёвых, сазана, щуки и т. п. При ранней сработке водохранилища после весеннего половодья осушаются мелководья, что отрицательно влияет на нерест рыбы в верхнем бьефе.

Также на окружающую среду влияют гидротехнические сооружения. Возведение платин гидроузлов приводит к подъёму уровней воды в верхнем бьефе и образованию водохранилищ. Плотины, перегораживающие реки затрудняют проход рыб к местам естественных нерестилищ в верховьях рек. Но платины, здания ГЭС шлюзы каналы и т. п., удачно вписанные в рельеф местности и хорошо архитектурно оформленные, создают вместе с акваторией верхнего бьефа монументальные и живописные ансамбли.

Мероприятия по охране природы. Производство работ по возведению гидроэнергетических объектов следует проектировать с минимальным ущербом природе. При разработке стройгенпланов необходимо рационально выбирать карьеры, месторасположение дорог и т. п. К моменту завершения строительства должны быть проведены необходимые работы по рекультивации нарушения земель и озеленении территории. По водохранилищу наиболее эффективным природоохранным мероприятием является инженерная защита. Например, строительство дамб обвалования уменьшает площадь затопления и сохраняет для хозяйственного использования земли, месторождения полезных ископаемых, уменьшает площадь мелководий и улучшает санитарные условия водохранилища, сохраняет природные естественные комплексы. Если постройка дамб экономически не оправдана, то мелководья могут быть использованы для разведения птиц и для других хозяйственных нужд. При поддержании необходимых уровней воды мелководья могут быть использованы для рыбного хозяйства, как нерестилище и кормовая база.

Для предотвращения или уменьшения переработки берегов производят берегоукрепления. Предприятия, железные дороги, жилые и комунально-бытовые постройки, памятники старины выносятся из зоны затопления.

Для обеспечения высокого качества воды необходима санитарная очистка ложа водохранилища до его затопления водой. С этой целью производят агротехнические мероприятия для уменьшения загрязненного поверхностного стока и строятся очистные сооружения.

В случаях необходимости организуются заповедники, заказники, отлов и перемещение животных, производятся лесопосадки. В целях рыборазведения создают искусственные нерестилища, нерестно-выростные хозяйства, строятся рыбопропускные сооружения для прохода рыбы на нерест из нижнего бьефа в верхний. Большие работы по инженерной защите проводятся в нижнем бьефе.

Заключение

Состояние гидроэнергетики любой страны во многом зависит от соотношения запасов ее гидроэнергетических ресурсов, или, если говорить по-другому – от гидроэнергопотенциала ее рек, а так же от масштаба и уровня их освоения.

Технический потенциал или же другими словами то, что может быть в дальнейшем использовано путем выработки электроэнергии на ГЭС или иными доступными техническими способами обычно исчисляется в миллиардах кВт ч/год. Однако при этом в расчет будет браться в первую очередь экономическая целесообразность строительства и конечно же эксплуатации малых гидроэлектростанций. Другими словами, чем больше цены на потребляемое топливо, тем значительнее становится выгода при использовании гидроэнергетики.

Список литературы

  1. Андрижиевский А.А., Володин В.И. «Энергосбережение и энергетический менеджмент». - Мн: «Вышейшая школа» 2005г.
  2. Володин В.В., Хазановский П.М. «Энергия, век двадцать первый: Научно-художественная литература». - М.: Дет. лит., 1989г.
  3. Бабурин В.Н. "Гидроэнергетика и комплексное использование водных ресурсов", М: Наука, 1986.
  4. Авакян А.Б. "Комплексное использование и охрана водных ресурсов", М: 1990.

Электрические станции являются важнейшей частью жизни каждого человека, поскольку они преобразуют энергию в электроэнергию. Одна станция представляет собой целый комплекс мероприятий, искусственных и естественных подсистем, которые служат для превращения и распределения всех видов источников энергии. Весь процесс можно разделить на несколько этапов:

  1. Процесс добычи и переработки первичного источника энергии.
  2. Доставка на электростанцию.
  3. Процесс превращения первичной энергии во вторичную.
  4. Распределение вторичной (электрической или между потребителями.

Электроэнергетика включает в себя производство энергии на станции и последующую ее доставку по линиям электропередач. Такие важнейшие элементы данной цепочки, как электрические станции различаются по типу первичных источников, которые доступны в данном регионе.

Рассмотрим некоторые виды преобразовательных процессов подробнее, а также достоинства и недостатки каждого из них.

Относятся к группе традиционной энергетики и занимают значительную долю выработки электроэнергии мирового масштаба (приблизительно 40%). Достоинства и недостатки ТЭС приведены в следующей таблице:

Используют в качестве первичного источника энергии например, водохранилища и реки. Достоинства и недостатки ГЭС также сведены в таблицу.

