Преобразователи частоты и проблемы пуска глубинных насосов. Применение преобразователей частоты в насосах, какой преобразователь частоты для насоса выбрать Частотный преобразователь для глубинного насоса 380 в

Преобразователи частоты и проблемы пуска глубинных насосов. Применение преобразователей частоты в насосах, какой преобразователь частоты для насоса выбрать Частотный преобразователь для глубинного насоса 380 в
Преобразователи частоты и проблемы пуска глубинных насосов. Применение преобразователей частоты в насосах, какой преобразователь частоты для насоса выбрать Частотный преобразователь для глубинного насоса 380 в

Частотный преобразователь для скважинного насоса

Данный преобразователь (инвертор) предназначен для частотного регулирования скорости вращения ротора электродвигателя, а, следовательно, и рабочего колеса скважинного насоса.

Для этого входящий в инвертор трехфазный (напряжение 380 А, частота 50 Гц) или однофазный (напряжение 220В, частота 50Гц) ток преобразуется в трехфазный или однофазный ток, но с изменяющейся частотой и амплитудой. Преимущества применения частотного преобразователя для скважинного насоса :

  1. 1. Плавное включение электродвигателя, а значит и всего насоса. Его рабочее колесо плавно, постепенно будет набирать рабочие обороты. Поэтому резко снижаются пусковые токи (для мощных, более 10 кВт электродвигателей, пусковые токи могут в 5-6 раз превышать номинальные!), механические нагрузки на насос, исключается возможность гидроудара. Тем самым экономнее расходуется ресурс насоса, и он более длительный период может служить. Не забываем и про скважину, для которой гидроудары также не есть хорошо.
  2. 2. Если скважинный насос напрямую подает воду, минуя мембранный гидроаккумулятор (например, при поливе) и при этом водоразбор меньше производительности насоса, то частотный преобразователь, уменьшив частоту вращения рабочего колеса, приведет в соответствие мощность насоса требуемому водоразбору. А уменьшение мощности, это уменьшение потребление электроэнергии.

Но наряду с достоинствами частотный преобразователь имеет и свои недостатки:

  1. 1. Длина кабеля между преобразователем и двигателем не должна превышать 50 м. Собственная емкость кабеля (которая с длиной возрастает) приводит к появлению пиковых напряжения на клеммах электродвигателя и возможен пробой между его обмотками.
  2. 2. Достаточно высокая стоимость преобразователя ≈ 7-13 тыс. рублей (для электродвигателей малой мощности).

В настоящее время среди известных торговых марок скважинные насосы с частотным преобразователем выпускает компания Grundfos (Дания) – серия SQE, выполненная из нержавеющей стали, производительностью 3,5 – 7 м 3 /ч и напором 68 – 107 метра. Помимо плавного пуска и регулирования мощности преобразователи в этих насосах выполняет следующие защитные функции:

– от работы «всухую» (рабочая часть насоса находится вне воды);

– от скачков напряжения;

– от разного рода перегрузок.

Насосы серии Grundfos SQE надежны, долговечны и экономичны. Единственный недостаток – это их высокая стоимость. Для примера. Ориентировочная стоимость насоса SQ 2-85 (производительность 3,5 м 3 , напор 109 м, мощность 1.15 кВт) составляет 32 тыс. рублей. А точно такая же (по техническим характеристикам) модель с частотным преобразователем – SQE 2-85 стоит уже 69 тыс. рублей. То есть более, чем в 2 раза дороже!

Впрочем, множество компаний выпускают частотные преобразователи различной мощности именно для работы со скважинными насосами – ITALTECNIKA SIRIO (Италия), HYUNDAI (Южная Корея), Toshiba (Япония), SIEMENS (Германия), ООО «Завод насосного оборудования» (Россия) и т.д. Так что можно самостоятельно обеспечить себе плавный пуск двигателя для того же Grundfos SQ 2-85. И это обойдется дешевле. В подборе инвертора, в принципе, нет ничего сложного. Основные критерии – мощность двигателя насоса, необходимые входные и выходные напряжения (например, входное – однофазное, 200-230 В, выходное – трехфазное, 200-230 В).

