Период функции y sinx. Урок "Периодичность функций y=sinx, y=cosx"

Период функции y sinx. Урок
Период функции y sinx. Урок "Периодичность функций y=sinx, y=cosx"

Инструкция

Чтобы найти период тригонометрической функции, возведенной в степень, оцените четность степени. Для уменьшите стандартный период в два раза. Например, если вам дана функция у=3 cos^2х, то стандартный период 2П уменьшится в 2 раза, таким образом, период будет равен П. Обратите , функции tg, ctg в любой степени периодичны П.

Если вам дано уравнение, содержащее или частное двух тригонометрических функций, сначала найдите период для каждой из них отдельно. Затем найдите минимальное число, которое умещало бы в себе целое количество обоих . Например, дана функция у=tgx*cos5x. Для тангенса период П, для косинуса 5х – период 2П/5. Минимальное число, в которое можно уместить оба этих периода, это 2П, таким образом, искомый период – 2П.

Если вы затрудняетесь действовать предложенным образом или сомневаетесь в ответе, попытайтесь действовать по определению. Возьмите в качестве периода функции Т, он больше нуля. Подставьте в уравнение вместо х выражение (х+Т) и решите полученное равенство, как если бы Т было параметром или числом. В результате вы найдете значение тригонометрической функции и сможете подобрать минимальный период. Например, в результате упрощения у вас получилось тождество sin (Т/2)=0. Минимальное значение Т, при котором оно выполняется, 2П, это и будет задачи.

Источники:

  • период sin

Периодической функцией называется функция, повторяющая свои значения через какой-то ненулевой период. Периодом функции называется число, при добавление которого к аргументу функции значение функции не меняется.

Вам понадобится

Инструкция

Видео по теме

Обратите внимание

Все тригонометрические функции являются периодическими, а все полиномиальные со степенью больше 2 - апериодическими.

Полезный совет

Периодом функции, состоящей из двух периодический функций, является Наименьшее общее кратное периодов этих функций.

Тригонометрические уравнения - это уравнения, которые содержат в себе функции неизвестного аргумента (для примера: 5sinx-3cosx =7). Чтобы научиться решать их - нужно знать некоторые для этого методы.

Инструкция

Разложение уравнения на множители. Сначала переносим все члены влево и раскладываем на множители.

Важно помнить, что о четности и нечетности функции имеет прямую с областью определения функции. Если, например, четная либо нечетная функция не при х=5, то она не существует и при х=-5, чего нельзя сказать про функцию общего вида. При установлении четности и нечетности обращайте внимание на область определения функции.

Исследование функции на четность и нечетность коррелирует с нахождением множества значений функции. Для нахождения множества значений четной функции достаточно рассмотреть половину функции, правее либо левее нуля. Если при x>0 четная функция y(x) принимает от А до В, то те же значения она будет и при x<0.
Для нахождения множества значений, принимаемых нечетной функцией, тоже достаточно рассмотреть только одну функции. Если при x>0 нечетная функция y(x) принимает диапазон значений от А до В, то при x<0 она будет принимать симметричный диапазон значений от (-В) до (-А).

«Тригонометрическими» когда-то стали называть функции, которые определяются зависимостью острых углов в прямоугольном треугольнике от длин его сторон. К таким функциям относят в первую очередь синус и косинус, во вторую - обратные этим функциям секанс и косеканс, производные от них тангенс и котангенс, а также обратные функции арксинус, арккосинус и др. Правильнее говорить не о «решении» таких функций, а об их «вычислении», то есть о нахождении численного значения.

Инструкция

Если аргумент тригонометрической неизвестен, то вычислить ее значение можно косвенным способом исходя из определений этих функций. Для этого требуется знать длины сторон треугольника, тригонометрическую для одного из углов которого требуется вычислить. Например, синус острого угла в прямоугольном треугольнике - это отношение длины противолежащего этому углу катета к длине гипотенузы. Из этого вытекает, что для угла достаточно знать длины этих двух сторон. Аналогичное гласит, что синусом острого угла является отношение длины прилежащего к этому углу катета к длине гипотенузы. Тангенс острого угла можно вычислить, разделив длину противолежащего ему катета на длину прилежащего, а требует деления длины прилежащего катета к длине противолежащего. Для вычисления секанса острого угла надо найти отношение длины гипотенузы к длине прилежащего к нужному углу катета, а косеканс определяется отношением длины гипотенузы к длине противолежащего катета.

