Система управления холодильными установками. Цели автоматизации холодильных установок. Принципы автоматизации холодильных установок

Система управления холодильными установками. Цели автоматизации холодильных установок. Принципы автоматизации холодильных установок
Система управления холодильными установками. Цели автоматизации холодильных установок. Принципы автоматизации холодильных установок

ЛЕКЦИЯ 9

Тема «КИП и автоматика холодильной машины»

Цель: Изучить устройство и принцип действия контрольно-измерительных приборов и приборов автоматики холодильных машин вагонов

1. Холодильные машины и установки конддиционированяе воздуха. Пигарев В.Е., Архипов П.Е. М., Маршрут, 2003.

2. Обучающая контролирующая программа «Кондиционирование воздуха в пассажирском вагоне».

План лекции:

1. Принципы автоматизации холодильных установок.

2. Основные понятия об автоматическом регулировании

приборов автоматики.

4. Регуляторы заполнения испарителя хладагентом.

Принципы автоматизации холодильных установок

Параметры окружающей среды - температура, влажность, направление и сила ветра, осадки, солнечная радиация непрерывно изменяются в течение суток, а также вследствие быстрого перемещения вагона. Соответственно изменяется и тепловая нагрузка на вагон. Чтобы в этих условиях поддерживать стабильные параметры воздуха внутри вагона, необходимо непрерывно изменять производительность системы охлаждения (летом) или отопления (зимой), а если это необходимо, то и производительность системы вентиляции. Следовательно, как бы совершенны ни были сами по себе системы вентиляции, отопления, охлаждения и электроснабжения и как бы хорошо ни были согласованы их параметры между собой и с тепловыми нагрузками на вагон, установка кондиционирования воздуха не сможет обеспечить комфортных условий в вагоне, если её управление не будет автоматизировано, а холодильная машина обеспечивать требуемую тепловую обработку скоропортящегося груза и поддерживавать заданный температурный режим охлаждаемого помещения. На рефрижераторном подвижном составе применяются холодильные установки, автоматизированные полностью или частично. Степень автоматизации холодильной установки выбирается в зависимости от ее конструкции, размеров и условий эксплуатации. В полностью автоматизированных установках пуск, отключение машин и регулирование холодопроизводительности осуществляются автоматически без вмешательства обслуживающего персонала. Такими установками оборудованы АРВ и секции ZB -5. Для полной автоматизации требуются большие первоначальные затраты и последующие расходы на обслуживание сложных аппаратов и приборов. Однако полная автоматизация холодильных установок АРВ позволила отказаться от сопровождения вагонов в пути следования обслуживающим персоналом и перейти на периодическое их техническое обслуживание на специализированных пунктах (ПТО АРВ).

При эксплуатации частично автоматизированных холодильных установок необходимо постоянное дежурство обслуживающего персонала. Наличие персонала позволяет отказаться от автоматизации включения и выключения холодильной машины, процесса оттаивания воздухоохладителя и др. В результате достигается значительное снижение первоначальных затрат. Защитная же автоматика в таких машинах должна предусматриваться в полном объеме, как и для полностью автоматизированной установки.


Из частично автоматизированных установок условно выделяют полуавтоматизированные установки, в которых включение и выключение оборудования выполняет вручную механик, а поддержание установленного режима работы осуществляют приборы автоматики. К полуавтоматизированным холодильным установкам относятся установки 5- вагонной секции БМЗ.

Автоматизированные холодильные установки всегда работают в оптимальном режиме. Это позволяет сократить время достижения требуемой температуры в грузовом помещении, увеличить за счет этого межремонтные сроки эксплуатации оборудования и снизить расход электроэнергии. Автоматизированная холодильная установка точнее поддерживает заданный температурный режим в охлаждаемом помещении, чего невозможно достигнуть при ручном регулировании. Это позволяет сохранить качество перевозимых грузов и уменьшить их потери при транспортировке. Система автоматизации надежно защищает холодильную установку от опасных режимов работы, увеличивая срок ее службы и обеспечивая безопасность для обслуживающего персонала. Автоматизация повышает культуру производства, улучшает и облегчает условия труда обслуживающего персонала. Практически обязанности поездной бригады сводятся к периодическим осмотрам и проверкам режима работы оборудования и к устранению выявленных неисправностей. Естественно, системы автоматики различны. Применительно к системам автоматики установки кондиционирования воздуха можно классифицировать по трем признакам: по регулируемым параметрам воздуха: по температуре или по влажности, или по обоим этим параметрам, т.е. по теплосодержанию; по характеру процесса обработки воздуха: мокрые камеры увлажнения и осушки с непосредственным разбрызгиванием и фильт189 рацией паровоздушной смеси, или камеры со смачиванием поверхности и также непосредственным тепломассообменом, или камеры с применением теплообмена через холодную (или горячую) стенку, охлаждаемую холодной водой или рассолом (нагреваемую горячей водой или рассолом), или камеры с воздухоохладителями непосредственного охлаждения, или камеры с твердыми или жидкими влагопоглотителями - адсорбентами; по схеме обработки воздуха: прямоточные камеры (без использования рециркуляции), или камеры с постоянной или переменной величиной первичной рециркуляции, или камеры с двойной рециркуляцией постоянной или переменной. Специальное устройство для регулирования влажности (специальная осушка воздуха осуществляется более глубоким его охлаждением, чем необходимо для поддержания температурного режима с последующим подогревом) в вагонных установках кондиционирования воздуха не применяется. Летом, когда требуется осушка воздуха, она выполняется одновременно с процессом его охлаждения в воздухоохладителе. Зимой, когда необходимо увлажнение воздуха, оно осуществляется за счет влаговыделения пассажиров. Таким образом, по первому признаку процесс автоматического регулирования работы вагонных установок кондиционирования является наиболее простым и сводится к поддержанию температуры в помещениях вагона в заданных пределах. Мокрые камеры, твердые и жидкие адсорбенты, теплообмен с помощью водяного или рассольного охлаждения в пассажирских вагонах не применяются. Из этого следует, что и по второму признаку системы автоматики вагонных кондиционеров довольно просты. Ни переменная, ни тем более двойная рециркуляция как постоянная, так и переменная, в вагонах не применяется. Наличие рециркуляции с постоянным соотношением наружного и рециркуляционного воздуха усложняет лишь систему вентиляции, не внося каких-либо из-менений в систему автоматического управления. Таким образом, и по третьему признаку, а значит, и в целом системы автоматики установок кондиционирования пассажирских вагонов по сравнению с системами автоматики других кондиционеров как комфортных, так и технологических, являются относительно простыми. Для поддержания температуры в охлаждаемом помещении в заданном интервале приходится регулировать холодопроизводительность установки, рассчитанную на максимальную потребность в холоде. Регулиро-вание может быть плавным или позиционным (ступенчатым).

Плавное регулирование можно выполнить: плавным изменением частоты вращения вала компрессора; перепуском (байлансированием) пара из нагнетательной линии во всасывающую; изменением рабочего объема компрессора (в винтовых компрессорах); открытием всасывающего клапана на части хода поршня и др. Многие из перечисленных выше способов применяются редко из-за сложности их конструкционного осуществления или из-за значительных энергетических потерь.

Позиционное регулирование можно выполнять изменением коэффициента рабочего времени, т.е. изменением продолжительности работы холодильной установки за цикл. Этот способ широко применяется в системах с большой тепловой аккумулирующей способностью. Позиционное регулирование выполняется также ступенчатым изменением частоты вращения коленчатого вала компрессора, используя многоскоростные электродвигатели. Частоту вращения вала электродвигателя изменяют переключением полюсов статора. На рефрижераторном подвижном составе применяется регулирование холодопроизводительности изменением коэффициента рабочего времени. Цикличная работа холодильной установки достигается периодическими ее включениями и выключениями. Отношение времени работы холодильной установки р к общей продолжительности цикла называется коэффициентом рабочего времени: b = р/ .

Коэффициент рабочего времени можно также определить как отношение теплопритоков в охлаждаемое помещение Q т к холодопроизводительности установки Q 0, т.е. b = Qт /Q 0.