Преобразователи частоты для глубинных насосов используются в артезианских системах водоснабжения как альтернатива водонапорной баше. Артезианские насосные станции, в которых используются преобразователи частоты значительно дешевле водонапорной башни, они исключают гидроудары в водопроводе, увеличивают термин работы глубинных насосов, улучшают эксплуатационные характеристики системы водоснабжения и дают экономию 25 – 40% электроэнергии.

Несмотря на все свои преимущества, преобразователи частоты иногда приводят к досадному разочарованию из-за проблем, возникающих при пуске глубинного насоса. Казалось бы, что все сделано правильно, преобразователи частоты выбирались не по мощности насоса, а по его номинальному току, настроили все параметры, а при пуске насос разгоняется до 20 – 25 Гц и преобразователь частоты отключается из-за перегрузки по току. Такой ситуации не пожелаешь никому, купили преобразователи частоты, а результата никакого.

Давайте рассмотрим основные причины, из-за которых мы «грешим» на преобразователи частоты и основные практические приемы, которые иногда помогают «уговорить» преобразователи частоты и они при неблагоприятно сложившихся обстоятельствах все-таки позволят обеспечить нормальное функционирование артезианской насосной станции.

Начнем с того, что добрая половина артезианских глубинных насосов работают с перемотанными электродвигателями, у которых рабочий ток значительно больше номинального паспортного значения на эти насосы. Вот и получается, что преобразователи частоты мы выбираем по номинальному току насоса, а реальный ток значительно больше. В таких ситуациях все наши «примочки», которые мы рассмотрим ниже, могут и не помочь, поэтому, выбирая преобразователи частоты, не поленитесь замерять реальный ток глубинного насоса – ведь токовые клещи есть у каждого электрика.

Теперь о водопогружном проводе, с помощью которого преобразователи частоты подключаются к артезианским глубинным насосам. Провод этот не дешевый и кое-кто «экономит» на его сечении, выбирая поменьше, чтобы было дешевле. Не делайте этого, нужно чтобы падение напряжения на всей длине водопогружного провода не превышало 2% от номинального значения питающего напряжения. Расчет сечения провода несложный и его может провести каждый, кто не забыл закон Ома. Если считать не охота, то можно воспользоваться таблицей, которая приводится в некоторых паспортах на погружные насосы. Для примера: мощность двигателя 2,2 кВт, ток 6 А, при длине провода 70 метров его сечение должно быть не менее 1,5 мм. квадратных, а при длине 200 метров – 4 мм. квадратных.

При высокой минерализации артезианской воды, особенно при наличии мела, иногда наблюдается «прикипание» подшипников и рабочих колес к корпусу насоса. В таких случаях преобразователи частоты не могут разогнать насос и отключаются из-за перегрузки по току. Для выхода из создавшегося положения необходимо включить насос в обратном направлении. В таком режиме глубинные насосы работают с меньшей нагрузкой, и преобразователи частоты могут разогнать насос, после чего необходимо восстановить рабочее направление вращения. Эти манипуляции можно провести вручную, а можно запрограммировать преобразователи частоты так, что они автоматически будут делать это сами при каждом пуске.

Если у Вас реальный ток двигателя не больше номинального тока преобразователя частоты, если сечение водопогружного провода в норме, если у Вас ничего не «прикипает», а преобразователи частоты при пуске насоса отключаются из-за перегрузки по току, то можно уменьшить частоту коммутации, например, до 1 кГц. Как ни странно, но уменьшение частоты коммутации иногда помогает решить проблему пуска глубинного насоса. Почему преобразователи частоты в таких случаях «работают» лучше мы рассматривать в этой статье не будем, а просто для себя отметим, что это связано с волновыми процессами, протекающими в длинной линии, которой является моторный кабель, соединяющий преобразователи частоты с глубинными насосами.