Если же аргумент тригонометрической функции известен, то знать длины сторон треугольника не требуется - можно воспользоваться таблицами значений или калькуляторами тригонометрических функций. Такой есть среди стандартных программ операционной системы Windows. Для его запуска можно нажать сочетание клавиш Win + R, ввести команду calc и щелкнуть кнопку «OK». В интерфейсе программы следует раскрыть раздел «Вид» и пункт «Инженерный» или «Научный». После этого можно вводить аргумент тригонометрической функции. Для вычисления функций синус, косинус и достаточно после ввода значения щелкнуть по соответствующей кнопке интерфейса (sin, cos, tg), а для нахождения обратных им арксинуса, арккосинуса и следует предварительно поставить отметку в чекбоксе Inv.

Есть и альтернативные способы. Один из них - перейти на сайт поисковой системы Nigma или Google и ввести в качестве поискового запроса нужную функцию и ее аргумент (например, sin 0.47). Эти поисковики имеют встроенные калькуляторы, поэтому после отправки такого запроса вы получите значение введенной вами тригонометрической функции.

Видео по теме

Тригонометрические функции вначале возникли как инструменты абстрактных математических вычислений зависимостей величин острых углов в прямоугольном треугольнике от длин его сторон. Сейчас они очень широко применяются как в научных, так и в технических областях человеческой деятельности. Для практических вычислений тригонометрических функций от заданных аргументов можно использовать разные инструменты - ниже описано несколько наиболее доступных из них.

Инструкция

Воспользуйтесь, например, устанавливаемой по умолчанию вместе с операционной системой программой-калькулятором. Она открывается выбором пункта «Калькулятор» в папке «Служебные» из подраздела «Стандартные», помещенного в раздел «Все программы». Этот раздел можно , открыв щелчком по кнопке «Пуск» главное меню операционной . Если вы используете версию Windows 7, то имеете возможность просто ввести «Калькулятор» в поле «Найти программы и файлы» главного меню, а затем щелкнуть по соответствующей ссылке в результатах поиска.

Введите угла, для которого надо рассчитать тригонометрическую функцию, а потом кликните по соответствующей этой кнопке - sin, cos или tan. Если вас интересуют обратные тригонометрические функции (арксинус, арккосинус или ), то сначала кликните кнопку с надписью Inv - она меняет присвоенные управляющим кнопкам функции на противоположные.

В более ранних версиях ОС (например, Windows XP) для доступа к тригонометрическим функциям надо раскрыть в меню калькулятора раздел «Вид» и выбрать строку «Инженерный». Кроме того, вместо кнопки Inv в интерфейсе старых версий программы присутствует чекбокс с же надписью.

Можно и без калькулятора, если у вас есть доступ в интернет. В сети много сервисов, которые предлагают по-разному организованные вычислители тригонометрических функций. Один их наиболее удобных встроен в поисковую систему Nigma. Перейдя на ее главную страницу, просто введите в поле поискового запроса интересующее вас значение - например, «арктангенс 30 ». После нажатия кнопки «Найти!» поисковик рассчитает и покажет результат вычисления - 0,482347907101025.

Видео по теме

Тригонометрия – раздел математики для изучения , выражающих различные зависимости сторон прямоугольного треугольника от величин острых углов при гипотенузе. Такие функции получили называние тригонометрических, а для упрощения работы с ними были выведены тригонометрические тождества .

Понятие тождества в означает равенство, которое выполняется при любых значениях аргументов входящих в него функций. Тригонометрические тождества – это равенства тригонометрических функций, доказанные и принятые для облегчения работы с тригонометрическими формулами.Тригонометрическая функция – это элементарная функция зависимости одного из катетов прямоугольного треугольника от величины острого угла при гипотенузе. Чаще всего используются шесть основных тригонометрических функций: sin (синус), cos (косинус), tg (тангенс), ctg (котангенс), sec (секанс) и cosec (косеканс). Эти функции называются прямыми, существуют также

Число T, что для любого x F(x + T) = F(x). Это число T и называется периодом функции.

Периодов может быть и несколько. Например, функция F = const для любых значений аргумента принимает одно и то же значение, а потому любое число может считаться ее периодом.