Температуру в охлаждаемом помещении рефрижераторных вагонов обычно регулируют периодическими включениями и отключениями холодильной установки с помощью двухпозиционного автоматического прибора - термостата (реле температуры). При цикличной работе температура в охлаждаемом помещении не остается постоянной, а изменяется в определенных пределах, которые зависят от настройки дифференциала термостата. При увеличении дифференциала продолжительность цикла и пределы колебания температуры увеличиваются. Когда температура в охлаждаемом помещении достигнет верхнего установленного предела, термостат включит холодильную установку. После того как температура в охлаждаемом помещении достигнет нижнего предела, термостат подает электрический импульс на отключение установки. При увеличении теплопритоков в вагон продолжительность работы установки повышается.

2. Основные понятия

об автоматическом регулировании

Система автоматического управления - это совокупность объекта управления и управляющего устройства, осуществляющих какой-нибудь процесс полностью или частично без вмешательства обслуживающего персонала. Объект управления - комплекс технических элементов, выполняющих основную технологическую задачу - характеризуется значениями некоторых величин на его входе и выходе. Если в качестве объекта управления рассматривать рефрижераторный вагон, то величиной на выходе будет температура в грузовом помещении t ваг, а величиной на входе - холодопроизводительность холодильной машины Q 0. Величину на выходе, которую требуется поддерживать в определенном интервале, называют регулируемым параметром и обозначают X 0. Величина на входе объекта - это параметр, с помощью которого управляют значением величины на выходе. Внешнее воздействие на объект управления, вызывающее отклонение регулируемого параметра от исходного значения Х 0, называется нагрузкой. В данном случае это будут теплопритоки в вагон Q н. Действительное значение регулируемого параметра X под воздействием нагрузки Q н отклоняется от заданного значения X 0. Такое отклонение называется рассогласованием: Х=Х – X 0. Воздействие на объект, которое уменьшает рассогласование Х, является регулирующим воздействием. В нашем примере это будет холодопроизводительность машины Q 0. Если Q 0 = Qн , то Х = 0, а регулируемый параметр не изменяется: Х 0 - const.

Устройство, воспринимающее рассогласование АХ и воздействующее на объект для уменьшения рассогласования, называется автоматическим регулятором, или просто регулятором.

Объект и регулятор образуют систему автоматического регулирования (рис. 1).

Рис. 1. Система автоматического регулирования

Регулирование может выполняться по нагрузке и рассогласованию. В первом случае регулятор

воспринимает изменение нагрузки и на столько же изменяет регулирующее воздействие, поддерживая равенство Q 0 = Qн . Однако проще следить за отклонением регулируемого параметра Х 0, т.е. изменять регулирующее воздействие Q 0 в зависимости от значения Х.

Системы автоматизации различаются по своему назначению: управления, сигнализации, защиты, регулирования и комбинированные. Между собой они отличаются составом элементов и связями между, ними. Структурная схема автоматической системы определяет, из каких звеньев она состоит. Например, в систему автоматического регулирования входят объект регулирования и автоматический регулятор, состоящий из нескольких элементов - чувствительного элемента, задающего устройства, элемента сравнения, регулирующего органа и т.д. На рис. 2 показана простая одноконтурная система автоматического регулирования, широко применяющаяся при автоматизации холодильных установок. Работа объекта характеризуется параметром X на выходе, по которому ведется регулирование. На объект воздействует внешняя нагрузка Q н. Управление осуществляется регулирующим воздействием Q 0. Автоматический регулятор должен так изменять величину Q 0, чтобы значение X. соответствовало заданному Х 0. В системе имеются цепи прямой и обратной связи. Цепь прямой связи служит для формирования и передачи к объекту регулирующего воздействия Q 0; по цепи обратной связи поступает информация о ходе процесса. В цепь прямой связи входят усилитель (У), исполнительный механизм (ИМ) и регулирующий орган (РО). В цепь обратной связи включен чувствительный элемент (ЧЭ).

Рис. 2. Структурная схема автоматического регулирования

Обе цепи замыкаются элементом сравнения (ЭС). В регуляторе могут не применяться отдельные элементы (усилитель, исполнительный механизм). Некоторые детали могут выполнять функции нескольких элементов.

Система работает следующим образом. Чувствительным элементом регулятор воспринимает регулируемый параметр X и преобразует его в величину Х 1, удобную для дальнейшей передачи.

Эта преобразованная величина поступает в элемент сравнения, на другой вход которого подается сигнал Х 2, представляющий собой задание регулятору от устройства 3. В элементе сравнения производится операция вычитания, в результате которой получается рассогласование Х = X Х 0.

Сигнал Х заставляет работать остальные элементы схемы. В усилителе его мощность повышается до Х 3 и воздействует на исполнительный механизм, который преобразует этот сигнал в удобный для использования вид энергии X 4 и изменяет положение регулирующего органа. В результате изменяется поток энергии или вещества, подводимого к объекту, т.е. изменяется регулирующее воздействие.

По взятому для примера рефрижераторному вагону можно проследить за взаимодействием элементов структурной схемы (рис. 1 и 2).

Температуру в вагоне X воспринимает термочувствительная система термостата, преобразует ее в давление Х 1 и воздействует на пружину термостата ЭС, отрегулированную на определенное усилие сжатия винтом задающего устройства 3. При повышении температуры в вагоне t ваг в результате теплопритоков Q н увеличивается рассогласование X .

При определенном значении t ваг замыкаются контакты термостата, включающие электрическую систему управления холодильной машиной У, которая получает энергию Е от внешнего источника. Исполнительные механизмы ИМ электрической системы включают холодильную машину РО, которая воздействует величиной Q н на объект. Структурные схемы других автоматических устройств можно получить из рассмотренной схемы. Сигнализирующая система отличается от системы регулирования тем, что в ней нет исполнительного механизма. Цепь прямой связи разрывается, и сигнал Х3 подается обслуживающему персоналу (звонок, включение сигнальной лампы), который и должен произвести регулирование. В системе автоматической защиты вместо исполнительного механизма и регулирующего органа имеется устройство управления, которое отключает холодильную установку. В системах сигнализации и защиты сигнал Х3 изменяется скачкообразно, когда величина X достигает заданного значения. Автоматические регуляторы классифицируются по назначению: регуляторы давления, температуры, уровня и т.д. Они различаются конструкцией чувствительного элемента. Регуляторы бывают прямого и непрямого действия. Если мощность сигнала рассогласования достаточна для воздействия на регулирующий орган, регулятор считается прямодействующим. В регуляторах непрямого действия для привода регулирующего органа используется внешний источник энергии Е (электрический, пневматический, гидравлический, комбинированный), подводимой через усилитель мощности У.

В зависимости от способа воздействия на объект различают регуляторы плавного и позиционного (релейного) действия. В регуляторах плавного действия регулирующий орган может занять любое положение в пределах между максимальным и минимальным. У позиционных регуляторов регулирующий орган может занимать два или несколько определенных положений. По типу задающего элемента регуляторы бывают стабилизирующие, программные, следящие, оптимизирующие. Стабилизирующие регуляторы поддерживают регулируемую величину на постоянном заданном уровне. Программные регуляторы изменяют регулируемую величину по заранее намеченной программе, следящие - в зависимости от изменений какого-нибудь внешнего параметра, Оптимизирующие регуляторы, анализируя внешние параметры, обеспечивают оптимальное ведение процесса. В холодильных установках чаще применяются стабилизирующие регуляторы.

Система регулирования согласовывает характеристики отдельных элементов машины при изменений их холодопроизводительности.

Характеристики представляют собой зависимости холодопроизводительности, расхода энергии на работу компрессора и охлаждение конденсатора от внешних условий, т.е. от температуры окружающей среды. Они позволяют установить взаимную связь параметров компрессора, испарителя и конденсатора. Построение характеристик проводят по уравнениям теплового баланса системы «холодильная машина - охлаждаемое помещение» и энергетическим соотношениям, описывающим работу основных элементов машины с учетом изменения по времени параметров хладагента и окружающей среды. При этом балансовые и энергетические соотношения представляют в функции температуры охлаждаемого объекта (температуры кипения хладагента) и температуры окружающей среды (температуры конденсации хладагента).

Процесс регулирования машины на требуемый режим охлаждения или на заданный температурный режим теоретически может быть реализован количественным или качественным способом. Первый предусматривает изменение расхода хладагента через испаритель, второй - изменение его параметров. Однако температура охлаждаемого объекта определяется температурой кипения хладагента, которая самоустанавливается в зависимости от холодопроизводительности компрессора, испарителя и конденсатора. Поэтому процесс регулирования определяет не только баланс холодопроизводительности компрессора Q oк и испарителя Q ои, но и температурный уровень отвода или подвода теплоты. Следовательно, регулирование паровой компрессорной машины представляет собой комбинированный процесс, сочетающий количественный и качественный способы.

Исполнительным органом системы регулирования (регулятором холодопроизводительности) служит дроссельный вентиль. Рабочий режим машины, который соответствует точке пересечения характеристик компрессора и испарителя Q oк = Q ои, обеспечивают изменением проходного сечения вентиля. Схема согласования характеристик основных элементов машины при некотором постоянном значении температуры окружающей среды приведена на рис. 3.

Характеристика испарителя Q oк =f (T 0) (T 0 - температура кипения хладагента) отвечает изменению теплопритоков охлаждаемого помещения, характеристика компрессора Q ок = f (T 0) - регулированию его производительности, расходная характеристика дроссельного вентиля Q дв= f (T 0) устанавливает степень его закрытия или открытия. Характеристики перечисленных элементов машины при изменении режима ее работы показаны штриховыми линиями. Точка А определяет рабочую точку системы «машина - охлаждаемое помещение» как объекта регулирования при переходе с одного режима работы на другой. При этом точка А ′соответствует рабочему режиму в процессе регулирования компрессора, а точка А ′′- при изменении характеристики испарителя. Регулирование холодопроизводительности машины с поршневым компрессором осуществляют плавным или ступенчатым (позиционным) регулированием его производительности. В машинах малой и средней мощности получили распространение следующие способы плавного регулирования с помощью внешних или встроенных конструктивных устройств: перепуск хладагента со стороны нагнетания на всасывание (балансирование), который осуществляют регулирующими вентилями, управляемыми от датчика давления или температуры; дросселирование на всасывании с переводом компрессора на работу при пониженном давлении всасывания; изменение объема мертвого пространства подключением к нему дополнительного внешнего объема; изменение частоты вращения вала компрессора.

Рис. 3. Характеристики основных элементов холодильной машины

Ступенчатое регулирование в машинах малой и средней холодопроизводительности в основном выполняют способом «пуск-остановка» с предельной частотой циклов до 5-6 в 1 ч; для многоступенчатых компрессоров эффективно используют отключение отдельных цилиндров путем отжатия всасывающих клапанов с помощью механических толкателей. Управление движением толкателей производят гидравлическими, пневматическими или электромагнитными приводами. Внедряется система электронного регулирования производительности с воздействием на всасывающие клапаны электромагнитного поля.

Примером ступенчатого пропорционального регулирования является регулирование температуры воздуха в вагоне летом, когда с увеличением теплопритока в вагон увеличивается холодопроизводительность холодильной установки (увеличиваются частоты вращения вала компрессора или включается большее количество его цилиндров). В этом случае импульсом, сигнализирующим необходимость увеличения холодопроизводительности, является дальнейшее повышение температуры воздуха в вагоне.

Пример пропорционального плавного регулирования - регулирование температуры воздуха в вагоне зимой, когда с увеличением теплопотерь вагона плавно увеличивается температура воды в котле водяного отопления. В этом случае импульсом, сигнализирующим необходимость повышения температуры воды в котле, является изменение температуры наружного воздуха. Наиболее совершенным, но и наиболее сложным видом пропорционального регулирования является изодромное регулирование, основанное на применении чувствительной и гибкой обратной связи, благодаря которой регулируемый параметр изменяется в очень узких пределах или даже держится на практически постоянном уровне. Первоначально изодромное регулирование применялось для обеспечения постоянной скорости вращения деталей машин, откуда и получило свое название (по-гречески изо - постоянный, равный; дромос - бег, скорость). В настоящее время оно применяется в самых различных процессах, например, для автоматического вождения морских кораблей по заданному курсу.

Вследствие сложности аппаратуры, трудных условий ее работы при вибрации и тряске, а главное из-за отсутствия практической необходимости в предельно точном регулировании температуры воздуха, в установках кондиционирования воздуха вагонов изодромное регулирование не применяется.

При выборе способа регулирования необходимо учитывать начальные и эксплуатационные затраты, технологичность и надежность конструкции. Для оценки энергетической эффективности системы регулирования используют отношение холодопроизводительности компрессора при заданной степени регулирования к номинальной: =qop/qон = f(T 0). Показатели сравнительной эффективности основных способов регулирования производительности поршневых компрессоров приведены на рис. 4. Для способов пуск-остановка (линия 1) и отжатие впускных клапанов (линия 2 ) характерны малые энергетические потери и практическая независимость от режима работы. При дросселировании на всасывании (линия 3 ) наблюдается резкое падение эффективности с ростом температуры кипения хладагента, поэтому этот способ применяют в компрессорах, которые работают в узком диапазоне давлений кипения. Балансирование (линия 4 ) - наименее эффективный вариант регулирования, так как он связан с потерями энергии сжатого пара при его перепуске, повышением температуры всасывания хладагента, а следовательно, и температуры нагнетания; энергетические потери при этом способе соответствуют степени уменьшения холодопроизводительности машины.

В холодильных машинах с винтовыми компрессорами используют следующие способы регулирования холодопроизводительности: дросселирование на всасывании, балансирование, изменение частоты вращения вала, золотниковой системой.

Дросселирование обеспечивают автоматическим перекрытием дроссельного клапана, установленного на входе в компрессор. Эффективность этого способа ограничена снижением производительности до 70% от номинальной; при более глубоком дросселировании существенно снижается экономичность.

Рис. 4. Энергетическая эффективность основных способов регулирования производительности поршневых компрессоров

Балансирование осуществляют перепуском части хладагента через безопасный клапан со стороны нагнетания на всасывание.

Применение такого способа обычно ограничивают компрессорами сухого сжатия.

Наиболее экономичное регулирование путем отключения в процессе сжатия части объема рабочих полостей обеспечивает золотниковая система. Несмотря на усложнение конструкции компрессора, такая система открывает дополнительные схемные возможности усовершенствования паровых холодильных машин.

Автоматизация работы холодильной машины позволяет с высокой точностью поддерживать требуемый уровень параметров процесса охлаждения, отвечающий оптимальному технологическому режиму, а также частично или полностью исключить участие обслуживающего персонала в эксплуатации холодильного оборудования.

В паровых компрессорных машинах объектами автоматизации являются теплообменные аппараты, в частности степень заполнения испарителя жидким хладагентом и давление процесса конденсации. Объективным и технически наиболее удобным показателем, отражающим степень заполнения испарителя, служит перегрев пара

на выходе из него. Действительно, когда часть теплопередающей поверхности испарителя обеспечивает перегрев паров хладагента, уменьшение его подачи приводит к снижению степени заполнения, а следовательно, к росту перегрева. При этом повышение температуры перегрева сверх расчетного уровня ухудшает энергетические показатели машины и надежность ее работы. Подача хладагента в испаритель в количестве, превышающем возможности процесса теплопередачи, связана с переполнением испарителя и снижением перегрева. Последнее приводит к снижению холодопроизводительности машины, а в ряде случаев к работе компрессора на влажном паре, что может привести к гидравлическому удару.

Системы автоматического регулирования степени заполнения испарителя по перегреву паров хладагента выполняют плавными и позиционными (обычно двухступенчатыми). В качестве автоматического регулирования в плавных системах широко используют терморегулирующие вентили (ТРВ), в которых величину перегрева паров хладагента получают в виде разности между температурой пара, выходящего из испарителя, и температурой кипения хладагента. Терморегулирующие вентили, обеспечивающие процесс дросселирования хладагента от давления конденсации до давления испарения, устанавливают на линии между конденсатором и испарителем.

Принципиальная схема автоматического регулирования уровня хладагента в испарителе с помощью ТРВ, используемая в хладоновых машинах РПС, приведена на рис. 5. Чувствительный элемент измерительной головки 1 терморегулирующего вентиля, выполненный в виде мембраны 2 или сильфона, находится под воздействием разности давлений перегретого пара, соответствующего температуре перегрева, и хладагента на выходе из испарителя 7 , отвечающего температуре кипения. Перегретый пар, который образуется в термосистеме, состоящей из термобаллона 6 и капилляра 3 , поступает в пространство над мембраной; пространство под мембраной связывают уравнительной трубкой 4 с всасывающей линией компрессора 5 . При этом уравнительную трубку присоединяют к всасывающей линии в месте установки термобаллона. В некоторых конструкциях в термобаллон вводят твердый поглотитель и всю термосистему заполняют газом.

Перемещение штока 12 в результате деформации чувствительного элемента при изменении температуры перегрева обеспечивает открытие или закрытие запорного клапана 11 , регулирующего поступление жидкого хладагента из конденсатора в испаритель по линии 10 . С помощью регулировочного винта 8 изменяют силу затяжки пружины 9 и, следовательно, необходимую величину температуры перегрева. В процессе автоматического регулирования ТРВ должен обеспечить оптимальный уровень заполнения испарителя и устойчивость системы во всем требуемом диапазоне изменения холодопроизводительности, что особенно важно для холодильных машин рефрижераторного подвижного состава. Практически устойчивая работа системы ТРВ начинается при перегреве (3 6) К. Для расширения диапазона регулирования и повышения его устойчивости в системе может быть использовано несколько ТРВ.

Рис. 5. Схема автоматического регулирования уровня хладагента в испарителе с помощью ТРВ

Процесс автоматического регулирования давления конденсации хладагента в машинах с конденсаторами воздушного охлаждения осуществляют изменением скорости или расхода охлаждающего воздуха.

Технически его обеспечивают системой жалюзи или поворотных заслонок, использованием вентиляторов с изменяемым углом установки направляющих лопаток, применением двухскоростных электродвигателей, а также периодическим выключением вентиляторов. Изменение скорости или расхода охлаждающего воздуха приводит к изменению коэффициента теплопередачи конденсатора, а следовательно, к

изменению температуры и давления процесса конденсации.

В ряде случаев повышения температуры конденсации добиваются частичным подтоплением поверхности конденсатора жидким

хладагентом.

Приборы автоматического регулирования, помимо контроля параметров испарителя и конденсатора, поддерживают заданную температуру воздуха в охлаждаемом помещении, обеспечивают своевременное удаление инея («снеговой шубы») с поверхности испарителя, регулируют уровень масла в маслоотделителях и т.д. Работу системы регулирования сочетают с автоматической защитой, которая включает комплекс мер по безопасной эксплуатации холодильных машин и предупреждает аварийные режимы путем отключения машины.

Система автоматической защиты включает соответствующие датчики (реле защиты и устройства для преобразования импульсов от этих реле в сигнал остановки). В ряде случаев систему защиты дополняют блокировкой, которая исключает повторный пуск машины без устранения причины, вызвавшей срабатывание защиты.

В компрессорных холодильных машинах датчики системы защиты следят за уровнем максимального давления и температуры хладагента на нагнетании компрессора, минимального давления на всасывании, за давлением и температурой масла в системе смазки, за работой электродвигателя, исключающей его перегрузку или короткое замыкание. В систему, автоматической защиты может быть введена световая или звуковая сигнализация, оповещающая о достижении предельного значения контролируемой величины или приближения к опасному режиму работы машины.

3. Классификация и основные элементы

приборов автоматики

По назначению приборы автоматики можно разделить на четыре основные группы: регулирования, защиты, контроля, сигнализации.

Приборы автоматического регулирования обеспечивают включение или выключение холодильной установки и отдельных ее аппаратов, а также управляют процессами работы. В холодильных установках подвижного состава приборы регулирования осуществляют следующие функции: правильно заполняют испаритель хладагентом (терморегулирующие вентили и др.); поддерживают температуру в охлаждаемых помещениях в заданных интервалах (термостаты, дуостаты); регулируют давление в конденсаторе в заданном интервале (прессостаты); обеспечивают своевременное оттаивание инея с испарителя (прессостаты, программные реле, термостаты); открывают или прекращают подачу жидкого или парообразного хладагента (электромагнитные вентили, обратные клапаны); ограничивают поступление хладагента в компрессор из испарителя (регуляторы давления всасывания).

Приборы автоматической защиты выключают всю холодильную установку или отдельные аппараты при наступлении опасных режимов работы: при достижении предельно допустимого давления нагнетания (прессостаты); при вакууме на стороне всасывания (прессостаты); при падении давления масла в системе смазки компрессора (релеразности давлений); при низкой температуре масла в картере компрессора (термостаты) ; при высокой температуре паров хладагента, сжатых в компрессоре (реле температуры); при перегрузке электродвигателя или коротком замыкании (тепловые реле, автоматические выключатели, плавкие предохранители).

Приборы автоматического контроля осуществляют измерения, а в некоторых случаях и записи определенных параметров работы холодильной установки, например температуры в охлаждаемом помещении (термограф), расхода электроэнергии (электросчетчик), времени работы оборудования (счетчики моточасов) и др. Приборы автоматической сигнализации включают световые или звуковые сигналы при достижении заданного значения контролируемой величины или при приближении к опасному режиму работы машины.

Приборы автоматики состоят из следующих основных частей: чувствительного элемента (датчика), передающего механизма, регулирующего (рабочего) органа, устройства для настройки (задатчика). Чувствительный элемент воспринимает контролируемую величину (температуру, давление, уровень жидкости и т.п.) и преобразует ее в удобный вид энергии для дистанционной передачи. Передающий механизм соединяет чувствительный элемент с регулирующим (рабочим) органом.

Регулирующий орган действует по сигналу чувствительного элемента. В приборах двухпозиционного действия (реле) рабочий орган может занимать только два положения. Например, электрические контакты реле давления (прессостата) или реле температуры (термостата) могут быть замкнуты или разомкнуты, клапан электромагнитного вентиля - закрыт или открыт. В приборах плавного (пропорционального) действия каждому изменению регулируемой величины соответствует перемещение регулирующего органа (например, плавное перемещение клапана регулирующего вентиля при изменении тепловой нагрузки на испаритель). Устройство для настройки прибора устанавливает заданное значение регулируемой или контролируемой величины. Отклонение регулируемой величины, не вызывающее перемещение регулирующего органа, называется зоной нечувствительности, или дифференциалом прибора. Чувствительные элементы приборов давления выполняются в виде сильфонов и мембран. Сильфон представляет собой тонкостенную гофрированную трубку. Изготавливают сильфоны из латуни, бронзы, нержавеющей стали. При изменении давления в сильфоне длина его может значительно изменяться. Мембраны изготавливают в виде круглых эластичных пластин, закрепленных по периметру. Мембраны могут быть упругие (металлические) и мягкие (резиновые, пластмассовые, из прорезиненных тканей).

204 Температурные чувствительные элементы выполняют в виде биметаллических пластин и термочувствительных систем с различными наполнителями. В элементах, основанных на расширении твердых тел при нагревании, температура преобразуется в механическое перемещение (дилатометрические элементы). Перемещение происходит за счет неодинаковых коэффициентов линейного расширения у различных металлов. На рис. 3.6 а, б показаны элементы с двумя металлическими деталями 1 и 2 из разного материала, на рис. 3.6 в, г - чувствительный элемент из биметалла, т.е. из двух слоев металлов, сваренных между собой.

В элементах с тепловым расширением жидкостей используется зависимость изменения объема жидкости от температуры. Датчики, заполненные ртутью (рис. 3.7, а, б), используются для преобразования температуры в электрический сигнал без промежуточной механической системы. Датчик на рис. 3.7, а имеет релейную характеристику, на рис. 3.7, б - плавную. Применявшиеся ранее на рефрижераторных поездах ртутноконтактные датчики температуры оказались недостаточно надежными, так как из-за вибраций и толчков на ходу появлялись разрывы ртутного столба и нарушалась электрическая цепь. Кроме того, ртутно-контактные датчики рассчитаны на малую электрическую мощность сигнала.

Рис. 3.6. Дилатометрические чувствительные элементы

Рис. 3.7. Жидкостные

термочувствительные

Холод применяют в технологиях многих процессов переработки сельскохозяйственной продукции. Благодаря холодильникам значительно сокращаются потери при хранении продукции. Охлажденные продукты можно транспортировать на большие расстояния.

Молоко, предназначенное для переработки или реализации, как правило, предварительно охлаждают. Перед отправкой на предприятие молочной промышленности молоко допускается хранить не более 20 ч при температуре не выше 10 "С.