Далее, преобразователи частоты учитывают характеристику момента нагрузки приводного механизма и для работы с насосами они оптимизированы на квадратичную зависимость момента нагрузки от скорости. Однако зависимость момента нагрузки глубинного насоса от его скорости несколько отличается от квадратичной зависимости момента консольных и моноблочных насосов, особенно на низких скоростях, где глубинные насосы очень часто и «застряют». Чтобы преодолеть эту «нестыковку» приходится отказываться от оптимизированной квадратичной зависимости и выбирать постоянную характеристику нагрузочного момента, как для шнековых и спиральных компрессоров. При постоянном моменте преобразователи частоты без проблем разгоняют глубинный насос, но эффективность их работы, с точки зрения экономии электроэнергии, несколько хуже. Поэтому разгон глубинного насоса необходимо производить с постоянным моментом, а после разгона переходить на характеристику переменного момента.

Нетрудно заметить, что проблемы, о которых упоминалось выше, возникают тогда, когда преобразователи частоты выбираются тютелька в тютельку по номинальному току глубинного насоса без какого-либо запаса. Давайте вместе с Вами выберем преобразователь частоты для глубинного насоса, например, ЭЦВ 6-10-120, мощностью 5,5 кВт с номинальным током 14 А. Специализированный преобразователь частоты VLT FC 202, мощностью 7,5 кВт с номинальным током 16 А и с перегрузкой по току 110% в течение 60 секунд на первый взгляд вполне подходит, но практика эксплуатации свидетельствует о том, что при таком выборе постоянно приходится сталкиваться с проблемами пуска насоса. Если выбрать преобразователь частоты следующего типоразмера, мощностью 11 кВт с номинальным током 24 А, то Вы даже не будете догадываться о существующих проблемах пуска глубинных насосов. Запас никогда не помешает, преобразователи частоты будут работать в облегченном режиме, что благоприятно сказывается на их надежности и долговечности, кроме того, на преобразователи частоты, мощностью 11 кВт и выше поставляются запасные части, а на 7,5 кВт и ниже не поставляются. Что касается стоимости, то 11 кВт дороже на 25% за 7,5 кВт – выбор за Вами.

И в заключение хочется обратить Ваше внимание на то, что сервисный центр не только рассказывает о реальных проблемах и как с ними бороться, но и как официальный дистрибьютор Данфосс продает преобразователи частоты, и мы будем признательны, если Вы их купите у нас. Вам тоже выгодно сотрудничать с сервисным центром, ведь продать каждый сможет, а вот произвести ремонт или решить проблемы, возникающие в процессе работы, сможет далеко не каждый.

Любое оборудование, необходимое для эффективной работы насоса на воду и не входящее в его стандартную комплектацию, называется дополнительным. Как правило, в стандартную комплектацию насосной станции входят следующие составляющие: погружной или поверхностный насос, манометр, шланг с нержавеющим покрытием, гидроаккумулятор, реле давления воды. К дополнительному оборудованию можно отнести такие вспомогательные изделия, как частотный преобразователь для скважинного насоса, стабилизаторы напряжения, источник бесперебойного питания (ИБП), второе его название преобразователь напряжения, различные датчики, блоки, реле управления и многое другое. В нашей статье мы рассмотрим назначение и особенности использования основного дополнительного оборудования для насосов.

Для любой насосной станции очень важна защита от работы «на сухую». Такое может случиться в условиях дефицита воды в источнике. В случае полного опустошения водозабора агрегат будет работать «на сухую». Это приведёт к перегреву рабочего колеса (крыльчатки) и других важных элементов рабочей камеры. В результате тепловой деформации детали может заклинить, и агрегат выйдет из строя. Чтобы этого не происходило, понадобится блок, защищающий агрегат от сухого хода. К таким блокам можно отнести разные детали:

  • электронные контроллеры;
  • поплавковый механизм;
  • электромеханический регулятор (реле).

Рассмотрим особенности устройства и использования некоторых из них.

