Способы прокладки трубопроводов тепловых сетей. Конструктивные решения тепловых сетей при подземной и надземной прокладке Надземный ввод теплотрассы в здание бесканальная прокладка

Способы прокладки трубопроводов тепловых сетей. Конструктивные решения тепловых сетей при подземной и надземной прокладке Надземный ввод теплотрассы в здание бесканальная прокладка
Способы прокладки трубопроводов тепловых сетей. Конструктивные решения тепловых сетей при подземной и надземной прокладке Надземный ввод теплотрассы в здание бесканальная прокладка

В настоящее время находят применение следующие типы надземных прокладок:

На отдельно стоящих мачтах и опорах (рис. 4.1);

Рис. 4.1. Прокладка трубопроводов на отдельно стоящих мачтах

Рис.4.2-на эстакадах со сплошным пролетным строением в виде ферм или балок (рис. 4.2);

Рис. 4.2. Эстакада с пролетным строением для прокладки трубопроводов

Рис.4.3-на тягах, прикрепленных к верхушкам мачт (вантовая конструкция, рис. 4.3);

Рис. 4.3. Прокладка труб с подвеской на тягах (вантовая конструкция)

На кронштейнах.

Прокладки первого типа наиболее ра­циональны для трубопроводов диаметром 500 мм и более. Трубопроводы большего диаметра при этом могут быть использо­ваны в качестве несущих конструкций для укладки или подвески к ним нескольких тру­бопроводов малого диаметра, требующих более частой установки опор.

Прокладки по эстакаде со сплошным на­стилом для прохода целесообразно приме­нять только при большом количестве труб (не менее 5 - 6 шт.), а также при необходи­мости регулярного надзора за ними. По стоимости конструкции проходная эстакада наиболее дорогая и требует наибольшего расхода металла, так как фермы или ба­лочный настил обычно изготовляются из прокатной стали.

Прокладка третьего типа с подвесной (вантовой) конструкцией пролетного строе­ния является более экономичной, так как позволяет значительно увеличить расстояния между мачтами и тем самым уменьшить расход строительных материалов. Наиболее простые конструктивные формы подвесная прокладка получает при трубопроводах равных или близких диаметров.

При совместной укладке трубопроводов большого и малого диаметра применяется несколько видоизмененная вантовая кон­струкция с прогонами из швеллеров, подве­шенных на тягах. Прогоны позволяют уста­навливать опоры трубопроводов между мач­тами. Однако возможность прокладки тру­бопроводов на эстакадах и с подвеской на тягах в городских условиях ограничена и применима только в промышленных зонах. Наибольшее применение получила проклад­ка водяных трубопроводов на отдельно стоящих мачтах и опорах или на кронштей­нах. Мачты и опоры, как правило, выпол­няются из железобетона. Металлические мачты применяются в исключительных слу­чаях при малом объеме работ и реконструк­ции существующих тепловых сетей.

Мачты по своему назначению делятся на следующие типы:

§ для подвижных опор трубопроводов (так называемые промежуточные);

§ для неподвижных опор трубопроводов (анкерные), а также устанавливаемые в на­чале и в конце участка трассы;

§ устанавливаемые на поворотах трассы;

§ служащие для опирания компенсаторов трубопроводов.

В зависимости от количества, диаметра и назначения прокладываемых трубопрово­дов мачты выполняются трех различных конструктивных форм: одностоечными, двухстоечными и четырехстоечными простран­ственной конструкции.

При проектировании воздушных про­кладок следует стремиться к возможно большему увеличению расстояний между мачтами.

Однако для беспрепятственного стока воды при выключениях трубопроводов мак­симальный прогиб не должен превышать

f = 0,25∙i l ,

где f - прогиб трубопровода в середине пролета, мм; i - уклон оси трубопровода; l - расстояние между опорами, мм.

Сборные железобетонные конструкции мачт обычно собираются из следующих эле­ментов: стоек (колонн), ригелей и фундамен­тов. Размеры сборных деталей определяются количеством и диаметром укладываемых трубопроводов.

При прокладке от одного до трех трубо­проводов в зависимости от диаметра при­меняются одностоечные отдельно стоящие мачты с консолями, они пригодны и при вантовой подвеске труб на тягах; тогда предусматривается устройство верхушки для крепления тяг.

