Сложение и вычитание дробей примеры для решения. Вычитание дробей с разными знаменателями. Сложение и вычитание обыкновенных дробей

Сложение и вычитание дробей примеры для решения. Вычитание дробей с разными знаменателями. Сложение и вычитание обыкновенных дробей

В данном уроке будет рассмотрено сложение и вычитание алгебраических дробей с одинаковыми знаменателями. Мы уже знаем, как складывать и вычитать обыкновенные дроби с одинаковыми знаменателями. Оказывается, что алгебраические дроби подчиняются тем же самым правилам. Умение работать с дробями с одинаковыми знаменателями является одним из краеугольных камней в изучении правил работы с алгебраическими дробями. В частности, понимание данной темы позволит легко освоить более сложную тему - сложение и вычитание дробей с разными знаменателями. В рамках урока мы изучим правила сложения и вычитания алгебраических дробей с одинаковыми знаменателями, а также разберём целый ряд типовых примеров

Правило сложения и вычитания алгебраических дробей с одинаковыми знаменателями

Сфор-му-ли-ру-ем пра-ви-ло сло-же-ния (вы-чи-та-ния) ал-геб-ра-и-че-ских дро-бей с оди-на-ко-вы-ми зна-ме-на-те-ля-ми (оно сов-па-да-ет с ана-ло-гич-ным пра-ви-лом для обык-но-вен-ных дро-бей): То есть для сло-же-ния или вы-чи-та-ния ал-геб-ра-и-че-ских дро-бей с оди-на-ко-вы-ми зна-ме-на-те-ля-ми необ-хо-ди-мо со-ста-вить со-от-вет-ству-ю-щую ал-геб-ра-и-че-скую сумму чис-ли-те-лей, а зна-ме-на-тель оста-вить без из-ме-не-ний.

Это пра-ви-ло мы раз-бе-рём и на при-ме-ре обык-но-вен-ных дро-бей, и на при-ме-ре ал-геб-ра-и-че-ских дро-бей.

Примеры применения правила для обыкновенных дробей

При-мер 1. Сло-жить дроби: .

Ре-ше-ние

Сло-жим чис-ли-те-ли дро-бей, а зна-ме-на-тель оста-вим таким же. После этого раз-ло-жим чис-ли-тель и зна-ме-на-тель на про-стые мно-жи-те-ли и со-кра-тим. По-лу-чим: .

При-ме-ча-ние: стан-дарт-ная ошиб-ка, ко-то-рую до-пус-ка-ют при ре-ше-нии по-доб-но-го рода при-ме-ров, за-клю-ча-ет-ся в сле-ду-ю-щем спо-со-бе ре-ше-ния: . Это гру-бей-шая ошиб-ка, по-сколь-ку зна-ме-на-тель оста-ёт-ся таким же, каким был в ис-ход-ных дро-бях.

При-мер 2. Сло-жить дроби: .

Ре-ше-ние

Дан-ная за-да-ча ничем не от-ли-ча-ет-ся от преды-ду-щей: .

Примеры применения правила для алгебраических дробей

От обык-но-вен-ных дро-бей пе-рей-дём к ал-геб-ра-и-че-ским.

При-мер 3. Сло-жить дроби: .

Ре-ше-ние:как уже го-во-ри-лось выше, сло-же-ние ал-геб-ра-и-че-ских дро-бей ничем не от-ли-ча-ет-ся от сло-же-ния обык-но-вен-ных дро-бей. По-это-му метод ре-ше-ния такой же: .

При-мер 4. Вы-честь дроби: .

Ре-ше-ние

Вы-чи-та-ние ал-геб-ра-и-че-ских дро-бей от-ли-ча-ет-ся от сло-же-ния толь-ко тем, что в чис-ли-тель за-пи-сы-ва-ет-ся раз-ность чис-ли-те-лей ис-ход-ных дро-бей. По-это-му .

При-мер 5. Вы-честь дроби: .

Ре-ше-ние: .

При-мер 6. Упро-стить: .