Обычно интересует наименьший не равный нулю период функции. Его для краткости и называют просто периодом.

Классический пример периодических функций - тригонометрические: синус, косинус и тангенс. Их период одинаков и равен 2π, то есть sin(x) = sin(x + 2π) = sin(x + 4π) и так далее. Однако, разумеется, тригонометрические функции - не единственные периодические.

Относительно простых, базовых функций единственный способ установить их периодичность или непериодичность - вычисления. Но для сложных функций уже есть несколько простых правил.

Если F(x) - с периодом T, и для нее определена производная, то эта производная f(x) = F′(x) - тоже периодическая функция с периодом T. Ведь значение производной в точке x равно тангенсу угла касательной графика ее первообразной в этой точке к оси абсцисс, а поскольку периодически повторяется, то должна повторяться . Например, производная от функции sin(x) равна cos(x), и она периодична. Беря производную от cos(x), вы получите –sin(x). Периодичность сохраняется неизменно.

Однако обратное не всегда верно. Так, функция f(x) = const периодическая, а ее первообразная F(x) = const*x + C - нет.

Если F(x) - периодическая функция с периодом T, то G(x) = a*F(kx + b), где a, b, и k - константы и k не равно нулю - тоже периодическая функция, и ее период равен T/k. Например sin(2x) - периодическая функция, и ее период равен π. Наглядно это можно представить так: умножая x на какое-нибудь число, вы как бы сжимаете функции по горизонтали именно в столько раз

Если F1(x) и F2(x) - периодические функции, и их периоды равны T1 и T2 соответственно, то сумма этих функций тоже может быть периодической. Однако ее период не будет простой суммой периодов T1 и T2. Если результат деления T1/T2 - рациональное число, то сумма функций периодична, и ее период равен наименьшему общему кратному (НОК) периодов T1 и T2. Например, если период первой функции равен 12, а период второй - 15, то период их суммы будет равен НОК (12, 15) = 60.

Наглядно это можно представить так: функции идут с разной «шириной шага», но если отношение их ширин рационально, то рано или (а точнее, именно через НОК шагов), они снова сравняются, и их сумма начнет новый период.

Однако если соотношение периодов , то суммарная функция не будет периодической вовсе. Например, пусть F1(x) = x mod 2 (остаток от деления x на 2), а F2(x) = sin(x). T1 здесь будет равен 2, а T2 равен 2π. Соотношение периодов равняется π - иррациональному числу. Следовательно, функция sin(x) + x mod 2 не является периодической.

Источники:

  • Теоретические сведения о функциях

Многие математические функции имеют одну особенность, облегчающую их построение, - это периодичность , то есть повторяемость графика на координатной сетке через равные промежутки.

Инструкция

Самыми известными периодическими функциями математики синусоида и косинусоида. Эти функции имеют волнообразный и основной период, равный 2П. Также частным случаем периодической функции является f(x)=const. На позицию х подходит любое число, основного периода данная функция не имеет, так как представляет собой прямую.

Вообще функция является периодической, если существует целое число N, которое от нуля и удовлетворяет правилу f(x)=f(x+N), таким образом обеспечивая повторяемость. Период функции - это и есть наименьшее число N, но не ноль. То есть, например, функция sin x равна функции sin (x+2ПN), где N=±1, ±2 и т.д.

Иногда при функции может множитель (например sin 2x), который увеличит или сократит период функции. Для того чтобы найти период по

С центром в точке A .
α - угол, выраженный в радианах.

Определение
Синус (sin α) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AC|.

Косинус (cos α) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине гипотенузы |AC|.

Принятые обозначения

;
;
.

;
;
.

График функции синус, y = sin x

График функции косинус, y = cos x


Свойства синуса и косинуса

Периодичность

Функции y = sin x и y = cos x периодичны с периодом 2 π .

Четность

Функция синус - нечетная. Функция косинус - четная.