Атомные электростанции (АЭС) - комплекс установок и мероприятий, предназначенных для которая выделяется в результате деления атомных ядер, в тепловую, а далее и в Важнейшим элементом данной системы является а также комплекс сопутствующих устройств. В таблице ниже приведены достоинства и недостатки АЭС.

Не менее важным этапом становится транспортировка топливных ресурсов к электростанции. Этот процесс может быть осуществлен несколькими способами, у каждого из которых есть свои достоинства и недостатки. Рассмотри основные способы транспортировки:

  • Водный транспорт. Доставка осуществляется при помощи танкеров и бункеровщиков.
  • Автомобильный транспорт. Транспортировка осуществляется в цистернах. Возможность перевозить только жидкое или газообразное топливо определяет существующие достоинства и недостатки автомобильного транспорта.
  • Железнодорожный транспорт. Доставка в цистернах и открытых вагонах на большие расстояния.
  • Подвесные и редко используются и только на очень короткие расстояния.

Электростанцией называется комплекс зданий, сооружений и оборудования, предназначенный для выработки электрической энергии. То есть, электростанции преобразуют различные виды энергий в электрическую. Наиболее распространенными типами электростанций являются:

— гидроэлектростанции;
— тепловые;
— атомные.

Гидроэлектростанция (ГЭС) — это электростанция, преобразующая энергию движущейся воды в электрическую энергию. Устанавливаются ГЭС на реках. При помощи плотины создается перепад высот воды (до и после плотины). Возникающий напор воды приводит в движение лопасти турбины. Турбина приводит в действие генераторы, которые вырабатывают электроэнергию.

В зависимости от мощности , гидроэлектростанции подразделяются на: малые (до 5 МВт), средние (5-25 МВт) и мощные (свыше 25 МВт). По максимально используемому напору они делятся на: низконапорные (максимальный напор — от 3 до 25 м), средненапорные (25-60 м) и высоконапорные (свыше 60 м). Также ГЭС классифицируют по принципу использования природных ресурсов: плотинные, приплотинные, деривационные и гидроаккумулирующие.

Преимуществами гидроэлектростанций являются: выработка дешевой электроэнергии, использование возобновляемой энергии, простота управления, быстрый выход на рабочий режим. Кроме того, ГЭС не загрязняют атмосферу. Недостатки: привязанность к водоемам, возможное затопление пахотных земель, пагубное влияние на экосистему рек. ГЭС можно строить только на равнинных реках (из-за сейсмической опасности гор).


Тепловая электростанция (ТЭС) вырабатывает электроэнергию за счет преобразования тепловой энергии, полученной в результате горения топлива. Топливом на ТЭС является: природный газ, уголь, мазут, торф или горячие сланцы.

В результате горения топлива в топках паровых котлов, происходит преобразование питательной воды в перегретый пар. Этот пар с определенной температурой и давлением по паропроводу подается в турбогенератор, где и происходит получение электрической энергии.

Тепловые электростанции подразделяются на:

— газотурбинные;

— котлотурбинные;

— комбинированного цикла;

— на базе парогазовых установок;
— на основе поршневых двигателей.

Котлотурбинные ТЭС , в свою очередь делятся на конденсационные (КЭС или ГРЭС) и теплоэлектроцентрали (ТЭЦ).

Преимущества теплоэлектростанций

— малые финансовые затраты;

— высокая скорость строительства;

— возможность стабильной работы вне зависимости от сезона.

Недостатки ТЭС

— работа на невозобновляемых ресурсах;

— медленный выход на рабочий режим;

— получение отходов.


Атомная электростанция (АЭС) — станция, в которой получение электроэнергии (или тепловой энергии) происходит за счет работы ядерного реактора. За 2015 год все почти 11% электроэнергии.

Ядерный реактор при работе передает энергию теплоносителю первого контура. Этот теплоноситель поступает в парогенератор, где нагревает воду второго контура. В парогенераторе происходит преобразование воды в пар, который поступает в турбину и приводит в движение электрогенераторы. Пар после турбины поступает в конденсатор, где охлаждается водой из водохранилища. В качестве теплоносителя первого контура используется, в основном, вода. Однако, для этой цели можно использовать еще свинец, натрий и другие жидкометаллические теплоносители. Количество контуров может быть разным.

АЭС классифицируются по типу используемого реактора. В атомных электростанциях используются два вида реакторов: на тепловых и на быстрых нейтронах. Реакторы первого типа подразделяются на: кипящие, водоводяные, тяжеловодные, газоохлаждаемые, графито-водные.

В зависимости от вида получаемой энергии, атомные электростанции бывают двух типов:

Станции, предназначенные для выработки электроэнергии.

Станции, предназначенные для получения электрической и тепловой энергии (АТЭЦ).

Преимущества атомных электростанций:

— независимость от источников топлива;

— экологическая чистота;

Главный недостаток станций этого типа — тяжелые последствия в случае аварийных ситуаций.

Кроме перечисленных электростанций еще бывают: дизельные, солнечные, приливные, ветровые, геотермальные.

Гидроэлектростанция является электрической станцией, применяющей энергию сброса воды как источник энергии. Их чаще всего возводят на имеющихся водоемах, конструируя искусственные плотины и резервуары для хранения необходимого объема воды.

Для действенного получения электроэнергии на подобного рода станции нужно соблюдать два главных требования: круглогодичное беспрерывное снабжение водой и наличие резких склонов рек.

Технология получения электроэнергии на гидроэлектростанции представляет собой преобразование механической энергии воды, за счет наличия разноуровневых высот благодаря использованию двигателей и генераторов.

Сегодня имеются следующие типы гидроэлектростанций, которые отличаются друг от друга способом подачи воды - плотинные, деривационные и гидроаккумулирующие станции.

Плотинные гидроэлектростанции являются самым популярным и мощнейшим видом станций. Создается водоем посредством возведения искусственных перегородок для удерживания течения реки. Спуск воды происходит по двум причинам – когда возникает необходимость в электроэнергии и для образования необходимого уровня в водоеме.

Деривационный вид отличается тем, что не применяет все течение реки, а с помощью труб и системы водоотведения происходит забор нужного объема воды, которая затем отправляется в турбину.

Гидроаккумулирующие станции являются установками, которые запасают электрическую энергию и возвращает ее в систему при необходимости, применяется для выравнивания суточной неоднородности графика электрической нагрузки.

Также используются и морские станции, которые работают посредством энергии приливов и волн.

Преимущества гидроэлектростанции

Гибкость. Гидроэнергия признана гибким источником электроэнергии потому что гидроэлектростанция легко и максимально оперативно может приспосабливаться к меняющимся потребностям в энергии, повышая или замедляя выпуск электроэнергии. Имеющаяся турбина запускается в течение всего нескольких минут.

Невысокие расходы на электроэнергию. Главным достоинством гидроэлектростанции признано отсутствие расходов на топливо и полная независимость от ископаемых типов горючего. Все подобные станции обладают огромным сроком использования, даже сегодня работают такие гидроэлектростанции, которые были возведены около 100 лет назад, к тому же для их обслуживания не требуется много сотрудников.

Использование в промышленных целях. Гидроэлектростанция применяется как для обслуживания населения, так и для обеспечения электроэнергией определенных заводов.

Минимальные выбросы углекислого газа. Сами гидроэлектростанции не способны вырабатывать углекислый газ, который чаще всего может образовываться только в ходе реализации строительных работ станции. Немецкий ученый Пауль Шеррер, проведя исследования, пришел к выводу, что гидроэнергетика занимает первое место по минимальному производству углекислого газа, после нее стоят ветер, ядерная энергетика и солнечная энергия.

Польза от создания водохранилища. Построенные водохранилища часто являются отличным вариантом для занятий водными видами спорта, а некоторые даже считаются достопримечательностями для приезжих гостей. Также вода из них отлично подойдет для полива или для разведения в ней различных видов рыб. Плюс ко всему искусственные плотины способствуют предотвращению наводнений.

Недостатки гидроэлектростанций

Нанесение вреда экологии и потеря земли. Огромные резервуары, которые требуются для работы гидроэлектростанций, являются причинами затопления колоссальных площадей земли, расположенной выше по течению плотины, а значит, происходит уничтожение лесов, полей, болот и их обитателей.

Заиление. Поток воды приносит с собой различные частицы и остатки, которые наносят вред, как плотине, так и электростанции. Подобные отложения способны уменьшить размер резервуара и ухудшить способность предотвращать наводнения. А также уменьшить производство электроэнергии.

Выбросы метана. Гидроэлектростанции, расположенные в тропических регионах, из-за огромного количества разлагающегося растительного сырья производят большие объемы метана. Поэтому прежде чем возводить гидроэлектростанцию и плотину необходимо произвести очистку территории от лесов в области образования искусственного водоема.

Переселение. Многие исследователи к значительным минусам строительства гидроэлектростанций относят необходимость переселения населения, которое проживает в районе будущего водохранилища. В начале XXI века Всемирная комиссия по плотинам опубликовала свою статистику, данные которой показали, что из-за возведения плотин практически 80 миллионов человек во всем мире пришлось покинуть места своего проживания.