Ре-ше-ние: .

Примеры применения правила с последующим сокращением

В дроби, ко-то-рая по-лу-ча-ет-ся в ре-зуль-та-те сло-же-ния или вы-чи-та-ния, воз-мож-ны со-кра-ще-ния. Кроме того, не стоит за-бы-вать об ОДЗ ал-геб-ра-и-че-ских дро-бей.

При-мер 7. Упро-стить: .

Ре-ше-ние: .

При этом . Во-об-ще, если ОДЗ ис-ход-ных дро-бей сов-па-да-ет с ОДЗ ито-го-вой, то его можно не ука-зы-вать (ведь дробь, по-лу-чен-ная в от-ве-те, также не будет су-ще-ство-вать при со-от-вет-ству-ю-щих зна-че-ни-ях пе-ре-мен-ных). А вот если ОДЗ ис-ход-ных дро-бей и от-ве-та не сов-па-да-ет, то ОДЗ ука-зы-вать необ-хо-ди-мо.

При-мер 8. Упро-стить: .

Ре-ше-ние: . При этом y (ОДЗ ис-ход-ных дро-бей не сов-па-да-ет с ОДЗ ре-зуль-та-та).

Сложение и вычитание обыкновенных дробей с разными знаменателями

Чтобы скла-ды-вать и вы-чи-тать ал-геб-ра-и-че-ские дроби с раз-ны-ми зна-ме-на-те-ля-ми, про-ве-дём ана-ло-гию с обык-но-вен-ны-ми дро-бя-ми и пе-ре-не-сём её на ал-геб-ра-и-че-ские дроби.

Рас-смот-рим про-стей-ший при-мер для обык-но-вен-ных дро-бей.

При-мер 1. Сло-жить дроби: .

Ре-ше-ние:

Вспом-ним пра-ви-ло сло-же-ния дро-бей. Для на-ча-ла дроби необ-хо-ди-мо при-ве-сти к об-ще-му зна-ме-на-те-лю. В роли об-ще-го зна-ме-на-те-ля для обык-но-вен-ных дро-бей вы-сту-па-ет наи-мень-шее общее крат-ное (НОК) ис-ход-ных зна-ме-на-те-лей.

Опре-де-ле-ние

Наи-мень-шее на-ту-раль-ное число, ко-то-рое де-лит-ся од-но-вре-мен-но на числа и .

Для на-хож-де-ния НОК необ-хо-ди-мо раз-ло-жить зна-ме-на-те-ли на про-стые мно-жи-те-ли, а затем вы-брать все про-стые мно-жи-те-ли, ко-то-рые вхо-дят в раз-ло-же-ние обоих зна-ме-на-те-лей.

; . Тогда в НОК чисел долж-ны вхо-дить две двой-ки и две трой-ки: .

После на-хож-де-ния об-ще-го зна-ме-на-те-ля, необ-хо-ди-мо для каж-дой из дро-бей найти до-пол-ни-тель-ный мно-жи-тель (фак-ти-че-ски, по-де-лить общий зна-ме-на-тель на зна-ме-на-тель со-от-вет-ству-ю-щей дроби).

Затем каж-дая дробь умно-жа-ет-ся на по-лу-чен-ный до-пол-ни-тель-ный мно-жи-тель. По-лу-ча-ют-ся дроби с оди-на-ко-вы-ми зна-ме-на-те-ля-ми, скла-ды-вать и вы-чи-тать ко-то-рые мы на-учи-лись на про-шлых уро-ках.

По-лу-ча-ем: .

Ответ: .

Рас-смот-рим те-перь сло-же-ние ал-геб-ра-и-че-ских дро-бей с раз-ны-ми зна-ме-на-те-ля-ми. Сна-ча-ла рас-смот-рим дроби, зна-ме-на-те-ли ко-то-рых яв-ля-ют-ся чис-ла-ми.

Сложение и вычитание алгебраических дробей с разными знаменателями

При-мер 2. Сло-жить дроби: .