В сельском хозяйстве мясо охлаждают в основном на фермах и птицефабриках. При этом используют следующие способы охлаждения: в воздухе, холодной воде, в воде с тающим льдом и орошением холодной водой. Подмораживание мяса птицы производят либо холодным воздухом, либо погружением в холодный рассол. Воздушное подмораживание осуществляют при температуре воздуха в холодильных камерах от -23 до -25 °С и скорости движения воздуха 3...4 м/с. Для подмораживания погружением в рассол применяют растворы хлористого кальция или пропиленгликоля с температурой от -10 °С и ниже.

Мясо, предназначенное для длительного хранения, замораживают теми же способами, что и подмораживание. Замораживание

воздухом осуществляют при температуре охлаждаемого воздуха от -30 до -40 °С, при замораживании в рассоле температура раствора равна -25...-28 °С.

Яйца хранят в холодильниках при температуре -1...-2 °С и относительной влажности 85...88 %. После охлаждения до 2...3 °С их помещают в камеру хранения.

Фрукты и овощи охлаждают в стационарных хранилищах. Плодоовощную продукцию хранят в холодильных камерах с охлаждающими батареями, в которых циркулирует холодный агент или рассол.

В системах с воздушным охлаждением сначала охлаждается воздух, который затем вентиляторами нагнетается в камеры хранения. В смешанных системах продукты охлаждаются холодным воздухом и от батареи.

В сельском хозяйстве холод получают как безмашинным способом (ледники, льдосоленое охлаждение), так и при помощи специальных холодильных машин. При машинном охлаждении теплота от охлаждаемой среды отводится во внешнее окружающее пространство при помощи низкокипящих холодильных агентов (фреон или аммиак).

В сельском хозяйстве широко применяют паровые компрессоры и абсорбционные холодильные машины.

Простейший способ получения температуры рабочего тела ниже температуры окружающей среды заключается в том, что это рабочее тело (холодильный агент) сжимают в компрессоре, затем охлаждают до температуры окружающей среды и после этого подвергают адиабатическому расширению. При этом рабочее тело совершает работу за счет своей внутренней энергии и температура его уменьшается по сравнению с температурой окружающей среды. Таким образом, рабочее тело становится источником получения холода.

В качестве холодильных агентов в принципе можно применять любой пар или газ. В первых холодильных машинах с механическим приводом в качестве холодильного агента применяли воздух, но уже с конца XIX в. он был заменен аммиаком и углекислотой, поскольку воздушная холодильная машина менее экономична и более громоздка, чем паровая, из-за большого расхода воздуха, обусловленного его малой теплоемкостью.

В современных холодильных установках рабочим телом являются пары жидкостей, которые при давлениях, близких к атмосферному, кипят при низких температурах. Примерами таких холодильных агентов могут служить аммиак NH3, сернистый ангидрид SO2, диоксид углерода С0 2 и фреоны - фторохлоропроизводные углеводороды типа C m H x F y Cl2. Температура кипения аммиака при атмосферном давлении составляет 33,5 °С, «Фреона- 12» -30°С, «Фреона-22» -42 °С.

В качестве холодильных агентов широко применяют фреоны - галоидные производные насыщенных углеводородов (C m H n), полученные путем замены атомов водорода атомами хлора и фтора. В технике из-за большого разнообразия фреонов и относительно сложного их наименования установлена условная числовая система обозначения, согласно которой каждое такое соединение в зависимости от химической формулы имеет свое число. Первые цифры в этом числе условно обозначают углеводород, производным которого является данный фреон: метан - 1, этан - 11, пропан - 21. Если в соединении присутствуют незамещенные атомы водорода, то их число прибавляют к этим цифрам. Далее к полученной сумме или к первоначальному числу (если все атомы водорода в соединении замещены) дописывают в виде следующего знака цифру, выражающую число атомов фтора. Так получают обозначения: R11 вместо монофтортрихлорметана CFCI2, R12 вместо дифтордихлорметана CF 2 C1 2 и т. д.

В холодильных установках в качестве холодильного агента обычно используют R12, а в перспективе будут широко применять R22 и R142. Преимущества фреонов - относительная безвредность, химическая инертность, негорючесть и взрывобезопас- ность; недостатки - низкая вязкость, способствующая утечке, и возможность растворяться в масле.

На рисунке 8.15 показана принципиальная схема парокомпрессорной холодильной установки и ее идеальный цикл в 75-диаграмме. В компрессоре 1 сжимается влажный пар холодильного агента, в результате чего (участок а-Ь) получается сухой насыщенный или перегретый пар. Обычно степень перегрева не превышает

130... 140 “С, чтобы не усложнять эксплуатацию компрессора из-за повышенных механических напряжений и не применять масла

Рис. 8.15.

/ - компрессор; 2 - охлаждаемое помещение; 3- дроссельный вентиль; 4 - конденсатор специальных сортов. Из компрессора перегретый пар с параметрами pi и 02 поступает в охладитель (конденсатор 2). В конденсаторе при постоянном давлении перегретый пар отдает охлаждающей воде теплоту перегрева (процесс Ь-с) и его температура становится равной температуре насыщения 0 н2 . Отдавая в дальнейшем теплоту парообразования (процесс c-d), насыщенный пар превращается в кипящую жидкость (точка d). Эта жидкость поступает к дроссельному вентилю 3, пройдя через который она превращается в насыщенный пар небольшой степени сухости (х 5 = 0,1...0,2).

Известно, что энтальпия рабочего тела до и после дросселирования одинакова, а давление и температура понижаются. На 7s- диаграмме изображена штриховая линия постоянной энтальпии d-e, точка е которой характеризует состояние пара после дросселирования.

Далее влажный пар поступает в охлаждаемую емкость, называемую рефрижератором 4. Здесь при неизменных давлении и температуре пар расширяется (процесс е-а), отнимая определенное количество теплоты. Степень сухости пара при этом увеличивается (х| = 0,9...0,95). Пар с параметрами состояния, характеризуемыми точкой 1, засасывается в компрессор, и работа установки повторяется.

На практике пар после дроссельного вентиля поступает не в рефрижератор, а в испаритель, где отнимает теплоту у рассола, который, в свою очередь, отнимает теплоту от рефрижератора. Это объясняется тем, что в большинстве случаев холодильная установка обслуживает ряд потребителей холода, и тогда незамерзающий рассол служит промежуточным хладоносителем, непрерывно циркулируя между испарителем, где он охлаждается, и специальными воздухоохладителями в рефрижераторах. В качестве рассолов применяют водные растворы хлорида натрия и хлорида кальция, имеющие достаточно низкие температуры замерзания. Растворы пригодны для использования лишь при температурах, превышающих те, при которых они замерзают как однородная смесь, образуя соленый лед (так называемая криогидратная точка). Криогидратной точке для раствора NaCl с массовой концентрацией 22,4 % соответствует температура -21,2 "С, а для раствора СаС1 2 с концентрацией 29,9 - температура -55 °С.

Показателем энергетической эффективности холодильных установок служит холодильный коэффициент е, представляющий собой отношение удельной холодопроизводительности к затраченной энергии.

Действительный цикл парокомпрессорной холодильной установки отличается от теоретического тем, что из-за наличия внутренних потерь на трение сжатие в компрессоре происходит не по адиабате, а по политропе. В результате уменьшается затрата энергии в компрессоре и снижается холодильный коэффициент.

Для получения низких температур (-40...70 °С), требуемых в некоторых технологических процессах, одноступенчатые парокомпрессорные установки оказываются или неэкономичными, или совершенно непригодными из-за снижения КПД компрессора, обусловленного высокими температурами рабочего тела в конце процесса сжатия. В таких случаях применяют или специальные холодильные циклы, или в большинстве случаев двухступенчатое или многоступенчатое сжатие. Например, двухступенчатым сжатием аммиачных паров получают температуры до -50 °С, а трехступенчатым - до -70 °С.

Основное преимущество абсорбционных холодильных установок по сравнению с компрессорными - использование для выработки холода не электрической, а тепловой энергии низкого и среднего потенциалов. Последнюю можно получить от водяного пара, отбираемого, например, из турбины на теплоэлектроцентралях.

Абсорбцией называется явление поглощения пара жидким веществом (абсорбентом). При этом температура пара может быть ниже температуры абсорбента, поглощающего пар. Для процесса абсорбции необходимо, чтобы концентрация абсорбируемого пара была равна или больше равновесной концентрации этого пара над абсорбентом. Естественно, что в абсорбционных холодильных установках жидкие абсорбенты должны с достаточной скоростью поглощать холодильный агент, и при одинаковых давлениях температура их кипения должна быть значительно выше температуры кипения холодильного агента.

Наиболее распространены водно-аммиачные абсорбционные установки, в которых аммиак служит холодильным агентом, а вода - абсорбентом. Аммиак хорошо растворим в воде. Например, при 0 °С в одном объеме воды растворяется до 1148 объемов парообразного аммиака, и при этом выделяется теплота около 1220 кДж/кг.

Холод в абсорбционной установке вырабатывается по схеме, изображенной на рисунке 8.16. На этой схеме нанесены примерные значения параметров рабочего тела в установке без учета потерь давления в трубопроводах и потерь температурного напора в конденсаторе.

В генераторе 1 происходит выпаривание насыщенного аммиачного раствора при подогреве его водяным паром. В результате этого отгоняется легкокипящий компонент - аммиачный пар с незначительной примесью паров воды. Если поддерживать температуру раствора около 20 “С, то давление насыщения паров аммиака составит примерно 0,88 МПа. Чтобы содержание NH 3 в растворе не уменьшилось, с помощью перекачивающего насоса 10 из абсорбера в генератор непрерывно подается крепкий концентриро-


Рис. 8.16.

/-генератор; 2- конденсатор; 3 - дроссельный вентиль; 4- испаритель; 5-насос; б-перепускной вентиль; 7- охлаждаемая емкость; абсорбер; 9-змеевик; 10- насос

ванный аммиачный раствор. Насыщенный аммиачный пар (х= 1), получаемый в генераторе, направляется в конденсатор 2, где аммиак превращается в жидкость (х = 0). После дросселя 3 аммиак поступает в испаритель 4, при этом давление его снижается до 0,3 МПа (/ н = -10 °С) и степень сухости становится равной примерно 0,2.„0,3. В испарителе аммиачный раствор выпаривается за счет теплоты, подводимой рассолом из охлаждаемой емкости 7. При этом температура рассола понижается от -5 до -8 °С. С помощью насоса 5 он обратно перегоняется в емкость 7, где вновь нагревается до -5 °С, отбирая теплоту от помещения и поддерживая в нем постоянную температуру, примерно -2 °С. Выпаренный в испарителе аммиак со степенью сухости х= 1 поступает в абсорбер 8, где поглощается слабым раствором, подаваемым через перепускной вентиль 6 из генератора. Поскольку абсорбция - экзотермическая реакция, то для обеспечения непрерывности процесса теплообмена абсорбцит отводят охлаждающей водой. Полученный в абсорбере крепкий аммиачный раствор насос 10 перекачивает в генератор.

Таким образом, в рассмотренной установке имеются два аппарата (генератор и испаритель), где теплота подводится к рабочему телу извне, и два аппарата (конденсатор и абсорбер), в которых теплота отводится от рабочего тела. Сравнивая принципиальные схемы парокомпрессорной и абсорбционной установок, можно отметить, что генератор в абсорбционной установке заменяет нагнетательную, а абсорбер - всасывающую части поршневого компрессора. Сжатие холодильного агента происходит без затраты механической энергии, если не считать небольших расходов на перекачивание крепкого раствора из абсорбера в генератор.

В практических расчетах в качестве энергетического показателя абсорбционной установки также принимают холодильный коэффициент е, представляющий собой отношение количества теплоты q 2 воспринимаемого рабочим телом в испарителе к количеству теплоты q u затрачиваемому в генераторе. Подсчитанный таким образом холодильный коэффициент всегда меньше холодильного коэффициента парокомпрессорной установки. Однако сравнительная оценка энергетической эффективности рассмотренных способов получения холода в результате непосредственного сопоставления способов только холодильных коэффициентов абсорбционной и парокомпрессорной установок неправильна, так как она определяется не только количеством, но и видом затраченной энергии. Два метода получения холода следует сравнивать по значению приведенного холодильного коэффициента, представляющему собой отношение холодопроизводительности q 2 к расходу теплоты топлива q it т. е. ? пр = Яг Я- Оказывается, что при температурах испарения от -15 до -20 °С (используемых основной массой потребителей) е пр абсорбционных установок выше, чем парокомпрессорных, вследствие чего в ряде случаев абсорбционные установки выгоднее не только при снабжении их паром, отбираемым из турбин, но и при снабжении их паром непосредственно из паровых котлов.

Системы автоматизации . Автоматизация работы холодильных машин в зависимости от выполняемых функций подразделяется на системы:

регулирования , поддерживающие заданное значение регулируемой величины (температуры, давления, количества хладагента и др.);

защиты, т.е для выключения установки при чрезмерном отклонении параметров режима её работы;

сигнализации , т.е. для включения визуального или (и) звукового сигнала при нарушении режима работы холодильной установки;

контроля , когда необходимо контролировать какие-либо режимные параметры работы холодильной машины.

В зависимости от привод в действие системы автоматизации бывают электрические , пневматические и комбинированные , а по принципу действия - позиционные и непрерывные .

Система автоматического регулирования холодильной установки позволяет обеспечить заданный температурный режим для перевозимого груза без участия обслуживающего персонала.

Системой автоматизации называют совокупность объекта автоматизации и автоматических устройств, позволяющих управлять работой этого объекта без участия персонала. Объектом автоматизации могут быть холодильная установка в целом либо отдельные её агрегаты, узлы, аппараты и т.д. Системы автоматизации могут быть замкнутыми и разомкнутыми.

Рис. 4.26 - Замкнутая система автоматизации

Замкнутая система состоит из объекта (Об ) и автоматического устройства (А ), которые соединены между собой прямой (ПС ) и обратной (ОС ) связями, которые показаны на рис. 4.26. По прямой связи к объекту подводится входное воздействие х , по обратной - выходная величина у , которые воздействуют на А . Система ОС работает по отклонению фактической величины у от заданного значения у з.

Если назначение системы - поддерживать величину у около заданного значения при изменениях внешнего воздействия f вн, то такую систему называют системой автоматического регулирования (САР ), а автоматическое устройство - автоматическим регулятором (АР ). Функциональная система САР показана на рис. 4.27.



Рис. 4.27 - Функциональная схема системы автоматического
регулирования (САР)

На функциональной схеме САР в цепь прямой связи входят: усилитель , исполнительный механизм (ИМ ) и регулирующий орган (РО ). В цепь обратной связи включён датчик , с помощью которого регулятор АР воспринимает регулируемую величину У и преобразует её в величину У п, удобную для дальнейшей передачи. На один из входов элемента сравнения (ЭС ) подаётся преобразованная величина У п, а на другой его вход - сигнал У з от задатчика .

Этот сигнал в преобразованном виде представляет собой задание регулятору. Величина согласования d = У з – У п является побуждающим сигналом. Мощность его увеличивается в усилителе подводом внешней энергии Э вн и в виде сигнала D воздействует на ИМ , который преобразует сигнал в удобный для использования вид энергии D х и переставляет в РО . В результате изменяется подводимый к Об поток энергии, что соответствует изменению регулирующего воздействия х .

Если нормальная работа объекта протекает при значениях у , отличающихся от у з, а при достижении равенства между ними в объект посылается сигнал х на отключение, то такую систему называют системой автоматической защиты (САЗ ), а автоматическое устройство - устройством защиты (АЗ ). Такая функциональная система показана на рис. 4.28.

Схема САЗ отличается от схемы САР тем, что в автоматическом устройстве АЗ отсутствуют ИМ и РО . Сигнал от усилителя воздействует непосредственно на Об , выключая его целиком или отдельные его части.

Рис. 4.28 - Функциональная схема системы автоматической защиты (САЗ)

Рис. 4.29 - Разомкнутая система автоматизации

Разомкнутой системой называют систему, в которой одна из связей (обратная или прямая) отсутствует (рис. 4.29). Параметр Z связан с выходной величиной у и воспринимается автоматическим устройством А . Отклонение от заданного значения Z 3 вызывает изменения воздействия х .

Автоматизация работы испарителей . Одним из важных процессов управления холодильной машиной является автоматическое питание испарителей по перегреву пара и по уровню жидкости в испарителе. В качестве автоматического регулятора перегрева в основном применяют терморегулирующие вентили (ТРВ).

ТРВ установлен перед испарителем. В верхней части вентиля (рис. 4.30) припаяна капиллярная трубка 7 , соединяющая внутреннюю рабочую часть 6 вентиля с термобаллоном 8 . Верхняя силовая часть вентиля герметична. Термобаллон плотно прикреплён к всасывающему трубопроводу, соединяющему испаритель с компрессором. Термобаллон, капилляр и пространство над мембраной при изготовлении вентиля заполняют строго дозированным количеством хладона. От донышка мембраны 5 вниз идёт шток 4 с запорным клапаном 3 , который прижимается к седлу пружиной 2 с регулировочным винтом 1 .

Рис. 4.30 - Схема терморегулирующего вентиля с внутренним уравниванием

Принцип действия ТРВ основан на сравнении температуры кипения хладагента в испарителе с температурой выходящих из него паров. Сравнение производится преобразованием воспринимаемой термобаллоном температуры паров t в в соответствующее давление р с в силовой части прибора (см. рис. 4.30). Давление действует на мембрану сверху и стремится через шток открыть клапан 3 на большее проходное сечение. Такому перемещению клапана препятствует давление кипения хладона в испарителе р о, действующее на мембрану снизу, а также усилие пружины f и давление р к на клапан.

При правильном заполнении испарителя температура паров на выходе из него не должна превышать 4,7°С. Для этого весь хладон, поданный через ТРВ в испаритель, должен выкипеть на участке от клапана 3 до точки А. Здесь температура хладона не изменяется и составляет t о. В последних витках испарителя от точки А до термобаллона хладон, продолжая воспринимать тепло от охлаждаемого помещения, перегревается до температуры t в > t о. Температуру t в воспринимает термобаллон, и в силовой системе устанавливается давление р с. При равновесии р с = р о + f + р к происходит допустимо полное заполнение испарит5еля хладоном, и холодильная машина работает в оптимальном режиме.

С понижением температуры в охлаждаемом помещении теплопритоки к испарителю уменьшаются. Кипение хладагента в точке А не заканчивается, а продолжается до точки Б. Путь парообразного хладагента до термобаллона сокращается, и перегрев паров уменьшается. Термобаллон воспринимает более низкую температуру, и в силовой системе устанавливается меньшее значение р с. Под действием пружины клапан перемещается вверх, уменьшая проходное сечение вентиля и тем самым подачу хладагента в испаритель.

При меньшем количестве хладагента кипение его в испарителе заканчивается раньше, и перегрев принимает значение, близкое к первоначальному. Перемещение клапана вверх происходит до установления нового равновесия между снизившимся давлением и уменьшившимся сжатием пружины, т.е. р с = р о + f + р к. Перегрев паров в испарителе регулируют поджатием пружины 2 с помощью регулировочного винта 1 .

Термобаллон 8 , капилляр 7 и мембрана 5 (см. рис. 4.30) являются основными элементами манометрических приборов-термостатов , которые применяются для автоматического регулирования работы дизель-генераторных и холодильных агрегатов на рефрижераторном подвижном составе.

Автоматическое поддержание температурного режима в грузовых помещениях. Для установления необходимого температурного режима в грузовом помещении рефрижераторного транспортного или складского модуля и автоматического поддержания его в заданных пределах служит прессостат-терморегулятор , устройство которого показано на рис. 4. 31.

Рис. 4.31 - Устройство прессостата

Прессостат устанавливают на всасывающем трубопроводе между испарителем и компрессором. Он состоит из поршня 1 , жёстко связанного с ним штока 2 , пружины 4 , рукоятки 5 , двух электрических контактов: подвижного 6 и неподвижного 7 .

Поршень находится в колене 3 , соединённом со всасывающим трубопроводом 8 . При давлении р о, большем чем сила закручивания пружины 4 , поршень находится в крайнем верхнем положении. При этом контакты 6 и 7 замкнуты. Компрессор включён и отсасывает пары хладона из испарителя. В процессе отсасывания паров давление р о понижается, становится меньше, чем сила закручивания пружины. Поршень с подвижным контактом перемещается в крайнее нижнее положение, и компрессор выключается.

Вследствие продолжающегося кипения хладона в испарителе его удельный объём увеличивается, давление р о снова начнёт расти. Контакты 6 и 7 замкнутся, компрессор начнёт отсасывать пары хладона из испарителя. Цикл повторяется.

Ход поршня ограничивается специальными упорами, которые могут регулироваться. Сила воздействия пружины на поршень регулируется рукояткой 5 . При установке рукоятки в положение «холод» сила закручивания пружины уменьшается. Следовательно, в зоне испарителя установится меньшее давление р о, а значит и низкая температура кипения хладона.

Таким образом прессостат-терморегулятор поддерживает на требуемом уровне давление кипения в испарителе путём управления количеством хладагента, направляющегося в испаритель.

Автоматизация холодильных установок предполагает оснаще­ние их автоматическими устройствами (приборами и средствами автоматизации), с помощью которых обеспечиваются безопасная работа и проведение производственного процесса или отдельных операций без непосредственного участия обслуживающего персо­нала или с частичным его участием.

Объекты автоматизации совместно с автоматическими устрой­ствами образуют системы автоматизации с различными функция­ми: контроля, сигнализации, защиты, регулирования и управле­ния. Автоматизация повышает экономическую эффективность ра­боты холодильных установок, так как уменьшается численность обслуживающего персонала, снижается расход электроэнергии, воды и других материалов, увеличивается срок службы установок вследствие поддержания автоматическими устройствами оптималь­ного режима их работы. Автоматизация требует капитальных зат­рат, поэтому проводить ее надо, основываясь на результатах тех­нико-экономического анализа.

Холодильную установку можно автоматизировать частично, полностью или комплексно.

Частичная автоматизация предусматривает обязательную для всех холодильных установок автоматическую защиту, а также кон­троль, сигнализацию и нередко управление. Обслуживающий пер­сонал регулирует основные параметры (температура и влажность воздуха в камерах, температура кипения и конденсации холодиль­ного агента и т.д.) при отклонении их от заданных значений и нарушении работы оборудования, о чем информируют системы контроля и сигнализации, а некоторые вспомогательные периоди­ческие процессы (оттаивание инея с поверхности охлаждающих приборов, удаление масла из системы) выполняются вручную.

Полная автоматизация охватывает все процессы, связанные с поддержанием требуемых параметров в охлаждаемых помещениях и элементах холодильной установки. Обслуживающий персонал может присутствовать лишь периодически. Полностью автомати­зируют небольшие по мощности холодильные установки, безот­казные и долговечные.

Для крупных промышленных холодильных установок более ха­рактерна комплексная автоматизация (автоматические контроль, сигнализация, защита).

Автоматический контроль обеспечивает дистанционное измерение, а иногда и запись параметров, определяющих режим работы оборудования.

Автоматическая сигнализация - извещение с помощью звукового или светового сигнала о достижении заданных величин, тех или иных параметров, включении или выключении элементов, холодильной установки. Автоматическую сигнализацию подразделяют на технологическую, предупредительную и аварийную.

Технологическая сигнализация - световая, информирует о ра­боте компрессоров, насосов, вентиляторов, наличии напряжения в электрических цепях.

Предупредительная сигнализация на защитных, циркуляционных ресиверах сообщает, что величина контролируемого парамет­ра приближается к предельно допустимому значению.

Аварийная сигнализация световым и звуковым сигналами извещает о том, что сработала автоматическая защита.

Автоматическая защита, обеспечивающая безопасность обслуживающего персонала, обязательна для любого производства. Она предотвращает возникновение аварийных ситуаций, выключая отдельные элементы или установку в целом, когда контролируе­мый параметр достигает предельно допустимого значения.

Надежную защиту в случае возникновения опасной ситуации должна обеспечивать система автоматической защиты (САЗ). В простейшем варианте САЗ состоит из датчика-реле (реле защиты), контролирующего величину параметра и вырабатывающего сигнал при достижении ее предельного значения, и устройства, преобразующего сигнал реле защиты в сигнал остановки, который направляется в систему управления.