Область определения и значений, экстремумы, возрастание, убывание

Функции синус и косинус непрерывны на своей области определения, то есть для всех x (см. доказательство непрерывности). Их основные свойства представлены в таблице (n - целое).

y = sin x y = cos x
Область определения и непрерывность - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений -1 ≤ y ≤ 1 -1 ≤ y ≤ 1
Возрастание
Убывание
Максимумы, y = 1
Минимумы, y = -1
Нули, y = 0
Точки пересечения с осью ординат, x = 0 y = 0 y = 1

Основные формулы

Сумма квадратов синуса и косинуса

Формулы синуса и косинуса от суммы и разности



;
;

Формулы произведения синусов и косинусов

Формулы суммы и разности

Выражение синуса через косинус

;
;
;
.

Выражение косинуса через синус

;
;
;
.

Выражение через тангенс

; .

При , имеем:
; .

При :
; .

Таблица синусов и косинусов, тангенсов и котангенсов

В данной таблице представлены значения синусов и косинусов при некоторых значениях аргумента.

Выражения через комплексные переменные


;

Формула Эйлера

Выражения через гиперболические функции

;
;

Производные

; . Вывод формул > > >

Производные n-го порядка:
{ -∞ < x < +∞ }

Секанс, косеканс

Обратные функции

Обратными функциями к синусу и косинусу являются арксинус и арккосинус , соответственно.

Арксинус, arcsin

Арккосинус, arccos

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

>> Периодичность функций у = sin х, у = cos х

§ 11. Периодичность функций у = sin х, у = cos х

В предыдущих параграфах мы использовали семь свойств функций : область определения, четность или нечетность, монотонность, ограниченность, наибольшее и наименьшее значения, непрерывность, область значений функции. Использовали мы эти свойства либо для того, чтобы построить график функции (так было, например, в § 9), либо для того, чтобы прочитать построенный график (так было, например, в § 10). Теперь настал благоприятный момент для введения еще одного (восьмого) свойства функций, которое прекрасно просматривается на построенных выше графиках функций у = sin х(см. рис. 37), у=соs х(см. рис. 41).

Определение. Функцию называют периодической, если существует такое отличное от нуля число T, что для любого х из множествах выполняется двойное равенство :

Число Т, удовлетворяющее указанному условию, называют периодом функции у = f(х).
Отсюда следует, что, поскольку для любого х справедливы равенства:


то функции у = sin х, у=соs х являются периодическими и число 2п служит периодом и той, и другой функции.
Периодичность функции - это и есть обещанное восьмое свойство функций.

А теперь посмотрите на график функции у = sin х (рис. 37). Чтобы построить синусоиду, достаточно построить одну ее волну (на отрезке а затем сдвинуть эту волну по оси х на В итоге с помощью одной волны мы построим весь график.

Посмотрим с этой же точки зрения на график функции у =соs х (рис. 41). Видим, что и здесь для построения графика достаточно сначала построить одну волну (например, на отрезке

А затем сдвинуть ее по оси х на
Обобщая, делаем следующий вывoд.

Если функция у = f(х) имеет период Т, то для построения графика функции нужно сначала построить ветвь (волну, часть) графика на любом промежутке длины Т (чаще всего берут промежуток с концами в точках а затем сдвинуть эту ветвь по оси х вправо и влево на Т, 2Т, ЗТ и т.д.
У периодической функции бесконечно много периодов: если Т - период, то и 2Т - период, и ЗТ - период, и -Т - период; вообще периодом является любое число вида KТ, где к = ±1, ±2, ± 3... Обычно стараются, если это возможно, выделить наименьший положительный период, его называют основным периодом.
Итак, любое число вида 2пк, где к = ±1, ± 2, ± 3,является периодом функций у = sinп х, у=соs х; 2п- основной период и той, и другой функции.

Пример. Найти основной период функции:


а) Пусть Т - основной период функции у = sin х. Положим

Чтобы число Т было периодом функции, должно выполняться тождество Но, поскольку речь идет об отыскании основного периода, получаем
б) Пусть Т - основной период функции у =соs 0,5х. Положим f(х)=соs 0,5х. Тогда f(х + Т)=соs 0,5(х + Т)=соs (0,5х + 0,5Т).

Чтобы число Т было периодом функции, должно выполняться тождество соs (0,5х + 0,5Т)=соs 0,5х.

Значит, 0,5т = 2пп. Но, поскольку речь идет об отыскании основного периода, получаем 0.5Т = 2 л, Т =4л.

Обобщением результатов, полученных в примере, является следующее утверждение: основной период функции

А.Г. Мордкович Алгебра 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки