Планер на солнечных батареях. Яркие перспективы. Самолёт на солнечных батареях

Планер на солнечных батареях. Яркие перспективы. Самолёт на солнечных батареях

Счет за электричество – неминуемая статья расходов для любого современного человека. Централизованное электроснабжение постоянно дорожает, но потребление электричества с каждым годом все равно растет. Особенно остро эта проблема стоит для майнеров, ведь, как известно, добыча криптовалюты потребляет значительное количество электроэнергиии, в связи с чем счета на ее оплату могут превышать прибыль от . При таких условиях стоит обратить внимание на то, что практически все природные ресурсы могут быть использованы для преобразования в электричество. Даже в воздухе присутствует статическое электричество, осталось только найти методы им воспользоваться.

Где взять бесплатное электричество?

Добыть электричество можно из всего. Единственное условие: необходим проводник и разница потенциалов. Ученые и практики постоянно ищут новые альтернативные источники электричества и энергии, которые будут бесплатными. Следует уточнить, что под бесплатными подразумевается отсутствие платы за централизованное энергоснабжение, но само оборудование и его установка все же стоит средств. Правда, такие вложения с лихвой окупаются впоследствии.

На данный момент бесплатная электроэнергия добывается из трех альтернативных источников:

Методика получения электричества Особенности выработки энергии
Солнечная энергия
Требует установки солнечных батарей или коллектора из стеклянных трубок. В первом случае электричество будет вырабатываться благодаря постоянному движению электронов под воздействием солнечных лучей внутри батареи, во втором - электричество будет преобразовано из тепла от нагрева.
Ветряная энергия
При ветре лопасти ветряка начнут активно вращаться, вырабатывая электричество, которое может сразу поставляться в аккумулятор или сеть.
Геотермальная энергия
Метод заключается в получение тепла из глубины грунта и его последующей переработки в электроэнергию. Для этого пробуривают скважину и устанавливают зонд с теплоносителем, который будет забирать часть постоянного тепла, существующего в глубине земли.

Такие методы используются как обычными потребителями, так и в широких масштабах. Например, огромные геотермальные станции установлены в Исландии и вырабатывают сотни МВт.

Как сделать бесплатное электричество дома?

Бесплатное электричество в квартире должно быть мощным и постоянным, поэтому для полного обеспечения потребления потребуется мощная установка. Первым делом следует определить наиболее подходящий метод. Так, для солнечных регионов рекомендуется установка . Если солнечной энергии недостаточно тогда следует использовать ветряные или геотермальные электростанции. Последний метод особенно подходит для регионов расположенных в относительной близости к вулканическим зонам.

Определившись с методом получения энергии, следует также позаботиться о безопасности и сохранности электроприборов. Для этого домашняя электростанция должна быть подключена к сети через инвертор и стабилизатор напряжения для обеспечения подачи тока без резких скачков. Стоит также учитывать, что альтернативные источники достаточно капризны к погодным условиям. При отсутствии соответствующих климатических условий выработка электроэнергии остановиться или будет недостаточной. Поэтому следует обзавестись также мощными аккумуляторами для накопления на случай отсутствия выработки.

Готовые установки альтернативных электростанций широко представлены на рынке. Правда, их стоимость достаточно высока, но в среднем все они окупаются от 2-х до 5-ти лет. Сэкономить можно приобретая не готовую установку, а ее комплектующие, а затем уже самостоятельно спроектировать и подключить электростанцию.

Как получить бесплатное электричество на даче?

Подключение к централизованной системе энергоснабжение проблематичный процесс и часто дачи остаются без света долгое время. Здесь на помощь может прийти установка дизельного генератора или альтернативные способы добычи.

На дачах зачастую отсутствует огромное количество электроприборов. Соответственно, потребление электроэнергии значительно меньше. Для начала следует определить преимущественный период времени, который будет проводиться в помещении. Так для летних дачников подойдут солнечные коллекторы и батареи, для остальных ветряные методы.

Питать отдельные электроприборы или освещать помещение можно также собирая электроэнергию от заземления. Схема для получения бесплатного электричества: ноль - нагрузка - земля. Напряжение внутри дома подается через фазовый и нулевой проводник. Включив в эту схему третий проводник нагрузки к нулю, в него будет направлено от 12Вт до 15Вт, которые не будут фиксироваться приборами учета. Для такой схемы обязательно нужно позаботиться о надежном заземлении. Ноль и земля не несут опасности удара током.

Бесплатное электричество из земли

Земля благоприятная среда для извлечения электричества. В грунте присутствуют три среды:

  • влажность - капли воды;
  • твердость - минералы;
  • газообразность - воздух между минералами и водой.

Кроме того, в почве постоянно проходят электрические процессы, так как его основной гумусовый комплекс представляет собой систему, на внешней оболочке которого формируется отрицательный заряд, а на внутренней положительный, что влечет за собой постоянное притягивание положительно заряженных электронов к отрицательным.

Метод похож на тот, что используется в обычных батарейках. Для получения электричества из земли следует погрузить в грунт на глубину полуметра два электрода. Один медный, второй из оцинкованного железа. Расстояние между электродами должно быть примерно в 25 см. Грунт между проводниками заливается солевым раствором, а к проводникам подключаются провода, на одном будет положительный заряд, на втором отрицательный.

В практических условиях выходная мощность такой установки составит приблизительно 3Вт. Мощность заряда также зависит от состава грунта. Конечно, такой мощности недостаточно для того, чтоб обеспечить энергоснабжение в частном доме, но установку можно усилить, изменяя размер электродов или последовательно соединить между собой необходимое количество. Проведя первый опыт, можно примерно просчитать, сколько понадобиться таких установок, чтоб обеспечить 1 кВт, а далее рассчитать необходимое количество на основе среднего потребления в сутки.

Как добыть бесплатное электричество из воздуха?

Впервые о получении электричества из воздуха заговорил Никола Тесла. Опыты ученого доказали, что между основанием и поднятой металлической пластиной существует статическое электричество, которое можно накапливать. К тому же, воздух в современном мире постоянно подвергается дополнительной ионизации за счет функционирования множества электросетей.

Почва может выступать основанием для механизма добычи электроэнергии из воздуха. Металлическую пластину размещают на проводнике. Она должна быть размещена выше других, рядом стоящих объектов. Выходы от проводника подключают к аккумулятору, в котором будет накапливаться статическое электричество.

Бесплатное электричество от ЛЭП

Линии электропередач пропускают по своим проводам огромное количество электричества. Вокруг провода, в котором идет ток, создается электромагнитное поле. Таким образом, если поместить под ЛЭП кабель, то на его концах образуется электрический ток, точную мощность которого можно просчитать, зная какой мощности ток передается по кабелю.

Еще одним способом является создание трансформатора вблизи линий электропередач. Трансформатор можно создать при помощи медной проволоки и стержня, используя метод первичной и вторичной обмотки. Выходная мощность тока в таком случае зависит от объема и мощности трансформатора.

Стоит учесть, что такая система получения бесплатного электричества является незаконной, хоть в ней и отсутствует фактическое незаконное подключение к сети. Дело в том, что такое вклинивание в систему электроснабжение наносит ущерб ее мощности и может караться штрафами.

Бесплатное электричество из сетевого фильтра

Многие искатели бесплатного электричества наверняка находили в интернете версии о том, что удлинитель может стать источником нескончаемой свободной энергии, образовывая замкнутую цепь. Для этого следует взять сетевой фильтр с длиной провода не менее трех метров. Из кабеля сложить катушку, диаметром не более 30 см, подключить к розетке потребителя электроэнергии, изолировать все свободные отверстия, оставив только еще одну розетку для вилки самого удлинителя.

Далее сетевому фильтру необходимо дать изначальный заряд. Легче всего это сделать подключив удлинитель к функционирующей сети, а затем за доли секунды замкнуть в себе. Бесплатное электричество из удлинителя подойдет для питания осветительных приборов, но мощность свободной энергии в такой сети слишком мала для чего-то большего. А сам метод достаточно спорный.

Бесплатное электричество из магнитов

Магнит излучает магнитное поле и как следствие – его можно использовать для добычи бесплатного электричества. Для этого следует обмотать магнит медной проволокой, образуя маленький трансформатор, разместив который вблизи электромагнитного поля можно получать бесплатную энергию. Мощность электроэнергии в таком случае зависит от размера магнита, количества обмоток и мощности электромагнитного поля.

Как использовать бесплатное электричество?

Решив заменить централизованное энергоснабжение на альтернативные источники, следует учитывать все необходимые меры безопасности. Во избежание резких перепадов напряжения электрический ток к приборам должен подаваться через стабилизаторы напряжения. Обязательно стоит обратить внимание на опасности каждого метода. Так, погружение электродов в почву подразумевает последующую заливку почвы соленым раствором, что сделает ее непригодной для дальнейшего роста растений, а системы накопление статического электричества из воздуха могут привлекать молнии.

Электричество не только полезно, но и опасно. Неправильная фазировка может привести к ударам тока, а короткое замыкание в сети - к пожарам. Подходить к обеспечению дома электричеством в домашних условиях нужно с детального изучением методов и законов физики.

Следует также учитывать, что большинство методов не дают стабильной мощности и зависят от многих факторов, в том числе и погодных условий, предугадать которые невозможно. Поэтому энергию рекомендуется или накапливать в аккумуляторах, а на всякий случай иметь запасной вид электрообеспечения.

Прогноз на будущее

Уже сейчас альтернативные источники энергии широко используются. Львиная доля потребления электричества приходиться на домашние электроприборы и освещения. Заменив их питание с централизованного на альтернативное можно существенно экономить бюджет. Особое внимание на альтернативные источники электроснабжения стоит обратить майнерам, так как майнинг на централизованном энергоснабжении способен забирать до 50% прибыли, в то время, как добыча на бесплатном электропитании будет приносить чистый доход.

Все больше домов переходит на питание от солнечных батарей или ветряных электростанций. Такие методы дают намного меньше мощности, но являются экологически чистыми источниками энергии, которые не наносят вреда окружающей среде. Конструируются также и промышленные альтернативные электростанции.

В дальнейшем это сфера будет только дополняться новыми методами и улучшенными аналогами.

Заключение

Добыть электроэнергию можно даже из воздуха, но для покрытия всех нужд потребления необходимо спроектировать целую систему альтернативной выработки электроэнергии. Можно пойти легким путем и купить уже готовые солнечные батареи или ветряные станции, а можно приложить усилия и собрать собственную электростанцию. Сейчас бесплатное электричество не до конца изведанная сфера и открывает массу возможностей для самостоятельных экспериментов.

Из этой статьи вы узнаете, как использовать энергию магнитного тока в бытовых приборах собственного производства. В статье вы найдёте подробные описания и схемы сборки простых устройств на основе взаимодействия магнитов и индукционной катушки, созданных своими руками.

Использование энергии привычным способом — это просто. Достаточно залить топливо в бак или включить прибор в электрическую сеть. При этом такие методы, как правило, самые дорогие и имеют тяжёлые последствия для природы — на производство и работу механизмов тратятся колоссальные природные ресурсы.

Для того чтобы получить рабочие бытовые приборы , не всегда нужны внушительные 220 вольт или громкий и громоздкий ДВС. Мы рассмотрим возможность создания простых, но полезных приборов с неограниченным потенциалом.

Технологии применения современных мощных магнитов развивают неохотно — нефтедобывающая и перерабатывающая области промышленности рискуют оказаться не у дел. Будущее всех приводов и активаторов именно за магнитами, в эффективности которых можно убедиться, собрав простые приборы на их основе своими руками.

Наглядное видео действия магнитов

Вентилятор с магнитным двигателем

Для создания такого прибора понадобятся небольшие неодимовые магниты — 2 или 4 шт. В качестве портативного вентилятора лучше всего использовать кулер от блока питания компьютера, т. к. в нём уже есть практически всё, что нужно для создания автономного вентилятора. Главные детали — индукционные катушки и эластичный магнит уже присутствуют в заводском изделии.

Для того чтобы заставить пропеллер вращаться, достаточно разместить магниты напротив статичных катушек, закрепив их по углам рамки кулера. Наружные магниты, взаимодействуя с катушкой, будут создавать магнитное поле. Эластичный магнит (магнитная шина), расположенный в турели пропеллера, будет оказывать постоянное равномерное сопротивление, и движение будет поддерживаться само собой. Чем больше и мощнее будут магниты, тем мощнее будет вентилятор.

Этот двигатель условно называют «вечным», т. к. нет информации о том, что у неодима «закончился заряд» или вентилятор вышел из строя. Но то, что он работает продуктивно и стабильно, подтверждено множеством пользователей.

Видео, как собрать вентилятор на магнитах

Генератор из вентилятора на магнитах

Индукционная катушка имеет одно почти чудесное свойство — при вращении вокруг неё магнита возникает электрический импульс. Это значит, что весь прибор имеет обратное действие — если заставить пропеллер крутиться посторонними силами, мы сможем вырабатывать электроэнергию. Но как раскрутить турель с пропеллером?

Ответ очевиден — всё тем же магнитным полем. Для этого на лопастях размещаем маленькие (10х10 мм) магниты и закрепляем их клеем или скотчем. Чем больше магнитов — тем сильнее импульс. Для вращения пропеллера будет достаточно обычных ферритовых магнитов. К бывшим проводам электропитания подключаем светодиод и даём импульс турели.

Генератор из кулера и магнитов — видеоинструкция

Усовершенствовать такой прибор можно, разместив дополнительно одну или несколько магнитных шин из пропеллеров на рамке кулера. Также можно включить в сеть диодные мосты и конденсаторы (перед лампочкой) — это позволит выпрямить ток и стабилизировать импульсы, получая ровный постоянный свет.

Свойства неодима крайне интересны — его малый вес и мощная энергетика дают эффект, заметный даже на поделках (экспериментальных приборах) бытового уровня. Движение становится возможным благодаря эффективной конструкции подшипниковой турели кулеров и приводов — сила трения минимальная. Отношение массы и энергии неодима обеспечивает лёгкость движения, что даёт широкое поле для экспериментов в домашних условиях.

Свободная энергия на видео — магнитный двигатель

Область применения магнитных вентиляторов обусловлена их автономностью. В первую очередь это автотранспорт, поезда, сторожки, отдалённые стоянки. Ещё одно неоспоримое достоинство — бесшумность — делает его удобным в доме. Можно установить такой прибор в качестве вспомогательного в системе естественной вентиляции (например, в санузел). Любое место, где необходим постоянный небольшой поток воздуха, пригодно для этого вентилятора.

Фонарик с «вечной» подзарядкой

Этот миниатюрный прибор окажется полезным не только в «аварийном» случае, но и для тех, кто занимается профилактикой инженерных сетей, обследованием помещений или поздно возвращается с работы домой. Конструкция фонарика примитивна, но оригинальна — с его сборкой справится даже школьник. Однако при этом у него есть собственный индукционный генератор.

1 — диодный мост; 2 — катушка; 3 — магнит; 4 — батарейки 3х1,2 В; 5 — выключатель; 6 — светодиоды

Для работы понадобится:

  1. Толстый маркер (корпус).
  2. Медная проволока Ø 0,15-0,2 мм — около 25 м (можно взять со старой катушки).
  3. Световой элемент — светодиоды (в идеале головка от обычного фонарика).
  4. Батарейки стандарта 4А, ёмкость 250 мА/час (от аккумуляторной «Кроны») — 3 шт.
  5. Выпрямительные диоды типа 1Н4007 (1Н4148) — 4 шт.
  6. Выключатель-тумблер или кнопка.
  7. Медный провод Ø 1 мм, маленький магнит (желательно неодим).
  8. Клеевой пистолет, паяльник.

Ход работы:

1. Разобрать маркер, удалить содержимое, срезать держатель стержня (должна остаться пластиковая трубка).

2. Установить головку фонарика (осветительный элемент) в крышку съёмную колбы.

3. Спаять диоды по схеме.

4. Сгруппировать батарейки смежно таким образом, чтобы их можно было разместить в корпусе маркера (корпусе фонарика). Подключить батарейки последовательно, на спайке.

5. Разметить участок корпуса так, чтобы видеть свободное пространство, не занятое батарейками. Здесь будет устроена индукционная катушка и магнитный генератор.

6. Намотка катушки. Эту операцию следует выполнять, соблюдая следующие правила:

  • Разрыв проволоки недопустим. При разрыве следует перемотать катушку заново.
  • Намотка должна начаться и закончиться в одном месте, не обрывайте проволоку в середине после достижения необходимого количества витков (500 для ферромагнита и 350 для неодима).
  • Качество намотки не имеет решающего значения, но только в данном случае. Главное требования — количество витков и равномерное распределение по корпусу.
  • Зафиксировать катушку на корпусе можно обычным скотчем.

7. Для проверки работоспособности магнитного генератора нужно подпаять концы катушки — один к корпусу светильника, второй — к выводу светодиодов (используйте паяльную кислоту). Затем поместить магниты в корпус и встряхнуть несколько раз. Если лампы рабочие и всё сделано правильно, светодиоды отреагируют на электромагнитные колебания слабыми вспышками. Эти колебания впоследствии будут выпрямляться диодным мостом и преобразовываться в постоянный ток, который будут накапливать батарейки.

8. Установить магниты в отсек генератора и перекрыть его термоклеем или герметиком (чтобы магниты не прилипали к батарейкам).

9. Вывести усики катушки внутрь корпуса и подпаять к диодному мосту, затем мост соединить с аккумуляторами, а аккумуляторы со светильником через ключ. Все соединения производить на пайку согласно схеме.

10. Установить все детали в корпус и сделать защиту катушки (скотч, кожух или термоусадочная лента).

Видео, как сделать вечный фонарик

Такой фонарик будет подзаряжаться, если его потрясти — магниты должны ходить вдоль катушки для образования импульсов. Неодимовые магниты можно найти в DVD, CD приводе или в жёстком диске компьютера. Также они есть в свободной продаже — подходящий вариант NdFeB N33 D4x2 мм стоит около 2-3 руб. (0,02-0,03 у. е.). Остальные детали, если их нет в наличии, обойдутся не более чем в 60 руб. (1 у. е.).

Для реализации магнитной энергии есть специальные генераторы, но широкого распространения они не получили из-за мощного влияния нефтедобывающей и перерабатывающей отраслей. Однако приборы на основе электромагнитной индукции с трудом, но прорываются на рынок и можно приобрести в свободной продаже высокоэффективные индукционные печи и даже котлы отопления. Также технология широко применена в электромобилях, ветряных генераторах и магнитных двигателях.

Содержание:

Существует большое количество устройств, относящихся к так называемым « ». Среди них имеются многочисленные конструкции генераторов тока, позволяющие получать электричество из магнита. В этих устройствах применяются свойства постоянных магнитов, способных к совершению внешней полезной работы.

В настоящее время ведутся работы по созданию , способного приводить в движение устройство вырабатывающее ток. Исследования в этой области еще до конца не закончены, однако, на основе полученных результатов можно вполне представить себе его устройство и принцип действия.

Как получить электричество из магнита

Для того, чтобы понять как работают подобные устройства, необходимо точно знать, чем они отличаются от обычных электрических двигателей. Все электродвигатели, хотя и пользуются магнитными свойствами материалов, движение свое осуществляют исключительно под действием тока.

Для работы настоящего магнитного двигателя используется только лишь постоянная энергия магнитов, с помощью которой выполняются все необходимые перемещения. Основной проблемой этих устройств является склонность магнитов к статическому равновесию. Поэтому на первый план выходит создание переменного притяжения, с использованием физических свойств магнитов или механических приспособлений в самом двигателе.

Принцип действия двигателя на постоянных магнитах основан на крутящем моменте отталкивающих сил. Происходит действие одноименных магнитных полей постоянных магнитов, расположенных в статоре и роторе. Их движение осуществляется во встречном направлении по отношению друг к другу. Для того, чтобы решить проблему притяжения был использован медный проводник с пропущенным по нему электрическим током. Такой проводник начинает притягиваться к магниту, однако при отсутствии тока, притяжение прекращается. В результате, обеспечивается цикличное притяжение и отталкивание деталей статора и ротора.

Основные виды магнитных двигателей

За весь период исследований было разработано большое количество устройств, позволяющих получить электричество из магнита. Каждый из них имеет собственную технологию, однако все модели объединяет . Среди них не существует идеальных вечных двигателей, поскольку магниты через определенное время полностью утрачивают свои качества.

Наиболее простое устройство у антигравитационного магнитного двигателя Лоренца. В его конструкцию входят два диска с разноименными зарядами, подключенные к питанию. Половина этих дисков размещается в полусферическом магнитном экране, после чего начинается их постепенное вращение.

Самым реальным функционирующим устройством считается простейшая конструкция роторного кольцара Лазарева. Он состоит из емкости, которую разделяет пополам специальная пористая перегородка или керамический диск. Внутри диска устанавливается трубка, а сама емкость заполняется жидкостью. Вначале жидкость попадает в низ емкости, а затем под действием давления начинает пот трубке перемещаться вверх. Здесь жидкость начинает капать из загнутого конца трубки и вновь попадает в нижнюю часть емкости. Для того, чтобы это сооружение приняло форму двигателя, под каплями жидкости располагается колесико с лопастями.

Непосредственно на лопастях устанавливаются магниты, образующее магнитное поле. Вращение колесика ускоряется, вода перекачивается быстрее и, в конце концов, устанавливается определенная предельная скорость работы всего устройства.

Основой линейного двигателя Шкондина является система расположения одного колеса в другом колесе.Вся конструкция состоит из двойной пары катушек с разноименными магнитными полями. За счет этого обеспечивается их движение в разные стороны.

В альтернативном двигателе Перендева используется только магнитная энергия. Конструкция состоит из двух кругов - динамичного и статичного. На каждом из них с одинаковой последовательностью и интервалами расположены магниты. Свободная сила самоотталкивания приводит в бесконечное движение внутренний круг.

Применение устройств на постоянных магнитах

Результаты исследований в данной области уже сейчас заставляют задумываться о перспективах применения магнитных устройств.

В будущем отпадет надобность во всевозможных и зарядных устройствах. Вместо них будут использоваться магнитные двигатели самых разных размеров, приводящие в движение миниатюрные генераторы тока. Таким образом, множество ноутбуков, планшетов, смартфонов и прочей аналогичной аппаратуры будут непрерывно работать в течение продолжительного времени. Эти источники питания смогут переставляться со старых моделей на новые.

Магнитные устройства с более высокой мощностью смогут вращать такие генераторы, которые заменят оборудование современных электростанций. Они легко смогут работать вместо двигателей внутреннего сгорания. В каждой квартире или доме будет установлена индивидуальная система энергообеспечения.

Реальные самолеты, которые питаются от солнечных батарей, уже существуют. Можно ли сделать своими руками такой же, или хотя бы приближенный к реальности, аналог, то есть модель самолета на солнечных батареях, которая была бы полностью автономной и не нуждалась в подзарядке от сети или в смене батарей. То есть, чтобы это был маленький “летающий” .

В этом направлении продвинулся мастер, создавший движущуюся модель самолета на солнечных батареях, которая, к сожалению, способна летать лишь условно, будучи подвешенной на нитке Но и это решение представляет некоторый интерес для конструкторов игрушечных летательных аппаратов.

Этот самолетик автор сделал для своего сына, решив снабдить свое самодельное летательное устройство солнечными панелями и маленьким моторчиком. В качестве генератора электроэнергии был использован маломощный дачный светильник, точнее, его начинка. На самолетик были поставлены две такие панельки. Движок также был внутри этого светильника, который имитировал порхание крыльями бабочки. Работал этот светильник только днем, для долгого заряда, учитывая большую нагрузку в виде двигателя, он не был пригоден.

В модели самолета моторчик от светильника использован для вращения винта. Благодаря тому, что были поставлены две солнечные панели, даже свет настольной 40-ваттной лампы позволяет вращаться пропеллеру, довольно габаритному для таких размеров самолета. Как показано на видео, мотор успешно приводит в действие этот винт, если держать его недалеко от лампочки. При приближении к ней, винт приходит в движение и, соответственно, при удалении, останавливается.

Леска, к которой привязан самолетик, не дает ему свалиться, реально летать этот “летательный” аппарат не сможет. Для игровых и декоративных целей такая связка вполне хороша. В отличие от статичных моделей такое устройство имеет динамику, вызывает интерес, имеет некоторую энергетическую ауру. Особенно приятно, то, что самолет двигается совершенно автономно, нет необходимости хоть как-то его подзаправлять. Естественно, работать он будет только в дневное время. Особенно активно летает он на балконе, где много солнца. Наверное, для растений, которые растут на балконе в горшках, вентиляция, которую создает этот самолет, полезна.

Самолет на солнечных панелях

Лето 2010 года навсегда войдет в историю авиации. Впервые пилотируемый самолет на солнечных батареях совершил беспосадочный полет длительностью более суток. Уникальный прототип СОЛНЕЧНОГО САМОЛЕТА HB-SIA - детище швейцарской компании Solar Impulse и ее бессменного президента Бертрана Пикара.

В своем послании, размещенном на сайте компании после успешных испытаний летательного аппарата , Пикар отмечал: «До этого дня мы не могли по-настоящему рассчитывать на чье-либо доверие. Теперь же мы действительно можем показать всему политическому и экономическому миру, что эта технология работает».

Ранним утром 7 июля благодаря энергии, вырабатываемой 12 тысячами солнечных элементов , установленных па крыле длиной более 64 метров (вполне сравнимо с габаритами лайнера Airbus А340), необычного вида одноместный самолет весом в полторы тонны поднялся с аэродрома в Пайерне (Швейцария). За штурвалом сидел один из основателей Solar Impulse , 57-летний швейцарский пилот и бизнесмен Андре Боршберг.

«Это был самый удивительный полет в моей жизни, - заметил он после приземления. - Я просто сидел и смотрел, как уровень заряда батареи поднимается с каждым часом, и гадал, хватит ли емкости на всю ночь. А в результате пролетал 26 часов без единой капли топлива и какого-либо загрязнения окружающей среды!»

Solar Impulse – не первый самолет на солнечной энергии , построенный человеком, но первый, преодолевший границу между днем и ночью с пилотом на борту.

Модели СОЛНЕЧНЫХ САМОЛЕТОВ начали появляться в 1970-х годах с выходом на рынок первых доступных по цене фотоэлектрических элементов, а в 80-е начались и пилотируемые полеты. Американская команда под руководством Пола Маккриди создала самолет Solar Challenger мощностью 2,5 кВт, который совершал впечатляющие многочасовые полеты. В 1981 году ему удалось преодолеть Ла-Манш. А в Европе Гюнтер Рохельт из Германии поднялся в небо на собственной модели Solair 1, оснащенной двумя с половиной тысячами ячеек общей мощностью около 2,2 кВт.

В 1990 году американец Эрик Реймонд пересек Соединенные Штаты на своем Sunseeker. Впрочем, на путешествие с двадцатью остановками ушло более двух месяцев (121 час полета), а самый длинный отрезок насчитывал около 400 километров. Весила модельлетательного аппарата всего 89 килограммов и была оснащена кремниевыми солнечными панелями .

В середине 90-х сразу несколько подобных самолетов приняли участие в конкурсе «Berblinger»: перед ними стояла задача выйти на высоту в 450 метров и продержаться на энергии солнца порядка 500 Вт на квадратный метр крыла. Приз в 1996 году получила модель профессора Войта-Ницшманна из университета Штутгарта, чей Icare II имел 25-метровое энергетическое крыло площадью 26 кв. метров.

В 2001 году «солнечный» беспилотник компании AeroVironment под названием Helios, разработанный специально для НАСА и имевший размах крыла более 70 метров, сумел подняться на высоту более 30 километров. Двумя годами позже он попал в зону турбулентности и пропал где-то в Тихом океане.

В 2005 году небольшой беспилотник с размахом крыла около 5 метров Алана Коккони и его компании AC Propulsion впервые успешно осуществил полет длительностью более 48 часов. За счет энергии, накопленной в дневное время, летательный аппарат был способен и на ночной полет. Наконец, в 2007-2008 годах англо-американская компания QuinetiQ осуществила успешные полеты своего летательного аппарата Zephyr продолжительностью 54 и 83 часа. Машина весила около 27 кг, размах крыла составлял 12 м, а высота полета превышала 18 км.

Проект самолета на солнечных батареях Solar Impulse вряд ли сумел бы выбраться из пеленок чертежей и набросков, если бы не энергия неутомимого Бертрана Пикара - врача, путешественника, бизнесмена и авиатора-рекордсмена. Впрочем, похоже, помогли и гены.

Дед инноватора Огюст Пикар - знаменитый физик, друг Эйнштейна и Марии Кюри, один из пионеров авиации и подводного дела, изобретатель первого глубоководного аппарата и стратостата. Преодолев на воздушном шаре 15-километровую высоту в начале 30-х, он стал первым человеком в мире, собственными глазами увидевшим кривизну поверхности земного шара.

Затем Огюста потянуло вниз, и изобретатель построил глубоководный аппарат, который назвал батискафом. После нескольких совместных погружений его сын Жак Пикар настолько увлекся исследованием тайн Мирового океана, что стал одним из первопроходцев, побывавших на дне Марианской впадины (глубина 11 км.). Затем, взяв за основу работы отца, Жак построил первую в мире субмарину для туристов, а также мезоскаф для исследования Гольфстрима.

Благодаря отцу Бертран Пикар, родившийся в 1958 году, еще в детстве получил уникальную возможность лично познакомиться с выдающимися людьми, во многом определившими его будущее: знаменитым швейцарским пилотом-спасателем Германом Гейгером, с которым он совершил первый перелет через Альпы, дайвером-рекордсменом Жаком Майолем, учившим его погружению во Флориде, одним из столпов мировой космонавтики Вернером фон Брауном, познакомившим его с астронавтами и сотрудниками NASA.

В 16-летнем возрасте, возвратившись из Флориды после очередного практического курса глубоководных погружений, Бертран совершил свое первое воздушное путешествие, открыв для себя дельтаплан. Стоит ли удивляться, что именно он вскоре стал одним из пионеров этого вида спорта в Европе. Спустя годы Пикар не только стал основателем Швейцарской федерации дельтапланеризма и профессиональным инструктором, но и испробовал все, что только возможно: воздушную акробатику, запуск с воздушного шара, парашютный спорт. Несколько раз Пикар становился чемпионом Европы в этом виде спорта, наконец, он был первым, кто перелетел швейцарско-итальянские Альпы на мотодельтаплане.

Незаметно «воздушное» хобби стало для него еще и профессиональной лабораторией. Заинтересовавшись поведением людей в экстремальных ситуациях, Пикар поступил на отделение психиатрии и через несколько лет получил докторскую степень медицинского факультета университета Лозанны в области психотерапии, после чего открыл собственную практику. Предметом особого интереса для Бертрана стали техники медицинского гипноза: недостающие знания он получал как в университетах Европы и США, гак и у последователей даосизма в Юго-Восточной Азии.

Именно этот интерес снова вернул Пикара в небо. В 1992 году компания Chrysler устроила первую в истории трансатлантическую гонку на воздушных шарах, получившую название Chrysler Challenge. Бельгийский авиатор Вим Верштратен пригласил Пикара в качестве второго пилота - он был уверен, что наличие па борту психотерапевта, владеющего практикой гипноза, может оказаться неплохим преимуществом перед остальными командами. Так и получилось. Экипаж Верштратена и Пикара легко выдержал марафон и выиграл историческую гонку, приземлившись в Испании посте пятидневного перелета длиной в пять тысяч километров.

Для Пикара полет стал не просто откровением, а еще и новым способом взаимодействия с природой. После 18 лет полетов на дельтаплане у него появилась новая мечта - облететь весь мир без мотора и руля, положившись на волю ветра.

И мечта сбылась. Пусть и не с первой попытки. Спонсорами выступили швейцарский производитель часов Breitling и Международный олимпийский комитет. 12 января 1997 года, после трех лет подготовки, воздушный шар под названием Breitling Orbiter взлетел с аэродрома в Швейцарии, но из-за технических неполадок уже через шесть часов приземлился. Breitling Orbiter 2 отправился в полет в феврале 1998 года, но снова не добрался до точки назначения. На этот раз остановка произошла в Бирме, после того как китайские власти отказали Пикару в предоставлении воздушного коридора. Этот полет стал самым длительным путешествием на воздушном шаре в истории (более девяти дней), но цель все еще не была достигнута.

Наконец, третий шар покинул Швейцарию в марте 1999 года и приземлился в Египте после непрерывного полета длительностью почти в 20 суток и протяженностью более 45 тысяч километров. Своим беспрецедентным путешествием Пикар побил семь мировых рекордов, заработал несколько почетных научных званий и вошел в энциклопедии наряду со знаменитыми отцом и дедом.

Breitling Orbiter 3 разместился в Смитсоновском музее воздухоплавания и космонавтики в США, а Бертран Пикар написал несколько книг и стал желанным гостем на многочисленных лекциях и семинарах.

В 2003 году неутомимый Пикар объявил о новом, еще более амбициозном начинании, взявшись за создание пилотируемогосамолета на солнечных батареях , способного облететь весь земной шар. Так появился проект Solar Impulse .

Партнером Пикара и незаменимым СЕО компании стал швейцарский пилот и бизнесмен Андре Боршберг. Он родился в Цюрихе, закончил инженерный факультет Федерального политехнического института в Лозанне (EPFL), получил в легендарном Массачусетском технологическом институте степень в области менеджмента, и с тех пор накопил огромный опыт в качестве основателя и управляющего самых разных бизнес-проектов. Кроме того, с ранних лет Андре увлекался авиацией - учился в школе ВВС Швейцарии и получил не один десяток лицензий, дающих право профессионального управления самолетами и вертолетами всех мыслимых категорий.

Пять лет Боршберг проработал в одной из крупнейших консалтинговых компаний мира McKinsey, после чего основал собственный венчурный фонд, вывел в свет две компании в области высоких технологий и создал благотворительный фонд.

В 2003 году в Лозанне Пикар и Боршберг провели предварительные исследования, подтвердившие принципиальную инженерную возможность реализовать концепцию Пикара. Расчеты подтверждали, что создать летательный аппарат на солнечных батареях теоретически возможно. В ноябре 2003 года проект был официально запущен, и начались разработки прототипа.

Начиная с 2005 гола в Королевском институте метеорологии в Брюсселе моделировались пробные виртуальные полеты модели самолета в реальных условиях аэропортов Женевы и Цюриха. Главной задачей был расчет оптимального маршрута, ведь долго находиться под облаками, закрывающими солнце, СОЛНЕЧНЫЙ САМОЛЕТ не мог. И наконец, в 2007 году началось изготовление самолета.

В 2009 году первенец HB-SIA был готов к испытательным полетам. В процессе создания конструкции перед инженерами стояли две основных задачи. Нужно было минимизировать вес летательного аппарата , одновременно добиваясь максимальной энерговооруженности и эффективности. Первая цель была достигнута за счет использования углеродного волокна, специально разработанной «начинки» и путем избавления от всего лишнего. К примеру, кабина пилота не имела системы обогрева, так что Боршбергу пришлось использовать специальный термокостюм.

Главным, по попятным причинам, стал вопрос получения, накопления и оптимального расходования солнечной энергии. В типичный полдень каждый квадратный метр земной поверхности получает около тысячи ватт или 1,3 «лошадиных силы тепла». 200 квадратных метров фотоэлементов с 12-и % КПД вырабатывают около 6 киловатт энергии. Много ли это? Скажем так, примерно столько же было в распоряжении легендарных братьев Райт в 1903 году.

Па поверхности крыла СОЛНЕЧНОГО САМОЛЕТА было смонтировано более 12 тысяч ячеек. Их эффективность могла бы быть и выше - на уровне тех панелей, что устанавливаются па МКС. Но более эффективные ячейки обладают и большим весом. В невесомости это не играет роли (скорее уж - при подъеме энергетических ферм на орбиту при помощи космических «грузовиков»). Однако СОЛНЕЧНЫЙ САМОЛЕТ Пикара должен был продолжать полет ночью, используя накопленную в аккумуляторах энергию. И вот тут каждый липший килограмм играл критически важную роль. Именно фотоэлементы оказались самым тяжелым компонентом машины (100 килограммов, или около четверти веса летательного аппарата), так что оптимизация этого соотношения стала самой сложной задачей для команды инженеров.

Наконец, на СОЛНЕЧНЫЙ САМОЛЕТ установили уникальную бортовую компьютерную систему, оценивающую все параметры полета и предоставляющую необходимую информацию пилоту, а также наземной команде. В общей сложности инженеры Solar Impulse в процессе реализации проекта создали около 60 новых технологических решений в области материалов и солнечной энергетики.

В 2010 году начались первые и весьма успешные тестовые полеты, а уже в июле Андре Боршберг совершил свой исторический круглосуточный полет.

«К утру в батареях оставалось еще около 10 процентов заряда, - рассказывал воодушевленный Боршберг. - Это прекрасный и совершенно неожиданный для нас результат. Наш самолет размером с авиалайнер и весит как автомобиль, но потребляет энергии не больше, чем мопед. Это начало новой эры, причем не только в авиационной индустрии. Мы показали потенциал возобновляемой энергии: если уж мы можем на ней летать, то способны и на многие другие вещи. С помощью новых технологий мы можем позволить себе сохранить привычный уровень жизни, но потреблять гораздо меньше энергии. Ведь пока что мы слишком зависимы от двигателей внутреннего сгорания и цен на ресурсы!»

HB-SIA – технические данные прототипа

  • Высота полета - 8 500 м
  • Наибольшая масса - 1 600 кг
  • Крейсерская скорость - 70 км/ч
  • Минимальная скорость - 35 км/ч
  • Размах крыла - 63,4 м
  • Площадь крыла - 200 кв.м
  • Длина - 21,85 м
  • Высота - 6,4 м
  • Мощность силовой установки - 4×7,35 кВт
  • Диаметр винтов силовой установки - 3,5 м
  • Масса аккумуляторов - 400 кг
  • КПД солнечных батарей (11 628 монокристаллов) – 22,5%

Имеет ли солнечная авиация будущее? Разумеется, обещает Боршберг. В 1903 году братья Райт были уверены, что пересечь Атлантику на самолете невозможно. А спустя 25 лет Чарльз Линдберг сумел долететь из Нью-Йорка в Париж. Еще столько же лет потребовалось на создание первого 100-местного авиалайнера. Команда Пикара и Боршберга находится только в начале пути, максимальная скорость рабочего прототипа - не более 70 километров в час. Но первый шаг уже сделан.

Впрочем, в Solar Impulse уже знают, что будет дальше. В 2012-2013 годах прототип СОЛНЕЧНОГО САМОЛЕТА HB-SIB с обновленным оборудованием и постоянным давлением в кабине пилота должен совершить первое кругосветное путешествие на «солнечном крыле». Размах несущей поверхности составит около 80 метров - больше, чем у любого современного авиалайнера. Ожидается, что полет пройдет на высоте 12 километров. Правда, он не будет непрерывным. Для смены экипажа из двух пилотов потребуется пять посадок. Ведь полет при все еще невысокой линейной скорости займет более трех-четырех суток.

Как бы то ни было, проект Пикара вселяет оптимизм. Возможно, через пару десятилетий авиакомпании, наконец, перестанут повторять сакраментальную мантру о том, что скоро «нефть кончится». Кончится? Ну, и отлично. Будем летать не на керосине, а на солнечной энергии!

Электросамолеты, летающие за счет энергии солнечного света, — товар штучный. Каждый уникален и создается на частные инвестиции, скорее с имиджевыми и исследовательскими целями, чем с намерением запускать такой агрегат в серийное производство. Пожалуй, самые известные проекты в области солнечного воздухоплавания создают сейчас в Швейцарии — это самолеты SolarImpuls и SolarStratos . На первом из них три года назад облетел вокруг света Бертран Пикар, внук изобретателя стратостата Огюста Пикара. О SolarStratos «Чердак» уже — на нем швейцарские пилоты планируют подняться в стратосферу. Летом 2018 года американская компания Bye Aerospace испытала летательный аппарат StratoAirNet семейства Solesa — подобные самолеты, по мнению компании, можно будет использовать для военного патрулирования, картографирования и поисково-спасательных работ. Российский промышленный холдинг «РОТЕК» решил не отставать от мировых трендов и тоже занялся разработкой «солнечного» самолета. Проект получил название «Альбатрос».

Что полетит?

Проект «Альбатрос» состоит из двух этапов. Первый — создание и испытание летающей лаборатории фотовольтаики, которая соберет информацию о работе солнечных батарей, накопителей энергии и других систем во время полета. На втором этапе будет построен собственно, самолет, на котором пилот облетит вокруг Земли за пять дней, ни разу не приземляясь.

Летающая лаборатория — это немецкий моторный двухместный планер Stemme S12, оснащенный солнечными фотоэлементами, гибридной системой накопления энергии (суперконденсатор и литий-ионный аккумулятор) и научным оборудованием.

— В силу того, что это лаборатория, нам нужно было очень высокое аэродинамическое качество, чтобы летать долго, и достаточно места для размещения оборудования плюс возможность высоких полетов. Поэтому был выбран самолет, соединяющий в себе эти качества, — рассказывает председатель совета директоров АО «РОТЕК», руководитель проекта «Альбатрос», летчик Михаил Лифшиц. — Аэродинамическое качество этого планера 1-53 на сегодня лучшее в мире. Оборудование — нагрузочные устройства, измерительные системы, позиционирование — находится в заднем отсеке. Все, что касается науки и измерений, сделано в России. А платформа испытания немецкая.

Евгения Щербина / Chrdk.

Аэродинамическое качество можно примерно представить как расстояние, которое самолет способен преодолеть в штиль за счет одного только планирования. Его значение 1-53 означает, что самолет может с высоты одного километра планировать 53 километра, постепенно снижаясь. Например, альбатрос, умеющий ловить теплые восходящие воздушные потоки и за счет них долго парить над поверхностью океана, имеет аэродинамическое качество 1-20 — больше, чем у большинства самолетов. Дольше альбатроса могут планировать только некоторые бомбардировщики и специально спроектированные планеры, такие как «Вояджер», совершивший первый беспосадочный и без дозаправки перелет вокруг Земли.

По словам Лифшица, несмотря на то что конструкторы «Альбатроса» учитывают мировой опыт перелетов на электросамолетах, у них все же не оказалось достоверных данных о том, как ведут себя солнечные модули и накопители энергии при разных типах освещенности, на разных высотах и в разных климатических условиях, поэтому и возникла необходимость в летающей лаборатории.

— Есть научно-практические центры в Петербурге, Владивостоке, Москве, но там элементы фотовольтаики находятся на земле. Но вот сколько мы соберем на разных углах атаки, на разных положениях солнца, на разных широтах, высотах, при разных подстилающих поверхностях, в разное время суток? По сути, нет системного ответа. А чтобы спроектировать летательный аппарат правильно, нужно иметь расчетные базы. Поэтому мы спроектировали летающую лабораторию. Это первый этап проекта, и он уже уникален, потому что в мире настолько качественных исследований еще не было, — говорит Лифшиц.