Простой контроллер

Электронное реле имеет датчик протока, который позволяет определять наличие или отсутствие водного потока в трубах. Если регулятор показывает отсутствие воды в трубопроводе, то прибор отключает насосное оборудование. В продаже есть множество разновидностей контроллеров, отличающихся функциональностью и внешним видом. Наиболее простые из них укомплектованы только датчиком протока. Наиболее усовершенствованные модели могут объединять в себе функции контроля предельного давления для включения и отключения агрегата, а также защиты от работы «на сухую».

Для насосной станции стандартной комплектации с электромеханическим регулированием давления достаточно купить простой электронный контроллер. Такой блок будет защищать агрегат от сухого хода. Он устанавливается на подающем трубопроводе.

Если вы используете насосную станцию без гидроаккумулятора, то вам также понадобится блок управления, защищающий от работы «на сухую». Этот прибор обеспечит остановку насосного оборудования при закрытых точках водопотребления. Датчик протока сработает и в этом случае, ведь проток воды прекратиться с остановкой расхода из трубопровода.

Контроллер с дополнительными опциями

Такой усовершенствованный регулятор работы насосного оборудования может:

  • контролировать давление при помощи встроенного манометра;
  • устройство может пытаться автоматически перезапускать насос по истечении определённого промежутка времени;
  • задавать нижний порог давления для включения агрегата;
  • контролировать верхний и нижний порог давления (это универсальные блоки, объединяющие в себе регулятор давления и датчик протока).

Важно знать: в некоторых модификациях новых контроллеров пользователь может самостоятельно изменять верхний и нижний порог давления в заданных пределах.

Электромеханические приборы для защиты от работы «на сухую»

Электромеханические приборы управления обозначаются буквами LP3. Они также защищают агрегат от сухого хода. По своей сути, они являются теми же реле давления. Однако есть небольшие отличия:

  • такой блок работает только с небольшим давлением;
  • этот прибор при достижении нижнего предела давления отключает насос, а при верхнем пределе – включает, в то время как обычные реле делают наоборот;
  • прибор практически нечувствителен к скачкам напряжения;
  • его надёжность и долговечность намного выше;
  • цена данного агрегата в сравнении со стоимостью обычного реле ниже;
  • в случае остановки насоса из-за срабатывания защиты от работы «на сухую» блок управления не будет перезапускать насос, пользователю придётся делать это вручную.

Поплавковый механизм

Это прибор состоит из поплавка, внутри которого находится стальной шарик, и электрического кабеля. Когда вода набирается в прибор, поплавковый блок всплывает. В это время шарик оказывается в положении, когда он замыкает электрическую цепь. Это приводит к запуску и работе насосного оборудования. Если поплавковый блок опускается из-за снижения уровня воды, шарик изменяет своё положение и размыкает цепь, что приводит к отключению прибора.

Стабилизаторы напряжения

Внимание: при запуске насосного оборудования и без того низкое напряжение в загородной сети может упасть до минимума, что приведёт к выходу из строя бытовых электрических приборов. Всё дело в том, что в таких условиях приборы будут работать на предельной мощности для компенсации недостающего напряжения.

Помимо этого нехватка напряжения негативным образом скажется на двигателе насосного оборудования, а также на возможности агрегата обеспечивать достаточный напор воды. Чтобы такого не происходило, нужно приобрести стабилизатор напряжения для агрегатов, перекачивающих воду.

Чтобы правильно выбрать стабилизатор, необходимо учитывать следующие нюансы:

  1. Нужно знать величину пусковых токов. Её можно узнать у производителя или рассчитать по формуле. Для начала определяем рабочий ток, разделив мощность двигателя на напряжение (220 В) и умножив на коэффициент мощности, равный 0,6-0,8. После этого поученное число умножим на 4 и получим искомую величину.
  2. Стабилизатор напряжения должен иметь мощность, позволяющую подключить к нему не только насосное оборудование.
  3. Выбирайте такой стабилизатор, модель которого адаптирована для работы с агрегатами, которые укомплектованы электродвигателем. Для этих нужд как нельзя лучше подходят стабилизаторы релейной разновидности, имеющие повышенную скорость стабилизации.
  4. Для трёхфазных насосов подходят трёхфазные стабилизаторы, имеющие повышенную мощность.
  5. Как правило, стабилизатор для насоса необходимо подбирать с трёхкратным превышением мощности.
  6. Чем ниже показатель входного напряжения, тем больший запас мощности нужно дать на стабилизатор.
  7. Прибор при работе лучше загружать на 80 %, а не на все 100. Это позволит увеличить срок службы прибора.

