Падение в чёрную дыру. Что случится, если вы попадете в черную дыру Падение в черную дыру

Падение в чёрную дыру. Что случится, если вы попадете в черную дыру Падение в черную дыру
Падение в чёрную дыру. Что случится, если вы попадете в черную дыру Падение в черную дыру

Черные дыры являются, пожалуй, столь же малоизученными сколь и популярными объектами во Вселенной. Многие писатели фантасты используют образ черный дыры как огромного "пылесоса" в глубинах Вселенной, стремящегося поглотить все, что находится поблизости. Давайте же попробуем взглянуть на черную дыру с научной точки зрения.

Немного из истории вопроса…

Впервые идея о подобном объекте пришла в голову английскому священнику Джону Мичеллу в далеком 1784 году. Идея состояла в том, что для тела с радиусом в 280,3 солнечных радиусов и с плотностью вторая космическая скорость на его поверхности будет равна скорости света. Таким образом, свет не сможет покинуть это тело, и оно будет невидимым. Однако, всерьез черные дыры стали обсуждаться только с появлением теории относительно Эйнштейна в начале 20 века.

В этой статье мы не будем приводить сложных математических формул, ограничившись только формулой для радиуса Шварцшильда:

где G — гравитационная постоянная, а c — скорость света. Чёрная дыра с массой, равной массе Земли, обладала бы радиусом Шварцшильда в 9 миллиметров (то есть Земля могла бы стать чёрной дырой, если бы кто-либо смог сжать её до такого размера). Для Солнца радиус Шварцшильда составляет примерно 3 километра.


Две важнейшие черты, присущие чёрным дырам — это наличие горизонта событий и сингулярности, которая отделена этим горизонтом от остальной вселенной.

Горизонт событий находится на радиусе Шварцшильда, он ограничивает пространство внутри черной дыры. Информация о любом событии, произошедшем за горизонтом событий внутри черной дыры, не может пересечь горизонт событий.

Сингулярность - это область внутри черной дыры, там, где решения уравнений гравитации не имеют четких физических интерпретаций. Другими словами, ученые, опираясь на весь свой накопленный опыт, еще не в состоянии дать внятный ответ на вопрос: что происходит в черной дыре?

Как происходит падение в черную дыру?

Несмотря на это, решения уравнений специальной теории относительности дают ответ на не менее интересный вопрос: как происходит падение в черную дыру. Для наблюдателя внутри космического корабля взявшего курс на черную дыру его скорость относительно черной дыры будет увеличиваться вплоть до скорости света.

Для наблюдателя, находящегося далеко от черной дыры на своем наблюдательном пункте, картина будет совершенно иной. По мере приближения космического корабля к черной дыре информация от него на наблюдательный пункт будет приходить все с большим запаздыванием. С точки зрения наблюдательного пункта, скорость корабля будет постепенно уменьшаться по мере приближения к горизонту событий. Для того, чтобы преодолеть горизонт событий и скрыться с радаров, по часам наблюдательного пункта потребуется бесконечное время.

Вернемся к пилоту космического корабля. По его собственным часам ему потребуется довольно небольшое время до преодоления горизонта событий. Однако, ему как целому не суждено будет застать этого события. Дело в том, что по мере приближения к черной дыре, будет увеличиваться ускорение свободного падения. Также будет расти его неоднородность. Вблизи горизонта событий она может достигнуть такой величины, что будет способна не только разломать корабль на части, но и разорвать молекулы на атомы.

На следующем видео показано, что будет видеть пилот космического звездолета, падающего в черную дыру.

Поясним термин неоднородность в данном случае. Представьте, что мы падаем ногами вниз на черную дыру. Тогда на ноги, например, будет действовать ускорение 100 метров на квадратную секунду, а на голову только 50 - ощущения будут не очень приятными. На Земле такая неоднородность тоже есть, но она настолько мала, что ее никто не ощущает. Разница ускорений свободного падения для ног и для головы, аналогично приведенному примеру, на Земле составляет менее 1 миллионной метра в секунду.

Существует теоретическое рассмотрение различных видов черных дыр , зараженных и не зараженных, вращающихся и не вращающихся. Однако к настоящему времени экспериментально данный объект остается почти неизученным. В ходе астрономических наблюдений второй половины ХХ века астрономы обнаружили довольно много объектов, в той или иной мере проявляющие себя как черные дыры. Такими объектами, например, являются некоторые и ядра некоторых

Способы образования Черных дыр

По современным представлениям, существует четыре способа образования черной дыры :

  • Гравитационный коллапс достаточно массивной звезды на конечном этапе её эволюции.
  • Коллапс центральной части Галактики. Например, в центре нашей Галактики находится чёрная дыра Стрелец A* массой 3,7 солнечных масс. Этот способ схож с предыдущим, с той лишь разницей, что звезда не образуется, как это обычно бывает при гравитационном сжатии межзвездного газа. Масса газа настолько велика, что сжатие идет сразу до образования черной дыры.
  • Формирование чёрных дыр в момент , в результате флуктуаций гравитационного поля или материи.
  • Возникновение чёрных дыр в ядерных реакциях при высоких энергиях — квантовые чёрные дыры.

Черные дыры настолько сложный и таинственный объект, что ученые еще немало лет будут ломать голову в попытках понять его природу.

Черные дыры являются одними из самых удивительных и в то же время пугающих объектов нашей Вселенной. Возникают они в тот момент, когда в звездах, имеющих огромную массу, заканчивается ядерное топливо. Ядерные реакции прекращаются и светила начинают остывать. Тело звезды сжимается под действием гравитации и постепенно она начинает притягивать к себе более мелкие объекты, трансформируясь в черную дыру.

Первые исследования

Изучать черные дыры светила науки начали не так давно, несмотря на то что основные концепции их существования были разработаны еще в прошлом столетии. Само понятие «черной дыры» было введено в 1967 году Дж. Уиллером, хотя вывод о том, что эти объекты неизбежно возникают при коллапсе массивных звезд, был сделан еще в 30-х годах прошлого столетия. Все, что внутри черной дыры - астероиды, свет, поглощенные ею кометы, - когда-то приблизилось слишком близко к границам этого загадочного объекта и не сумело их покинуть.

Границы черных дыр

Первая из границ черной дыры называется пределом статичности. Это граница области, попадая в которую посторонний объект уже не может находиться в состоянии покоя и начинает вращаться относительно черной дыры, чтобы удержаться от падения в нее. Вторая граница зовется горизонтом событий. Все, что внутри черной дыры, когда-то проходило ее внешнюю границу и двигалось по направлению к точке сингулярности. По мнению ученых, здесь вещество вливается в эту центральную точку, плотность которой стремится к значению бесконечности. Люди не могут знать, какие законы физики действуют внутри объектов с такой плотностью, и поэтому описать характеристики этого места невозможно. В буквальном смысле слова оно является «черной дырой» (или, быть может, «пробелом») в знаниях человечества об окружающем мире.

Строение черных дыр

Горизонтом событий называется неприступная граница черной дыры. Внутри этой границы находится зона, которую не могут покинуть даже объекты, скорость движения которых равна скорости света. Даже кванты самого света не могут покинуть горизонт событий. Находясь в этой точке, никакой предмет уже не может вырваться из черной дыры. О том, что внутри черной дыры, мы не можем узнать по определению - ведь в ее глубинах находится так называемая точка сингулярности, которая формируется за счет предельного сжатия вещества. Когда объект попадает внутрь горизонта событий, с этого момента он никогда не сможет вырваться снова из нее и стать видимым для наблюдателей. С другой стороны, те, кто находятся внутри черных дыр, не могут видеть ничего из происходящего снаружи.

Размер горизонта событий, окружающего этот загадочный космический объект, всегда прямо пропорционален массе самой дыры. Если ее масса будет удвоена, то вдвое больше станет и внешняя граница. Если бы ученые смогли найти способ, позволяющий превратить Землю в черную дыру, то размер горизонта событий составлял бы всего лишь 2 см в поперечном разрезе.

Основные категории

Как правило, масса среднестатистических черных дыр приблизительно равна трем солнечным массам и более. Из двух видов черных дыр выделяют звездные, а также сверхмассивные. Их масса превосходит массу Солнца в несколько сотен тысяч раз. Звездные образуются после смерти больших небесных светил. Черные дыры обычной массы появляются после завершения жизненного цикла больших звезд. Оба вида черных дыр, несмотря на различное происхождение, имеют сходные свойства. Сверхмассивные черные дыры расположены в центрах галактик. Ученые предполагают, что они сформировались во времена образования галактик за счет слияния плотно прилежащих друг к другу звезд. Однако это только догадки, не подтвержденные фактами.

Что внутри черной дыры: догадки

Некоторые из математиков считают, что внутри этих загадочных объектов Вселенной находятся так называемые червоточины - переходы в другие Вселенные. Иными словами, в точке сингулярности расположен пространственно-временной туннель. Эта концепция послужила для многих писателей и режиссеров. Однако подавляющее большинство астрономов считают, что никаких туннелей между Вселенными не существует. Однако даже если бы они действительно были, у человека нет никаких способов узнать, что находится внутри черной дыры.

Существует и другая концепция, согласно которой в противоположном конце такого туннеля находится белая дыра, откуда из нашей Вселенной в другой мир через черные дыры поступает гигантское количество энергии. Однако на данном этапе развития науки и техники о путешествиях подобного рода не может быть и речи.

Связь с теорией относительности

Черные дыры являются одним из самых удивительных предсказаний А. Эйнштейна. Известно, что сила тяготения, которая создается на поверхности любой планеты, обратно пропорциональна квадрату ее радиуса и прямо пропорциональна ее массе. Для этого небесного тела можно определить понятие второй космической скорости, которая необходима, чтобы преодолеть эту силу тяготения. Для Земли она равна 11 км/сек. Если же масса небесного тела будет увеличиваться, а диаметр - наоборот, уменьшаться, то вторая космическая скорость со временем может превысить скорость света. И поскольку, согласно теории относительности, никакой объект не может двигаться быстрее скорости света, то образуется объект, не дающий ничему вырваться за его пределы.

В 1963 году учеными были обнаружены квазары - космические объекты, являющиеся гигантскими источниками радиоизлучения. Располагаются они очень далеко от нашей галактики - их удаленность составляет миллиарды световых лет от Земли. Чтобы объяснить чрезвычайно высокую активность квазаров, ученые ввели гипотезу о том, что внутри них располагаются черные дыры. Эта точка зрения сейчас является общепринятой в научных кругах. Исследования, которые проводились в течение последних 50 лет, не только подтвердили данную гипотезу, но и привели ученых к выводу о том, что черные дыры есть в центре каждой галактики. В центре нашей галактики также есть такой объект, его масса составляет 4 миллиона солнечных масс. Эта черная дыра носит название «Стрелец А», и поскольку она расположена ближе всего к нам, ее больше всего исследуют астрономы.

Излучение Хокинга

Этот тип излучения, открытый известным физиком Стивеном Хокингом, значительно усложняет жизнь современным ученым - ведь из-за этого открытия в теории черных дыр появилось немало трудностей. В классической физике существует понятие вакуума. Этим словом обозначается полная пустота и отсутствие материи. Однако с развитием квантовой физики понятие вакуума было видоизменено. Ученые выяснили, что он заполнен так называемыми виртуальными частицами - под воздействием сильного поля они могут превратиться в реальные. В 1974 году Хокинг выяснил, что подобные превращения могут происходить в сильном гравитационном поле черной дыры - возле ее внешней границы, горизонта событий. Такое рождение является парным - появляется частица и античастица. Как правило, античастица обречена на падение в черную дыру, а частица улетает. В результате ученые наблюдают некоторое излучение вокруг этих космических объектов. Оно и получило название излучения Хокинга.

В ходе этого излучения то вещество, что внутри черной дыры, медленно испаряется. Дыра теряет массу, при этом интенсивность излучения обратно пропорциональна величине квадрата ее массы. Интенсивность излучения Хокинга ничтожно мала по космическим меркам. Если предположить, что существует дыра массой в 10 солнц, и на нее не попадает ни свет, ни какие-либо материальные объекты, то даже в этом случае время ее распада будет чудовищно велико. Жизнь такой дыры будет превосходить все время существования нашей Вселенной на 65 порядков.

Вопрос о сохранении информации

Одной из основных проблем, которая появилась после открытия излучения Хокинга, является проблема потери информации. Связана она с вопросом, кажущимся на первый взгляд очень простым: что произойдет, когда черная дыра испарится полностью? Обе теории - как квантовая физика, так и классическая - имеют дело с описанием состояния системы. Обладая информацией о начальном состоянии системы, при помощи теории можно описать, каким образом она будет меняться.

При этом в процессе эволюции информация о начальном состоянии не теряется - действует своего рода закон о сохранении информации. Но если черная дыра испарится полностью, то наблюдатель теряет информацию о той части физического мира, который когда-то попал в дыру. Стивен Хокинг считал, что информация о начальном состоянии системы каким-то образом восстанавливается после того, как черная дыра испарилась полностью. Но трудность состоит в том, что по определению из черной дыры передача информации невозможна - ничто не может покинуть горизонт событий.

Что будет, если попадешь в черную дыру?

Считается, что если бы каким-либо невероятным способом человек мог попасть на поверхность черной дыры, то она сразу стала бы его затягивать в направлении себя. В конечном счете человек бы растянулся настолько, что превратился бы в поток субатомных частиц, движущихся по направлению к точке сингулярности. Доказать эту гипотезу, конечо же, невозможно, ведь ученые вряд ли когда-нибудь смогут узнать, что происходит внутри черных дыр. Сейчас некоторые физики заявляют, что если бы человек попал в черную дыру, то у него появился бы клон. Первая из его версий сразу же была бы уничтожена потоком раскаленных частиц излучения Хокинга, а вторая бы прошла через горизонт событий без возможности вернуться назад.

Представим себе, как должно выглядеть падение в шварцшильдовскую чёрную дыру. Тело, свободно падающее под действием сил гравитации, находится в состоянии невесомости. Падающее тело будет испытывать действие приливных сил, растягивающих тело в радиальном направлении и сжимающих -- в тангенциальном. Величина этих сил растёт и стремится к бесконечности при. В некоторый момент собственного времени тело пересечёт горизонт событий. С точки зрения наблюдателя, падающего вместе с телом, этот момент ничем не выделен, однако возврата теперь нет. Тело оказывается в горловине (её радиус в точке, где находится тело и есть), сжимающейся столь быстро, что улететь из неё до момента окончательного схлопывания (это и есть сингулярность) уже нельзя, даже двигаясь со скоростью света.

Рассмотрим теперь процесс падения тела в чёрную дыру с точки зрения удалённого наблюдателя. Пусть, например, тело будет светящимся и, кроме того, будет посылать сигналы назад с определённой частотой. Вначале удалённый наблюдатель будет видеть, что тело, находясь в процессе свободного падения, постепенно разгоняется под действием сил тяжести по направлению к центру. Цвет тела не изменяется, частота детектируемых сигналов практически постоянна. Однако, когда тело начнёт приближаться к горизонту событий, фотоны, идущие от тела, будут испытывать всё большее и большее гравитационное красное смещение. Кроме того, из-за гравитационного поля все физические процессы с точки зрения удалённого наблюдателя будут идти всё медленнее и медленнее гравитационного замедления времени): часы, закреплённые на радиальной координате r без вращения будут идти медленнее бесконечно удалённых в раз.

Будет казаться, что тело -- в чрезвычайно сплющенном виде -- будет замедляться, приближаясь к горизонту событий и, в конце концов, практически остановится. Частота сигнала будет резко падать. Длина волны испускаемого телом света будет стремительно расти, так что свет быстро превратится в радиоволны и далее в низкочастотные электромагнитные колебания, зафиксировать которые уже будет невозможно. Пересечения телом горизонта событий наблюдатель не увидит никогда и в этом смысле падение в чёрную дыру будет длиться бесконечно долго. Есть, однако, момент, начиная с которого повлиять на падающее тело удалённый наблюдатель уже не сможет. Луч света, посланный вслед этому телу, его либо вообще никогда не догонит, либо догонит уже за горизонтом. Кроме того, расстояние между телом и горизонтом событий, а также "толщина" сплющенного (с точки зрения стороннего наблюдателя) тела довольно быстро достигнут планковской длины и (с математической точки зрения) будут уменьшаться и далее. Для реального физического наблюдателя (ведущего измерения с планковской погрешностью) это равносильно тому, что масса чёрной дыры увеличится на массу падающего тела, а значит радиус горизонта событий возрастёт и падающее тело окажется "внутри" горизонта событий за конечное время. Аналогично будет выглядеть для удалённого наблюдателя и процесс гравитационного коллапса. Вначале вещество ринется к центру, но вблизи горизонта событий оно станет резко замедляться, его излучение уйдёт в радиодиапазон, и в результате удалённый наблюдатель увидит, что звезда погасла.

Это может случиться с каждым. Может быть вы летаете в открытом космосе и пытаетесь найти новую планету, пригодную для жизни человечества. Или же вы просто отправляетесь на прогулку и внезапно поскальзываетесь. Вне зависимости от обстоятельств, у вас в голове может появиться извечный вопрос, который терзает умы многих - что произойдет, если вы упадете в черную дыру?

Парадокс черной дыры

Вы можете предположить, что вас раздавит или разорвет на мельчайшие кусочки. Однако реальность выглядит гораздо более странно. В тот момент, когда вы попадете в черную дыру, реальность разделится надвое. В одной реальности вы будете тут же сожжены дотла, но в другой начнете погружаться в черную дыру без каких-либо повреждений.

Что такое черная дыра?

Черная дыра - это место, где законы физики (такие, какими люди их знают) перестают работать. Эйнштейн учил, что гравитация искривляет пространство, заставляя его закручиваться. Так что если взять достаточно плотный объект, пространственно-временной континуум может стать настолько искривленным, что он закрутит сам себя, создав дыру в самой ткани реальности.

Как рождается черная дыра?

Большая звезда, у которой закончилась энергия для работы, может предложить ту самую невероятную плотность, необходимую для того, чтобы так сильно деформировать участок вселенной. По мере того как эта звезда прогибается под тяжестью собственного веса и рушится внутри себя, пространственно-временной континуум следует за ней. Гравитационное поле становится настолько сильным, что даже свет не может проникнуть сквозь него, делая участок, где это происходит, абсолютно темным, то есть создавая черную дыру.

Горизонт событий

Самой дальней границей черной дыры является «горизонт событий», то есть то место, где гравитационная сила спадает до такого уровня, что свету вот-вот удастся проникнуть сквозь гравитационное поле. Переступите эту черту - и выхода уже не будет. Горизонт событий буквально сияет энергией. Квантовые эффекты, которые наблюдаются на границе черной дыры, создают потоки раскаленных частиц, излучаемых обратно во Вселенную из черной дыры. Этот феномен называется излучением Хокинга - в честь ученого Стивена Хокинга, который предсказал этот эффект. Если дать черной дыре достаточно времени, то излучения выдадут обратно в космос всю ее массу, и она исчерпает себя и исчезнет.

Искривление пространства и сингулярность

По мере того как вы будете продвигаться внутрь черной дыры, пространство будет все более и более искривляться, пока, наконец, вы не достигнете центра черной дыры, где пространство является бесконечно искривленным. Это называется сингулярностью. Пространство и время перестают существовать, как и законы физики, которые для реализации требуют наличия тех самых пространства и времени. Никто не знает, что образуется дальше. Другая Вселенная? Забвение? Задняя часть книжного шкафа? Это загадка.

Ваш компаньон

Так что же случится, если вы случайно упадете в одну их этих космических аберраций? Давайте спросим у вашего космического компаньона - пусть ее будут звать Анна. Она в ужасе смотрит на то, как вы падаете в черную дыру, пока сама она находится на безопасном расстоянии от нее. И с ее точки зрения, все происходящее выглядит крайне странно.

Точка зрения Анны

По мере того как вы приближаетесь к горизонту событий, Анна видит, как ваше тело растягивается и искажается - словно она смотрит на вас сквозь гигантское увеличительное стекло. Более того, чем ближе вы оказываетесь к горизонту событий, тем больше происходящее напоминает замедленный режим съемки. Когда вы достигаете горизонта событий, Анна видит, как вы замираете на месте, не перемещаяь даже на миллиметр. Вы остаетесь на одном месте, по мере того как растущий жар начинает действовать на вас. По словам Анны, вас медленно стирает растяжение пространства, остановка времени и жар излучения Хокинга - пока от вас не остается только лишь пепел.

Ваша точка зрения

Но прежде чем готовиться к похоронам, вам стоит на секунду забыть об Анне и посмотреть на все происходящее с вашей точки зрения. И здесь случается что-то еще более невероятное - ничего. Дело в том, что если смотреть на ситуацию вашими глазами, то вы спокойно пролетаете горизонт событий, направляясь в абсолютную черноту, не получая при этом никаких повреждений. Конечно, если бы черная дыра была меньше по размерам, то вас искривило бы, как и все остальное пространство, но если черная дыра достаточно большая, то эти силы вполне могут быть игнорированы, и вы можете довольно долго прожить, пока не доберетесь до сингулярности.

Разрыв реальности

Но в чем же дело? Почему Анна увидела, что вы сгорели, в то время как вы спокойно путешествуете по черной дыре? Неужели она сошла с ума и галлюцинирует? На самом деле, все гораздо проще - дело в законах физики. С одной стороны, квантовая физика требует того, чтобы информация никогда не была потеряна, так что вы не можете покинуть Вселенную и попасть в черную дыру - вы сгораете на месте под воздействием излучения Хокинга. С другой стороны, вы должны проследовать через горизонт событий, не подвергаясь воздействию излучения, иначе была бы нарушена общая теория относительности Эйнштейна. Именно тут и происходит разрыв реальности.

Черная дыра - это область пространства, которая обладает таким притяжением, что даже свет не может ее покинуть. Идея существования таких объектов появилась еще в конце XVIII века, когда английский естествоиспытатель Джон Митчелл предположил, что если размеры звезды будут очень маленькими, а масса - очень большой, то она не будет светить, потому что ее притяжение просто не даст свету вырваться (Митчелл представлял себе свет состоящим из частиц).

В современной науке существование черных дыр предсказывает теория относительности. Гравитацию в соответствии с этой теорией наглядно так: представим себе ткань, а лучше лист резины, на который кладут камни. Камни продавливают его сильнее или слабее в зависимости от своего веса, а более легкие катятся туда, где более тяжелые продавили яму поглубже. Поэтому планеты «притягивают» спутники, Солнце «притягивает» планеты и так далее.

Остерегайтесь черных дыр и водопадов

Используя эту метафору, Стивен Хокинг объясняет черные дыры так: представим, что мы кладем на резину очень тяжелый и компактный камень, он продавливает в ней бездонную яму, в которую вещество падает безвозвратно.

Граница черной дыры называется горизонтом событий, за этим горизонтом скорость, с которой нужно двигаться, чтобы вырваться из черной дыры, должна превышать скорость света - задача невозможная. Представить это себе можно как падение на лодке в водопад: чем ближе к водопаду, тем сильнее нужно грести, чтобы не затянуло, но с какого-то момента как ни старайся - вырваться уже не получится, вы падаете, но в случае черной дыры на дне вас ждут не острые камни, а загадочная сингулярность.

В области сингулярности плотность материи становится бесконечной. Говорят , может даже образоваться туннель в другую Вселенную. Но это все слухи, а что там на самом деле происходит - никто не знает.

Все это звучит странно и загадочно, но в том, что черные дыры существуют, астрофизики : например, долгожданное открытие , порожденных столкновением двух черных дыр, - весомое подтверждение их существования.

Откуда берутся черные дыры

Черные дыры звездных масс образуются из звезд массой в 3−5 раз больше солнечной (поэтому наше Солнце черной дырой не станет, оно превратиться в белого карлика через миллиарды лет). «Топливо» для термоядерных реакций в звездах не бесконечно, и, когда оно заканчивается, звезда «схлопывается» и вспыхивает сверхновой.

А вот откуда берутся сверхмассивные черные дыры, неизвестно. На этот счет есть только предположения, такие как схлопывание массивных облаков газа на ранних стадиях образования галактик, разрастание черных дыр звездной массы за счет поглощения материи или слияния множества таких дыр в одну сверхмассивную. Недостатка в предположениях нет, а вот с наблюдениями дело обстоит сложнее.

Как увидеть черную дыру

Увидеть саму черную дыру нельзя, на что намекает ее название, а вот падающее в нее вещество - можно. В центрах многих галактик находятся черные дыры массой в миллионы больше солнечной. Они притягивают пыль, газ и звезды. Из этого вещества вокруг черной дыры образуется аккреционный диск. В нем материя закручивается, как в воронке, перед тем как упасть в черную дыру, и из-за трения разогревается, благодаря чему начинает ярко светиться во всем спектре. При падении же материи в черную дыру давление излучения и влияние магнитного поля у границы черный дыры отбрасывают часть вещества далеко от нее.

Сверхмассивная черная дыра в центре нашей Галактики называется Стрелец A*. Словосочетание «наша Галактика» звучит как-то по-домашнему, будто до центра ее рукой подать, но на самом деле черная дыра находится от нас в 25 тысячах световых лет, масса ее - в 4 миллиона раз больше солнечной.

Разглядеть ее на таком расстоянии очень сложно - все равно что пытаться увидеть теннисный мячик на Луне, и необходимая для этого острота «зрения» доступна лишь радиотелескопам благодаря приему , который позволяет объединить телескопы в разных уголках земного шара в один огромный виртуальный телескоп. Так, проект Event Horizon Telescope объединит наблюдения телескопов в США, Испании, Мексике, Чили и даже в Антарктиде.

Второй объект для наблюдения - черная дыра в центре галактики M 87 Она примерно в 6 миллионов раз массивнее Солнца, но и находится существенно дальше - в 53 миллионах световых лет от нас.

На что похожа черная дыра

Результаты наблюдений будут опубликованы только в следующем году, а пока, чтобы примерно представить себе, что могут увидеть телескопы, можно полюбоваться на черную дыру в фильме «Интерстеллар», создатели которого постарались сделать картину как можно более правильной с научной точки зрения.

Правильность этой картинки в том, что аккреционный диск за черной дырой выглядит не как кольца у Сатурна, а выглядывает из-за черной дыры, потому что ее сильное гравитационное поле искажает путь, который проходит излучение аккреционного диска. Впрочем, есть и отличие от «Интерстеллара»: с одной стороны аккреционный диск из-за его вращения должен выглядеть ярче.

В результате изображение должно получиться похожим на картинку, которую астрофизик Жан-Пьер Люмине (Jean-Pierre Luminet) смоделировал в 1978-м еще на компьютере IBM 7040 , работавшем на перфокартах, и нарисовал от руки для статьи в журнале Astronomy and Astrophysics.