Солнечные модули для самолета сделает российская группа компаний Hevel . Их КПД — 22,5% — не такой высокий, как у SolarStratos (24,6%), но выше КПД обычных монокристаллических кремниевых батарей (до 20%). Однако, по словам Лифшица, для полета гораздо важнее дневная выработка и способность ячеек работать в рассеянном свете, потому что обеспечить прямое солнечное освещение довольно проблематично. На «Альбатросе» будут использоваться не обычные монокремниевые фотоэлементы, которые используют на солнечных электростанциях, а гетеропереходные , более эффективные и способные работать в рассеянном свете. Подобные полупроводниковые фотоэлементы используют в конструкции космических аппаратов .

Солнечные модули закреплены как на верхней, так на нижней поверхности крыла планера-лаборатории, чтобы собирать отраженный от поверхности земли солнечный свет. От накопленных данных зависит облик будущего самолета, но уже сейчас ясно, что крылья ему нужны большой площади. Примерный размах крыльев самолета, который пока существует только на бумаге, — 30 метров.

Как полетит?

Сейчас лаборатория фотовольтаики проходит серию испытаний: уже прошли полеты в районе аэродрома «Северка» в Московской области, но планируются и перелеты по всей России. А с января 2019 года начнется проектирование самого летательного аппарата, «Альбатроса». К разработке двигателя авторы намерены привлечь конструкторов из Австралии и Британии. В полет «Альбатрос» отправится в 2020 году, пилотировать его будет известный российский путешественник Федор Конюхов. Сейчас он тренируется и учится на пилота планера и малой авиации в Белоруссии.

— Видите, мне 67 лет, а я все еще учусь, — смеется Конюхов. — К 2020 году, когда предстоит лететь на «Альбатросе», у меня уже будет много часов налета на обычных самолетах. Я знаю небо, я летал на воздушном шаре вокруг света.

Федор Конюхов перед стартом кругосветного полета на воздушном шаре «Мортон» Павел Ваничкин / ТАСС

Свою кругосветку российский «солнечный» самолет будет делать на высоте полета обычных пассажирских самолетов — около 11 километров. Скорость самолета будет достигать примерно 200-220 километров в час.

— На высоте, соответственно, 300 километров в час ветер и наша скорость 200 километров в час — вот и будем двигаться со скоростью примерно 500 километров в час, — рассуждает путешественник.

Данные о поведении ветра на разных высотах Конюхов собирал во время путешествия вокруг Земли на воздушном шаре — они тоже будут использованы при расчете полета «Альбатроса».

Предполагается, что днем самолет будет набирать максимальную высоту, а ночью несколько сотен километров планировать, к утру достигая отметки в 8-10 километров над уровнем моря. Большая высота для полета нужна не только из-за сильного ветра, но и потому, что на такой высоте нет гроз. Попадать в грозовые тучи очень опасно.

— Когда я летал на воздушном шаре, у меня была установка: «Ночью ты должен видеть звезды, днем — солнце. Если не видишь, значит ты падаешь», — говорит Конюхов.

Он также тренируется, чтобы выдержать пять дней почти неподвижного пребывания в маленькой кабине самолета. Отвлечься от управления и отдохнуть позволит автопилот. У путешественника также будет специальное жидкое питание, легкое и сбалансированное. На случай эвакуации на парашюте будет спускаться весь самолет.

Фото предоставлено пресс-службой фонда «Сколково»

Проводить полет планируется в Южном полушарии, так как в Северном слишком много суши и, соответственно, стран, с которыми пришлось бы договариваться о пролете в их воздушном пространстве, а это сложно. Так что большую часть пути под крылом «Альбатроса» будет океан. Сейчас авторы проекта договариваются с правительством Австралии для пролета над ней, также «Альбатрос» пролетит над Новой Зеландией, Чили, Аргентиной, Бразилией и ЮАР.

В том же 2020 году самолет SolarStratos тоже отправится в свой первый полет. Но, по словам Лифшица, никакой конкуренции у проектов нет. Швейцарцы планируют подняться на максимальную высоту в 25 километров, а полет будет длиться всего несколько часов. Для облегчения конструкции кабина самолета будет негерметичной, так что пилот проведет эти часы в скафандре, который, кстати, разрабатывает российское предприятие «Звезда». «Альбатрос» же будет находиться в полете пять дней, и пилот будет пребывать в герметичной кабине без скафандра.

Зачем полетит?

По словам Михаила Лифшица, для «РОТЭК» в проекте «Альбатрос» важна не финансовая, а скорее исследовательская составляющая.

— Понятно, что мы не первые, кто замахнулся на такой проект. Мы внимательно смотрели на то, что в мире происходило, начиная с Пикара, который облетел вокруг света. У него ушло на это два года, 17 посадок, каждая из которых была сопряжена с ремонтом самолета. После этого были попытки. Мы знаем об этих проектах, со всеми в той или иной степени дружим. И первое, что мы решили сделать, — это учесть их ошибки. Даже не столько ошибки, сколько попробовать сделать проект более прикладным, техническим, научным, — говорит летчик.

По его словам, серийное производство пилотируемых «солнечных» самолетов, способных облететь за раз вокруг Земли, никому не нужно. С коммерческой точки зрения перспективнее питаемые от солнца беспилотные летательные аппараты.

— Сейчас много проектов атмосферных и стратосферных спутников на солнечных батарейках, но пока они тащат только сами себя. Мы пытаемся сделать полноценный летательный аппарат с самой высокой полезной нагрузкой, — объясняет Лифшиц.

— Кроме того, с помощью такого аппарата можно будет обкатать некоторые технологии в сфере накопителей энергии, топливных элементов, новых покрытий и материалов, — добавляет к этому Олег Дубнов, вице-президент, исполнительный директор кластера энергоэффективных технологий фонда «Сколково».

Также создатели «Альбатроса» надеются, что успех проекта поднимет престиж страны и стимулирует развитие бестопливной авиации. Они рассчитывают, что в будущем автономные летательные аппараты заменят спутники в ряде отраслей, их можно будет использовать для мониторинга поверхностей океанов, лесов и земель сельского хозяйства.

— Этими полетами и решениями будет показано, насколько можно использовать солнечную энергетику сейчас, настало ли то время и достигли ли технологии того развития, когда это возможно делать, — говорит Дубнов.