Разновидности стабилизирующих устройств:

  • тиристорные;
  • релейные;
  • электромеханические.

Выбор той или иной разновидности стабилизатора зависит от уровня напряжения в сети, расстояния, на котором установлен объект от трансформаторной подстанции, скачка напряжения на данной линии. Если резкие скачки и высокие показатели напряжения отсутствуют, можно выбрать электромеханический прибор, имеющий плавную регулировку. Для линий с сетевыми скачками подойдут релейные или тиристорные модели.

Частотный преобразователь для насоса

Для управления насосным оборудованием используются различные приборы:

  1. Для отключения работающего насоса из-за изменений режима работы необходимо аварийное реле.
  2. Чтобы выполнялось переключение цепей в требуемой последовательности, нужно промежуточное реле.
  3. Как мы уже писали выше, для защиты от скачков напряжения понадобится реле напряжения.
  4. Для отсчёта времени на выполнение определённой операции нужен таймер.
  5. Для контроля давления в трубопроводе и управления автоматическими цепями пригодится электроконтактный манометр.
  6. Чтобы измерять температуру подшипников и сальников, нужно термореле.
  7. Датчики уровня подают сигнал на запуск или остановку агрегата вследствие изменения напора или уровня жидкости.
  8. Вакуумное реле поддерживает заданный уровень разрежения в камере прибора или во входном трубопроводе.
  9. Для контроля движения жидкости в трубах используется струйное реле.

Важно: частотный преобразователь особенно важен в системах с несколькими насосами.

Преимущества использования частотного преобразователя для управления насосом:

  • Осуществляется плавный пуск двигателя. Это способствует уменьшению воздействия механических нагрузок на насосное оборудование. Кроме этого снижение пусковых токов снижает вероятность риска гидроудара. Отсутствие гидроударов благоприятно сказывается на долговечности и целостности всего гидротехнического сооружения.
  • Благодаря этому ресурс насосного агрегата расходуется более экономично. Это позволят продлить срок службы оборудования.
  • Использование частотного преобразователя способствует экономии электроэнергии.

К недостаткам частотного преобразователя для управления насосным оборудованием можно отнести следующее:

  • Высокая цена прибора. Даже для покупки на насосы небольшой мощности стоимость такого преобразователя получится немаленькой.
  • Преобразователь для управления насосом можно использовать только в том случае, если длина кабеля не более 50 м.

Источники бесперебойного питания

Для обеспечения постоянного питания насосного оборудования используются специальные источники бесперебойного питания (ИБП), второе его название преобразователь напряжения. Принцип работы этого прибора основан на том, что при наличии тока в электросети он выполняет зарядку специальных аккумуляторов. При отключении электричества агрегат потребляет электроэнергию из аккумуляторов. При этом он преобразует постоянный ток (12 в), выдавая переменный (220 В).

Иными словами, если одни дополнительные приборы нужны для управления насосом, то преобразователь обеспечивает его бесперебойную работу в случае отключения электроэнергии. Этот прибор соединяется с аккумуляторными батареями и подключается в электрическую сеть.

Частотная синусоида в источниках бесперебойного питания для насосного оборудования необходима, поскольку без неё агрегаты будут издавать много шума и перегреваться. В результате тонкая обмотка может просто-напросто перегореть. Обычно мощность ИБП составляет 1000-2000 Вт. Этой мощности хватит не только для обеспечения работы насосного оборудования, но и для поддержания работоспособности котлов отопления, телевизора и освещения во всём доме.

В нашей статье мы рассмотрели самое необходимое дополнительное оборудование, которое нужно для облегчения управления насосом, повышения его эффективности, защиты от выхода из строя в случае изменения условий работы.

В корзине пока пусто

Частотные преобразователи для насосов систем водоснабжения

Первые насосы появились ещё в античные времена. В наши дни это, пожалуй, самое распространенное устройство, которое применяется практически повсеместно. Поверните рукоятку крана, из него потечет вода, которую подает насос. В каждом автомобиле работают несколько насосов для масла, топлива, воды, охлаждающей жидкости. Велосипедист не отправится в путь, не накачав насосом шины. При изготовлении электронной лампы из нее, выкачивают воздух. Насосы накачивают, выкачивают, откачивают и перекачивают воздух, воду, нефть, молоко, бензин и даже цемент. От водопровода до ракеты, от вентилятора до атомной станции - таков диапазон применения насосов.

Но сам по себе насос работать не может. Для приведения его в действие нужен электродвигатель и устройство регулирования давления/разрежения. Самым известным и распространенным способом регулирования в насосной системе является дросселирование, когда двигатель работает на полных оборотах, а регулирование давления в системе осуществляется с помощью запорной арматуры (задвижек, вентилей, отводов, шаровых кранов и т.д.). Если проводить параллели с управлением автомобилем, то дросселирование выглядит примерно так: водитель, нажав до упора педаль газа, регулирует скорость движения педалью тормоза.

Более рационально и эффективно управлять насосами позволяют частотные преобразователи, с помощью которых на двигатель подается необходимое количество энергии для создания и поддержания необходимого уровня давления/разрежения в системе, например в трубопроводе. При этом достигается до 30% экономии потребления энергии, а если учесть, что в течение срока службы двигатель расходует электроэнергии на сумму, намного превосходящую его стоимость, то это показатель оказывается чрезвычайно актуальным. К примеру, в течение года работы по 8 часов в день двигатель мощностью 11 кВт израсходует электроэнергии на сумму около 85 тыс. руб. Частотный преобразователь при таких параметрах работы окупится в течение года, и в дальнейшем будет приносить предприятию прибыль.

Рассмотрим описанные выше методы регулирования давления в насосной системе более подробно.

Мощность насоса для конкретной системы всегда рассчитывается по уровню максимально потребления, то есть с определённым запасом. На рис.1 продемонстрирована типовая схема вычисления необходимой мощности насоса. Голубой линией показана «кривая насоса» - подающая часть системы водоснабжения, которая отражает зависимость давления нагнетания от величины расхода жидкости (протока). Красная линия - это «кривая системы» - потребляющая часть водоснабжения, так же отображающая взаимозависимость расхода и давления жидкости, но в зеркальном отображении. Пересечение этих кривых является точкой оптимума, когда насос обеспечивает необходимый проток и требуемый уровень давления.

Но фактически в таком режиме система работает крайне редко, лишь в моменты пикового потребления. В остальное время расчётная мощность насоса оказывается чрезмерной, и тогда в системах без регулирования или с применением дросселирования происходит следующее: при снижении расхода насос создаёт избыточное давление, на создание которого расходуется дополнительная энергия. На рис.2 это наглядно показано.

Применение частотных преобразователей, за счёт снижения оборотов двигателя и как следствие подаваемой мощности позволяет изменить «кривую насоса» адаптировав её под «кривую системы»

Управление насосами систем водоснабжения

Как известно, расход воды на хозяйственные и бытовые нужды очень сильно колеблется в течение суток, во время выходных и праздников. Множество людей принимают душ, стирают, моют посуду одновременно в определённые часы суток и почти не пользуются водой в другое время, например, ночью. Это создает условия для возникновения таких проблем, как плохой напор воды в утренние и вечерние часы, значительные суточные колебания давления в системе водоснабжения и, как следствие, ускоренный износ труб и запорной арматуры.

К счастью, сегодня стабилизация давления не является такой уж сложной задачей. Сегодня уже более актуален вопрос повышения общей эффективности управления системами водоснабжения, то есть достижение максимальных результатов при минимальном энергопотреблении и незначительных капиталовложениях в модернизацию оборудования. Использование частотно-регулируемых приводов (ЧРП) на насосных станциях позволяет блестяще справиться с этой задачей. Статистика показывает, что ЧРП способен снизить потребление энергии на насосных станциях от 30 до 50%, а срок их окупаемости составляет от одного до полутора лет.

Такая экономия достигается за счет того, что частотный преобразователь способен изменять частоту вращения электродвигателя плавно в широком диапазоне. Фактически, это обозначает, что электродвигатель насоса всегда будет потреблять ровно столько энергии, сколько необходимо для поддержания стабильного давления вне зависимости от текущего потребления системы водоснабжения в данный конкретный момент. Плавные пуск, останов и изменение частоты вращения двигателя позволяет также избежать гидравлических ударов в трубопроводах, сокращая потери воды и увеличивая срок безаварийной эксплуатации насоса, трубопровода, запорно-регулирующей арматуры и измерительных приборов.

Выбор частотного преобразователя для насосов

Компания Rockwell Automation предлагает частотные преобразователи для решения самых разнообразных задач управления насосами: от управления одиночными маломощными насосами, до каскадного управления группой насосов с автозаменой. Преобразователи PowerFlex могут питаться как от однофазной, так и трехфазной сети.

Однофазные преобразователи, используя одну фазу 220В, формируют на выходе трёхфазное синусоидальное напряжение для эффективного управления трехфазными двигателями без потери мощности и без применения фазосдвигающих цепей, конденсаторов. Такое решение предлагается для преобразователей , в диапазоне мощностей от 0,2 до 2,2 кВт.

Трёхфазные преобразователи способны работать в более широком диапазоне мощностей (от 0,2 до 250 кВт), ассортимент таких преобразователей дополнен моделями PowerFlex 40P и PowerFlex 400.

Для решения самых простых задач управления маломощными насосами доступны преобразователи PowerFlex 4, PowerFlex 4М, PowerFlex 40 и . Они позволят выполнять плавный пуск и останов, управление режимами разгона/торможения, защиту от «сухого хода», энергосбережение и т.д. Кроме того, PowerFlex 40 и 40P, помимо скалярного (U/f, вольт-частотного) имеют режим бездатчикового векторного управления двигателем. Такой режим отличается повышенной точностью управления и позволяет получить высокий крутящий момент двигателя на пониженных скоростях вращения. Приводы отличаются малыми габаритами, могут монтироваться с нулевыми зазорами, вплотную друг к другу и предлагаются в исполнении для работы от однофазной и трехфазной сети.

Для решения более сложных задач (автоматическое подержание давления, каскадное управление, управление заслонкой и т.п.) рекомендуется использовать преобразователи PowerFlex 400. Частотные преобразователи этой серии имеют встроенный контур ПИД-регулирования (пропорционально-интегрально-дифференциальное регулирование). Контур ПИД используется для поддержания обратной связи процесса, например давления, потока или натяжения, в соответствии с заданным значением. А такие дополнительные встроенные функции как каскадное управление тремя дополнительными двигателями и управления заслонкой в ряде случаев позволяют использовать без управляющего контроллера.

Встроенная функция управления дополнительными двигателями позволяет запустить до трех двигателей с непосредственным пуском в дополнение к тому двигателю, работа которого управляется напрямую приводом PowerFlex 400. Выход системы может изменяться от 0% до 400%. Функция автоматической замены распределяет нагрузку между двигателями путем периодической замены управляемого приводом двигателя дополнительными двигателями.

Встроенная логическая схема управления заслонкой, позволяет сэкономить на внешнем управляющем аппаратном и программном обеспечении. При подаче команда запуска привод формирует команду открытия/закрытия заслонки и контролирует поступление сигнала готовности. Когда заслонка находится в правильном положении, производится безопасный запуск привода.

Узнать более подробно о характеристиках рассмотренных выше приводов можно здесь:




Большинство общепромышленных моделей частотных преобразователей можно использовать для управления насосами, но для этого необходимо их запрограммировать специальным образом.