Ре-ше-ние:

Ал-го-ритм ре-ше-ния аб-со-лют-но ана-ло-ги-чен преды-ду-ще-му при-ме-ру. Легко по-до-брать общий зна-ме-на-тель дан-ных дро-бей: и до-пол-ни-тель-ные мно-жи-те-ли для каж-дой из них.

.

Ответ: .

Итак, сфор-му-ли-ру-ем ал-го-ритм сло-же-ния и вы-чи-та-ния ал-геб-ра-и-че-ских дро-бей с раз-ны-ми зна-ме-на-те-ля-ми :

1. Найти наи-мень-ший общий зна-ме-на-тель дро-бей.

2. Найти до-пол-ни-тель-ные мно-жи-те-ли для каж-дой из дро-бей (по-де-лив общий зна-ме-на-тель на зна-ме-на-тель дан-ной дроби).

3. До-мно-жить чис-ли-те-ли на со-от-вет-ству-ю-щие до-пол-ни-тель-ные мно-жи-те-ли.

4. Сло-жить или вы-честь дроби, поль-зу-ясь пра-ви-ла-ми сло-же-ния и вы-чи-та-ния дро-бей с оди-на-ко-вы-ми зна-ме-на-те-ля-ми.

Рас-смот-рим те-перь при-мер с дро-бя-ми, в зна-ме-на-те-ле ко-то-рых при-сут-ству-ют бук-вен-ные вы-ра-же-ния.

Обыкновенные дробные числа впервые встречают школьников в 5 классе и сопровождают их на протяжении всей жизни, так как в быту зачастую требуется рассматривать или использовать какой-то объект не целиком, а отдельными кусками. Начало изучения этой темы - доли. Доли - это равные части , на которые разделен тот или иной предмет. Ведь не всегда получается выразить, допустим, длину или цену товара целым числом, следует принять во внимание части или доли какой-либо меры. Образованное от глагола «дробить» - разделять на части, и имея арабские корни, в VIII веке возникло само слово «дробь» в русском языке.

Дробные выражения продолжительное время считали самым сложным разделом математики. В XVII веке, при появлении первоучебников по математике, их называли «ломаные числа», что очень сложно отображалось в понимании людей.

Современному виду простых дробных остатков, части которых разделены именно горизонтальной чертой, впервые поспособствовал Фибоначчи - Леонардо Пизанский. Его труды датированы в 1202 году. Но цель этой статьи - просто и понятно объяснить читателю, как происходит умножение смешанных дробей с разными знаменателями.

Умножение дробей с разными знаменателями

Изначально стоит определить разновидности дробей :

  • правильные;
  • неправильные;
  • смешанные.

Далее нужно вспомнить, как происходит умножение дробных чисел с одинаковыми знаменателями. Само правило этого процесса несложно сформулировать самостоятельно: результатом умножения простых дробей с одинаковыми знаменателями является дробное выражение, числитель которой есть произведение числителей, а знаменатель - произведение знаменателей данных дробей. То есть, по сути, новый знаменатель есть квадрат одного из существующих изначально.

При умножении простых дробей с разными знаменателями для двух и более множителей правило не меняется:

a/ b * c/ d = a*c / b*d.

Единственное отличие в том, что образованное число под дробной чертой будет произведением разных чисел и, естественно, квадратом одного числового выражения его назвать невозможно.

Стоит рассмотреть умножение дробей с разными знаменателями на примерах:

  • 8/ 9 * 6/ 7 = 8*6 / 9*7 = 48/ 63 = 16/2 1 ;
  • 4/ 6 * 3/ 7 = 2/ 3 * 3/7 <> 2*3 / 3*7 = 6/ 21 .

В примерах применяются способы сокращения дробных выражений. Можно сокращать только числа числителя с числами знаменателя, рядом стоящие множители над дробной чертой или под ней сокращать нельзя.

Наряду с простыми дробными числами, существует понятие смешанных дробей. Смешанное число состоит из целого числа и дробной части, то есть является суммой этих чисел:

1 4/ 11 =1 + 4/ 11.