На холодильных установках большой мощности САЗ выполняют так, чтобы после срабатывания реле защиты автоматический пуск отказавшего элемента без устранения вызвавшей остановку причины был невозможен. На небольших холодильных установ­ках, например на предприятиях торговли, где авария не может привести к тяжелым последствиям, нет постоянного обслуживания, объект включается автоматически, если величина контролирусмоге параметра возвращается в допустимую область.

Наибольшее число видов защиты имеют компрессоры, посколь­ку по опыту эксплуатации 75 % всех аварий на холодильных установках происходят именно с ними.

Число параметров, контролируемых САЗ, зависит от типа, мощности компрессора и вида холодильного агента.

Виды защиты компрессоров:

от недопустимого повышения давления нагнетания - пре­дотвращает нарушение плотности соединений или разрушение элементов;

недопустимого понижения давления всасывания - предотвра­щает повышение нагрузки на сальник компрессора, вспенивание масла в картере, замерзание хладоносителя в испарителе (реле высокого и низкого давления, оснащают практически все комп­рессоры);

уменьшения разности давлений (до и после насоса) в масля­ной системе - предотвращает аварийный износ трущихся дета­лей и заклинивание механизма движения компрессора, реле раз­ности давлений контролирует разность давлений на стороне на­гнетания и всасывания масляного насоса;

недопустимого повышения температуры нагнетания - предот­вращает нарушение режима смазки цилиндра и аварийный износ трущихся деталей;

повышения температуры обмоток встроенного электродвига­теля герметичных и бессальниковых хладоновых компрессоров - предотвращает перегрев обмоток, заклинивание ротора и работу на двух фазах;

гидравлического удара (попадание жидкого холодильного агента в полость сжатия) - предотвращает серьезную аварию поршневого компрессора: нарушение плотности, а иногда и разрушение.

Виды защиты других элементов холодильной установки:

от замерзания хладоносителя - предотвращает разрыв труб ис­парителя;

переполнения линейного ресивера - предохраняет от сниже­ния эффективности конденсатора в результате заполнения части его объема жидким холодильным агентом;

опорожнения линейного ресивера - предотвращает прорыв газа высокого давления в испарительную систему и опасность гидрав­лического удара.

Предотвращение аварийной ситуации обеспечивает защита от недопустимой концентрации аммиака в помещении, что может вызвать пожар и взрыв. Концентрация аммиака (максимум 1,5 г/м 3 , или 0,021 % по объему) в воздухе контролируется газоанализатором.

2. Регулирование температуры в охлаждаемом объекте

3. Регулирование давления хладагента

4. Реле контроля смазки

5. Регулирование холодопроизводительности

6. Регулирование давления конденсации

7. Регуляторы давления испарения.

8. Регуляторы производительности.

9. Пусковые регуляторы.

10. Соленоидные вентили и клапаны обратимости цикла

11. Автоматическое оттаивание испарителей.

12. Микропроцессорные приборы управления для холодильных установок.

13. Схемы автоматизации торгового холодильного оборудования.

1. Системы автоматического регулирования

Для обеспечения нормальной работы холодильной установки необходимо поддерживать в определенных пределах или регули­ровать в соответствии с заданной программой значения целого ряда физических величин или параметров, основными из кото­рых являются:

1. Температура в охлаждаемом объеме.

2. Оптимальное заполнение испарителя хладагентом.

3. Давления кипения и кон­денсации хладагента.

4. Производительность компрессора.

Автоматическое регулирование холодильной машины позво­ляет обеспечить точность поддержания заданных параметров. В ре­зультате поддержания оптимального режима эксплуатации холо­дильного оборудования сокращаются потери пищевых продуктов в холодильной камере, сохраняется их качество, снижаются экс­плуатационные затраты, увеличивается срок службы холодильных установок.

Автоматизация процессов регулирования, защиты и сигнализации. Автоматизация холодильной установки включает автоматизацию процессов сигнализации, защиты и регулирования.

Регулирование - это процесс поддержания значения па­раметра (температуры, давления и т.п.), называемого регулируе­мым, постоянным либо в заданных пределах. Процесс поддержа­ния постоянной температуры в охлаждаемом помещении называется регулированием температуры. Соответственно сама тем­пература будет регулируемым параметром. Система автоматичес­кого регулирования обеспечивает поддержание регулируемого параметра (температуры, давления или уровня) в заданных пре­делах.

Она включает в себя объект регулирования, автомати­ческий регулятор, регулирующий орган, а также связи между ними (рис. 12.1).

Рис. 12.1. Структурная схема системы автоматического регулирования

Объект регулирования - это помещение, емкость, система или механизм, в которых регулируется протекающий процесс, т.е. под­держивается постоянное значение регулируемого параметра. Так, при регулировании температуры в охлаждаемом помещении объек­том регулирования будет само помещение.

Автоматический регулятор - контролирует заданный процесс в объекте регулирования и управляет работой регулирующего орга­на в соответствии с задачей регулирования.

Регулирующий орган (клапан, механизм) служит для измене­ния расхода вещества (хладагента, воздуха, рассола), подводимо­го к объекту регулирования.

Система автоматического регулирования работает следующим образом. Автоматический регулятор постоянно замеряет значение регулируемого параметра и сравнивает его с заданным. При от­клонении регулируемого параметра от заданного значения авто­матический регулятор через регулирующий орган изменяет рас­ход подводимого вещества таким образом, чтобы регулируемый параметр вернулся в исходное состояние. Например, увеличение тепловой нагрузки в охлаждаемом помещении вызовет в нем рост температуры. Автоматический регулятор, определив значение и знак отклонения регулируемой температуры от заданной, даст управляющий сигнал на регулирующий орган. Он увеличивает отвод теплоты из помещения, и его температура вернется к заданному значению.

Системы автоматической защиты - устраняют возможность ава­рий при внезапном изменении режима работы агрегата. При дос­тижении предельного значения контролируемого параметра авто­матический регулятор через регулирующий орган либо выключа­ет контролируемый агрегат, либо ограничивает рост параметра во избежание разрушения механизма.

Системы автоматической сигнализации в зави­симости от назначения делятся на две группы:

1. Системы аварийно-предупредительной сигнализации.

2. Системы сигнализации рабо­тающих механизмов.

Система аварийно-предупредительной сигнализации - при дости­жении контролируемым параметром предельного значения выда­ет световой или звуковой сигнал. Обслуживающий персонал из­меняет опасный режим работы механизма, воздействуя на регу­лирующий орган.

Система сигнализации работающих механизмов - дает световую индикацию на пульте управления о включении в работу наиболее важных механизмов.

Приборы автоматического регулирования и контроля процес­сов, протекающих при работе холодильной установки, предназ­начены для обеспечения безопасной эксплуатации установки и повышения эффективности ее работы. Экономичность эксплуата­ции повышается главным образом за счет уменьшения затрат тру­да на обслуживание холодильной установки и повышения произ­водительности труда персонала. Использование приборов автоматики и защиты позволяет решить главную задачу - поддержание заданной температуры охлаждаемого объекта. К за­дачам автоматизации процессов установки относят также поддер­жание определенного уровня жидкого хладагента в аппаратах и постоянной температуры конденсации; обеспечение защиты от гидравлического удара, перегрева отдельных частей установки, взрыва аппаратов, замерзания хладоносителя, срыва работы насоса.

Задачей обслуживающего персонала является грамотное тех­ническое обслуживание приборов, входящих в состав схемы, и периодическая проверка их исправности: защитных реле уровня - один раз в 10 дней, других приборов автоматики - один раз в месяц. Среди приборов автоматики наибольшее применение на­ходят реле температуры, давления и разности давлений, регуля­торы уровня и реле уровня с исполнительными механизмами, терморегулирующие вентили, реле протока и расхода. Настройка этих приборов, как правило, производится при пусконаладочных работах. Современные торговые хладоновые холодильные маши­ны оснащены рядом приборов, полностью или частично автома­тизирующих рабочие процессы. Применяются различные схемы автоматизации. При полной автоматизации отпадает необходимость в систематическом контроле за работой холодильной машины, и обслуживающий персонал осуществляет лишь периодическое наблюдение, проверяя исправность оборудования и устраняя воз­никшие технические неполадки.

Широко используемые в торговле хладоновые холодильные машины с непосредственной системой охлаждения, как прави­ло, полностью автоматизированы.

Применение средств автоматизации делает работу холодиль­ных машин более производительной, экономически выгодной и безопасной.