Преобразователи частоты для насосов являются адаптированными приборами и показывают лучшие результаты в работе с насосным оборудованием. Частотные преобразователи для насосов более экономичны и функциональны в своей сфере.

Модели приборов и аналоги

Ниже в таблице представлен краткий обзор нескольких оптимизированных под управление насосами моделей. Подробную информацию по моделям можно получить на карточке соответствующего частотного преобразователя .

Модель Диапазон мощностей Вход Выход Уровень защиты Температура среды Примечания, особенности
PD20
0,75…18,5 кВт 3Ф 380В Выходная частота
0…50/60 Гц
IP65 -10…+40°С Полнофункциональные ПЧ с высоким уровнем защиты, могут устанавливаться на двигатель, специализированы для многонасосных применений
0,37…2,2 кВт 1Ф 220В Выходная частота
0…50/60 Гц
IP65 -10…+40°С Полнофункциональные ПЧ с высоким уровнем защиты, могут устанавливаться на двигатель, специализированы для одиночных небольших насосов
15…315 кВт 3Ф 380В Выходная частота
0…400 Гц
IP20 -10…+40°С Скалярное управление, многофункциональные выходы и входы, полный набор функций для работы с насосами
0,75…400 кВт 3Ф 230В
3Ф 460В
ПИД IP20 -10…+50°С Специализированные модели
0,75…220 кВт 3Ф 230В
3Ф 460В
ПИД IP20 -10…+40°С Доступны специализированные модели
0,4…4 кВт 1Ф 220В
3Ф 380В
Выходная частота
0…600 Гц
IP20 -10…+50°С Для насосов и вентиляторов

Области применения преобразователей частоты для насосов

ПЧ для насосов оптимизированы для следующих приложений:

  • Системы вентиляции и кондиционирования (компрессоры и т.п.)
  • ЖКХ, системы водоснабжения и водоотведения, отопления (насосы горячей/холодной воды, оборудование котельных, канализация)
  • Энергетика (оборудование ТЭС, ТЭЦ, котлоагрегатов)
  • Технологические линии в обогатительной отрасли (песковые, пульповые насосы)
  • Прочие насосные агрегаты (станции подкачки для водопроводных сетей либо силовых распределительных пунктов)
  • Погружные, скважинные насосы

Несмотря на вышеуказанные применения, такие приборы пригодны и для общепромышленного применения.

Назначение частотных преобразователей для насосов

  • Оптимизированное управление в насосных системах с целью поддержания определенных параметров на заданном уровне (давление, температура, уровень, расход, потребление воды)
  • Групповое управление насосами
  • Экономия воды и электроэнергии на предприятиях, ресурсосбережение на станциях подкачки
  • Защита трубопроводов от гидроударов, увеличение срока службы арматуры
  • Полная защита электродвигателей в насосных установках
  • Автоматизация насосных станций

Преимущества

Преобразователи частоты для насосов имеют преимущества:

  • Как правило, имеют более высокий уровень защиты
  • Благодаря своей специализации реализуют наиболее эффективное управление в насосных системах
  • В большинстве случаев представляют собой многофункциональные устройства, способное полностью автоматизировать насосную станцию

Недостатки

На недостатки приборов влияют используемые в них принципов регулирования. В зависимости от того скалярный это или векторный преобразователь, ему присущи те или иные недостатки. (ссылки на страницы)

Принцип работы частотных преобразователей для насосов

Преобразователь частоты для насосов преобразует входное силовое напряжение в оптимальное для выбранного режима работы насоса выходное. При этом в системе формируется контур управления с обратной связью по выбранному параметру (например, по давлению воды в системе водоснабжения). Датчик давления передает информацию в электронный блок ПЧ, а преобразователь, в свою очередь, изменяет выход (частоту, напряжение) в ту или иную сторону для поддержания постоянного давления воды в трубопроводе.

Примеры представлены на рисунках:


Насосная станция на два насоса
(автоматическое поддержание давления, пуск дополнительного насоса от сети)