Как происходит перемножение

Предлагается несколько примеров для рассмотрения.

2 1/ 2 * 7 3/ 5 = 2 + 1/ 2 * 7 + 3/ 5 = 2*7 + 2* 3/ 5 + 1/ 2 * 7 + 1/ 2 * 3/ 5 = 14 + 6/5 + 7/ 2 + 3/ 10 = 14 + 12/ 10 + 35/ 10 + 3/ 10 = 14 + 50/ 10 = 14 + 5=19.

В примере используется умножение числа на обыкновенную дробную часть , записать правило для этого действия можно формулой:

a * b/ c = a*b / c.

По сути, такое произведение есть сумма одинаковых дробных остатков, а количество слагаемых указывает это натуральное число. Частный случай:

4 * 12/ 15 = 12/ 15 + 12/ 15 + 12/ 15 + 12/ 15 = 48/ 15 = 3 1/ 5.

Существует еще один вариант решения умножения числа на дробный остаток. Стоит просто разделить знаменатель на это число:

d * e/ f = e/ f: d.

Этим приемом полезно пользоваться, когда знаменатель делится на натуральное число без остатка или, как говорится, нацело.

Перевести смешанные числа в неправильные дроби и получить произведение ранее описанным способом:

1 2/ 3 * 4 1/ 5 = 5/ 3 * 21/ 5 = 5*21 / 3*5 =7.

В этом примере участвует способ представления смешанной дроби в неправильную, его также можно представить в виде общей формулы:

a b c = a * b + c / c, где знаменатель новой дроби образуется при умножении целой части со знаменателем и при сложении его с числителем исходного дробного остатка, а знаменатель остается прежним.

Этот процесс работает и в обратную сторону. Для выделения целой части и дробного остатка нужно поделить числитель неправильной дроби на ее знаменатель «уголком».

Умножение неправильных дробей производят общепринятым способом. Когда запись идет под единой дробной чертой, по мере необходимости нужно сделать сокращение дробей, чтобы уменьшить таким методом числа и проще посчитать результат.

В интернете существует множество помощников, чтобы решать даже сложные математические задачи в различных вариациях программ. Достаточное количество таких сервисов предлагают свою помощь при счете умножения дробей с разными числами в знаменателях - так называемые онлайн-калькуляторы для расчета дробей. Они способны не только умножить, но и произвести все остальные простейшие арифметические операции с обыкновенными дробями и смешанными числами. Работать с ним несложно, на странице сайта заполняются соответствующие поля, выбирается знак математического действия и нажимается «вычислить». Программа считает автоматически.

Тема арифметических действий с дробными числами актуальна на всем протяжении обучения школьников среднего и старшего звена. В старших классах рассматривают уже не простейшие виды, а целые дробные выражения , но знания правил по преобразованию и расчетам, полученные ранее, применяются в первозданном виде. Хорошо усвоенные базовые знания дают полную уверенность в удачном решении наиболее сложных задач.

В заключение имеет смысл привести слова Льва Николаевича Толстого, который писал: «Человек есть дробь. Увеличить своего числителя - свои достоинства, - не во власти человека, но всякий может уменьшить своего знаменателя - своё мнение о самом себе, и этим уменьшением приблизиться к своему совершенству».

Следующее действие, которое можно выполнять с обыкновенными дробями, - вычитание. В рамках этого материала мы рассмотрим, как правильно вычислить разность дробей с одинаковыми и разными знаменателями, как вычесть дробь из натурального числа и наоборот. Все примеры будут проиллюстрированы задачами. Заранее уточним, что мы будем разбирать лишь случаи, когда разность дробей дает в итоге положительное число.

Yandex.RTB R-A-339285-1

Как найти разность дробей с одинаковыми знаменателями

Начнем сразу с наглядного примера: допустим, у нас есть яблоко, которое разделили на восемь частей. Оставим пять частей на тарелке и заберем две из них. Это действие можно записать так:

В итоге у нас осталось 3 восьмых доли, поскольку 5 − 2 = 3 . Получается, что 5 8 - 2 8 = 3 8 .

Благодаря этому простому примеру мы увидели, как именно работает правило вычитания для дробей, знаменатели которых одинаковы. Сформулируем его.

Определение 1

Чтобы найти разность дробей с одинаковыми знаменателями, нужно из числителя одной вычесть числитель другой, а знаменатель оставить прежним. Это правило можно записать в виде a b - c b = a - c b .

Такую формулу мы будем использовать и в дальнейшем.

Возьмем конкретные примеры.

Пример 1

Вычтите из дроби 24 15 обыкновенную дробь 17 15 .

Решение

Мы видим, что эти дроби имеют одинаковые знаменатели. Поэтому все, что нам нужно сделать, – это вычесть 17 из 24 . Мы получаем 7 и дописываем к ней знаменатель, получаем 7 15 .

Наши подсчеты можно записать так: 24 15 - 17 15 = 24 - 17 15 = 7 15

Если необходимо, можно сократить сложную дробь или выделить целую часть из неправильной, чтобы считать было удобнее.

Пример 2

Найдите разность 37 12 - 15 12 .

Решение

Воспользуемся описанной выше формулой и подсчитаем: 37 12 - 15 12 = 37 - 15 12 = 22 12

Легко заметить, что числитель и знаменатель можно разделить на 2 (об этом мы уже говорили ранее, когда разбирали признаки делимости). Сократив ответ, получим 11 6 . Это неправильная дробь, из которой мы выделим целую часть: 11 6 = 1 5 6 .

Как найти разность дробей с разными знаменателями

Такое математическое действие можно свести к тому, что мы уже описывали выше. Для этого просто приведем нужные дроби к одному знаменателю. Сформулируем определение:

Определение 2

Чтобы найти разность дробей, у которых разные знаменатели, необходимо привести их к одному знаменателю и найти разность числителей.

Рассмотрим на примере, как это делается.

Пример 3

Вычтите из 2 9 дробь 1 15 .

Решение

Знаменатели разные, и нужно привести их к наименьшему общему значению. В данном случае НОК равно 45 . Для первой дроби необходим дополнительный множитель 5 , а для второй – 3 .

Подсчитаем: 2 9 = 2 · 5 9 · 5 = 10 45 1 15 = 1 · 3 15 · 3 = 3 45

У нас получились две дроби с одинаковым знаменателем, и теперь мы легко можем найти их разность по описанному ранее алгоритму: 10 45 - 3 45 = 10 - 3 45 = 7 45

Краткая запись решения выглядит так: 2 9 - 1 15 = 10 45 - 3 45 = 10 - 3 45 = 7 45 .

Не стоит пренебрегать сокращением результата или выделением из него целой части, если это необходимо. В данном примере нам этого не нужно делать.

Пример 4

Найдите разность 19 9 - 7 36 .

Решение

Приведем указанные в условии дроби к наименьшему общему знаменателю 36 и получим соответственно 76 9 и 7 36 .

Считаем ответ: 76 36 - 7 36 = 76 - 7 36 = 69 36

Результат можно сократить на 3 и получить 23 12 . Числитель больше знаменателя, а значит, мы можем выделить целую часть. Итоговый ответ - 1 11 12 .

Краткая запись всего решения - 19 9 - 7 36 = 1 11 12 .

Как вычесть из обыкновенной дроби натуральное число

Такое действие также легко свести к простому вычитанию обыкновенных дробей. Это можно сделать, представив натуральное число в виде дроби. Покажем на примере.

Пример 5

Найдите разность 83 21 – 3 .

Решение

3 – то же самое, что и 3 1 . Тогда можно подсчитать так: 83 21 - 3 = 20 21 .

Если в условии необходимо вычесть целое число из неправильной дроби, удобнее сначала выделить из нее целое, записав ее в виде смешанного числа. Тогда предыдущий пример можно решить иначе.

Из дроби 83 21 при выделении целой части получится 83 21 = 3 20 21 .

Теперь просто вычтем 3 из него: 3 20 21 - 3 = 20 21 .

Как вычесть обыкновенную дробь из натурального числа

Это действие делается аналогично предыдущему: мы переписываем натуральное число в виде дроби, приводим обе к единому знаменателю и находим разность. Проиллюстрируем это примером.

Пример 6

Найдите разность: 7 - 5 3 .

Решение

Сделаем 7 дробью 7 1 . Делаем вычитание и преобразуем конечный результат, выделяя из него целую часть: 7 - 5 3 = 5 1 3 .

Есть и другой способ произвести расчеты. Он обладает некоторыми преимуществами, которыми можно воспользоваться в тех случаях, если числители и знаменатели дробей в задаче – большие числа.

Определение 3

Если та дробь, которую нужно вычесть, является правильной, то натуральное число, из которого мы вычитаем, нужно представить в виде суммы двух чисел, одно из которых равно 1 . После этого нужно вычесть нужную дробь из единицы и получить ответ.

Пример 7

Вычислите разность 1 065 - 13 62 .

Решение

Дробь, которую нужно вычесть – правильная, ведь ее числитель меньше знаменателя. Поэтому нам нужно отнять единицу от 1065 и вычесть из нее нужную дробь: 1065 - 13 62 = (1064 + 1) - 13 62

Теперь нам нужно найти ответ. Используя свойства вычитания, полученное выражение можно записать как 1064 + 1 - 13 62 . Подсчитаем разность в скобках. Для этого единицу представим как дробь 1 1 .

Получается, что 1 - 13 62 = 1 1 - 13 62 = 62 62 - 13 62 = 49 62 .

Теперь вспомним про 1064 и сформулируем ответ: 1064 49 62 .

Используем старый способ, чтобы доказать, что он менее удобен. Вот такие вычисления вышли бы у нас:

1065 - 13 62 = 1065 1 - 13 62 = 1065 · 62 1 · 62 - 13 62 = 66030 62 - 13 62 = = 66030 - 13 62 = 66017 62 = 1064 4 6

Ответ тот же, но подсчеты, очевидно, более громоздкие.

Мы рассмотрели случай, когда нужно вычесть правильную дробь. Если она неправильная, мы заменяем ее смешанным числом и производим вычитание по знакомым правилам.

Пример 8

Вычислите разность 644 - 73 5 .

Решение

Вторая дробь – неправильная, и от нее надо отделить целую часть.

Теперь вычисляем аналогично предыдущему примеру: 630 - 3 5 = (629 + 1) - 3 5 = 629 + 1 - 3 5 = 629 + 2 5 = 629 2 5

Свойства вычитания при работе с дробями

Те свойства, которыми обладает вычитание натуральных чисел, распространяются и на случаи вычитания обыкновенных дробей. Рассмотрим, как использовать их при решении примеров.

Пример 9

Найдите разность 24 4 - 3 2 - 5 6 .

Решение

Схожие примеры мы уже решали, когда разбирали вычитание суммы из числа, поэтому действуем по уже известному алгоритму. Сначала подсчитаем разность 25 4 - 3 2 , а потом отнимем от нее последнюю дробь:

25 4 - 3 2 = 24 4 - 6 4 = 19 4 19 4 - 5 6 = 57 12 - 10 12 = 47 12

Преобразуем ответ, выделив из него целую часть. Итог - 3 11 12 .

Краткая запись всего решения:

25 4 - 3 2 - 5 6 = 25 4 - 3 2 - 5 6 = 25 4 - 6 4 - 5 6 = = 19 4 - 5 6 = 57 12 - 10 12 = 47 12 = 3 11 12

Если в выражении присутствуют и дроби, и натуральные числа, то рекомендуется при подсчетах сгруппировать их по типам.

Пример 10

Н айдите разность 98 + 17 20 - 5 + 3 5 .

Решение

Зная основные свойства вычитания и сложения, мы можем сгруппировать числа следующим образом: 98 + 17 20 - 5 + 3 5 = 98 + 17 20 - 5 - 3 5 = 98 - 5 + 17 20 - 3 5

Завершим расчеты: 98 - 5 + 17 20 - 3 5 = 93 + 17 20 - 12 20 = 93 + 5 20 = 93 + 1 4 = 93 1 4

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Разные действия с дробями можно выполнять, например, сложение дробей. Сложение дробей можно разделить на несколько видов. В каждом виде сложения дробей свои правила и алгоритм действий. Рассмотрим подробно каждый вид сложения.

Сложение дробей с одинаковыми знаменателями.

На примере посмотрим, как складывать дроби с общим знаменателем.

Туристы пошли в поход из точки A в точку E. В первый день они прошли от точки A до B или \(\frac{1}{5}\) от всего пути. Во второй день они прошли от точки B до D или \(\frac{2}{5}\) от всего пути. Какое расстояние они прошли от начала пути до точки D?

Чтобы найти расстояние от точки A до точки D нужно сложить дроби \(\frac{1}{5} + \frac{2}{5}\).

Сложение дробей с одинаковыми знаменателями заключается в том, что нужно числители этих дробей сложить, а знаменатель останется прежний.

\(\frac{1}{5} + \frac{2}{5} = \frac{1 + 2}{5} = \frac{3}{5}\)

В буквенном виде сумма дробей с одинаковыми знаменателями будет выглядеть так:

\(\bf \frac{a}{c} + \frac{b}{c} = \frac{a + b}{c}\)

Ответ: туристы прошли \(\frac{3}{5}\) всего пути.

Сложение дробей с разными знаменателями.

Рассмотрим пример:

Нужно сложить две дроби \(\frac{3}{4}\) и \(\frac{2}{7}\).

Чтобы сложить дроби с разными знаменателями нужно сначала найти , а потом воспользоваться правилом сложения дробей с одинаковыми знаменателями.

Для знаменателей 4 и 7 общим знаменателем будет число 28. Первую дробь \(\frac{3}{4}\) нужно умножить на 7. Вторую дробь \(\frac{2}{7}\) нужно умножить на 4.

\(\frac{3}{4} + \frac{2}{7} = \frac{3 \times \color{red} {7} + 2 \times \color{red} {4}}{4 \times \color{red} {7}} = \frac{21 + 8}{28} = \frac{29}{28} = 1\frac{1}{28}\)

В буквенном виде получаем такую формулу:

\(\bf \frac{a}{b} + \frac{c}{d} = \frac{a \times d + c \times b}{b \times d}\)

Сложение смешанных чисел или смешанных дробей.

Сложение происходит по закону сложения.

У смешанных дробей складываем целые части с целыми и дробные части с дробными.

Если дробные части смешанных чисел имеют одинаковые знаменатели, то числители складываем, а знаменатель остается тот же.

Сложим смешанные числа \(3\frac{6}{11}\) и \(1\frac{3}{11}\).

\(3\frac{6}{11} + 1\frac{3}{11} = (\color{red} {3} + \color{blue} {\frac{6}{11}}) + (\color{red} {1} + \color{blue} {\frac{3}{11}}) = (\color{red} {3} + \color{red} {1}) + (\color{blue} {\frac{6}{11}} + \color{blue} {\frac{3}{11}}) = \color{red}{4} + (\color{blue} {\frac{6 + 3}{11}}) = \color{red}{4} + \color{blue} {\frac{9}{11}} = \color{red}{4} \color{blue} {\frac{9}{11}}\)

Если дробные части смешанных чисел имею разные знаменатели, то находим общий знаменатель.

Выполним сложение смешанных чисел \(7\frac{1}{8}\) и \(2\frac{1}{6}\).

Знаменатель разный, поэтому нужно найти общий знаменатель, он равен 24. Умножим первую дробь \(7\frac{1}{8}\) на дополнительный множитель 3, а вторую дробь \(2\frac{1}{6}\) на 4.

\(7\frac{1}{8} + 2\frac{1}{6} = 7\frac{1 \times \color{red} {3}}{8 \times \color{red} {3}} = 2\frac{1 \times \color{red} {4}}{6 \times \color{red} {4}} =7\frac{3}{24} + 2\frac{4}{24} = 9\frac{7}{24}\)

Вопросы по теме:
Как складывать дроби?
Ответ: сначала надо определиться к какому типу относиться выражение: у дробей одинаковые знаменатели, разные знаменатели или смешанные дроби. В зависимости от типа выражения переходим к алгоритму решения.

Как решать дроби с разными знаменателями?
Ответ: необходимо найти общий знаменатель, а дальше по правилу сложения дробей с одинаковыми знаменателями.

Как решать смешанные дроби?
Ответ: складываем целые части с целыми и дробные части с дробными.

Пример №1:
Может ли сумма двух в результате получить правильную дробь? Неправильную дробь? Приведите примеры.

\(\frac{2}{7} + \frac{3}{7} = \frac{2 + 3}{7} = \frac{5}{7}\)

Дробь \(\frac{5}{7}\) это правильная дробь, она является результатом суммы двух правильных дробей \(\frac{2}{7}\) и \(\frac{3}{7}\).

\(\frac{2}{5} + \frac{8}{9} = \frac{2 \times 9 + 8 \times 5}{5 \times 9} =\frac{18 + 40}{45} = \frac{58}{45}\)

Дробь \(\frac{58}{45}\) является неправильной дроби, она получилась в результате суммы правильных дробей \(\frac{2}{5}\) и \(\frac{8}{9}\).

Ответ: на оба вопроса ответ да.

Пример №2:
Сложите дроби: а) \(\frac{3}{11} + \frac{5}{11}\) б) \(\frac{1}{3} + \frac{2}{9}\).

а) \(\frac{3}{11} + \frac{5}{11} = \frac{3 + 5}{11} = \frac{8}{11}\)

б) \(\frac{1}{3} + \frac{2}{9} = \frac{1 \times \color{red} {3}}{3 \times \color{red} {3}} + \frac{2}{9} = \frac{3}{9} + \frac{2}{9} = \frac{5}{9}\)

Пример №3:
Запишите смешанную дробь в виде суммы натурального числа и правильной дроби: а) \(1\frac{9}{47}\) б) \(5\frac{1}{3}\)

а) \(1\frac{9}{47} = 1 + \frac{9}{47}\)

б) \(5\frac{1}{3} = 5 + \frac{1}{3}\)

Пример №4:
Вычислите сумму: а) \(8\frac{5}{7} + 2\frac{1}{7}\) б) \(2\frac{9}{13} + \frac{2}{13}\) в) \(7\frac{2}{5} + 3\frac{4}{15}\)

а) \(8\frac{5}{7} + 2\frac{1}{7} = (8 + 2) + (\frac{5}{7} + \frac{1}{7}) = 10 + \frac{6}{7} = 10\frac{6}{7}\)

б) \(2\frac{9}{13} + \frac{2}{13} = 2 + (\frac{9}{13} + \frac{2}{13}) = 2\frac{11}{13} \)

в) \(7\frac{2}{5} + 3\frac{4}{15} = 7\frac{2 \times 3}{5 \times 3} + 3\frac{4}{15} = 7\frac{6}{15} + 3\frac{4}{15} = (7 + 3)+(\frac{6}{15} + \frac{4}{15}) = 10 + \frac{10}{15} = 10\frac{10}{15} = 10\frac{2}{3}\)

Задача №1:
За обедам съели \(\frac{8}{11}\) от торта, а вечером за ужином съели \(\frac{3}{11}\). Как вы думаете торт полностью съели или нет?

Решение:
Знаменатель дроби равен 11, он указывает на сколько частей разделили торт. В обед съели 8 кусочков торта из 11. За ужином съели 3 кусочка торта из 11. Сложим 8 + 3 = 11, съели кусочков торта из 11, то есть весь торт.

\(\frac{8}{11} + \frac{3}{11} = \frac{11}{11} = 1\)

Ответ: весь торт съели.

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.