Мачты сплошного прямоугольного се­чения допустимы, если максимальные раз­меры поперечного сечения не превосходят 600 х 400 мм. При больших размерах для облегчения конструкции рекомендуется пре­дусматривать вырезы по нейтральной оси или применять в качестве стоек центрифуги­рованные железобетонные трубы заводского изготовления.

Для многотрубных прокладок мачты промежуточных опор чаще всего проекти­руются двухстоечной конструкции, одно­ярусные или двухъярусные.

Сборные двухстоечные мачты состоят из следующих элементов: двух стоек с одной или двумя консолями, одного или двух риге­лей и двух фундаментов стаканного типа.

Мачты, на которых трубопроводы за­крепляются неподвижно, испытывают на­грузку от горизонтально направленных уси­лий, передаваемых трубопроводами, которые проложены на высоте 5 - 6 м от поверхности грунта. Такие мачты для увеличения устой­чивости проектируются в виде четырехстоечной пространственной конструкции, которая состоит из четырех стоек и четырех или восьми ригелей (при двухъярусном располо­жении трубопроводов). Мачты устанавли­ваются на четырех отдельных фундаментах стаканного типа.

При надземной прокладке трубопрово­дов больших диаметров используется не­сущая способность труб, и поэтому не тре­буется устройства какого-либо пролетного строения между мачтами. Не следует приме­нять и подвеску трубопроводов большого диаметра на тягах, так как такая конструк­ция практически работать не будет.

Рис.4.4В качестве примера приведена про­кладка трубопроводов на железобетонных мачтах (рис. 4.4).

Два трубопровода (прямой и обратный) диаметром 1200 мм уложены на катковых опорах по железобетонным мачтам, устано­вленным через каждые 20 м. Высота мачт от поверхности земли 5,5 - 6м. Сборные желе­зобетонные мачты состоят из двух фунда­ментов, связанных между собой монолит­ным стыком, двух колонн прямоугольного сечения 400 х 600 мм и ригеля.

Рис. 4.4. Прокладка трубопроводов на железобетонных мачтах:

1 - колонна; 2 - ригель; 3 - связь; 4 - фундамент; 5 - соединительный стык; 6 - бетонная подготовка.

Колонны связаны между собой металлическими диаго­нальными связями из угловой стали. Соеди­нение связей с колоннами выполнено косын­ками, приваренными к закладным деталям, которые заделаны в колоннах. Ригель, слу­жащий опорой для трубопроводов, выполнен в виде прямоугольной балки сечением 600 х 370 мм и крепится к колоннам путем сварки закладных стальных листов.

Мачта рассчитана на вес пролета труб, горизонтальные осевые и боковые усилия, возникающие от трения трубопроводов на катковых опорах, а также на ветровую на­грузку.

Рис. 4.5. Неподвижная опора:

1 - колонна; 2 - ригель поперечный; 3 - ригель продольный; 4 - связь поперечная; 5 - связь про­дольная; 6 - фундамент

Неподвижная опора (рис. 4.5), рассчи­танная на горизонтальное усилие от двух труб 300 кН, выполнена из сборных железо­бетонных деталей: четырех колонн, двух продольных ригелей, одного поперечного опорного ригеля и четырех фундаментов, со­единенных попарно.

В продольном и поперечном направле­ниях колонны связаны металлическими диа­гональными связями, выполненными из уголковой стали. На опорах трубопроводы закрепляются хомутами, охватывающими трубы, и косынками в нижней части труб, ко­торые упираются в металлическую раму из швеллеров. Эта рама прикрепляется к железобетонным ригелям приваркой к закладным деталям.

Прокладка трубопроводов на низких опорах нашла широкое применение при строительстве тепловых сетей на неспланированной территории районов новой за­стройки городов. Переход пересеченной или заболоченной местности, а также мелких рек целесообразнее осуществлять таким спосо­бом с использованием несущей способности труб.

Однако при проектировании тепловых сетей с прокладкой трубопроводов на низких опорах необходимо учитывать срок намечен­ного освоения территории, занятой трассой, под городскую застройку. Если через 10 - 15 лет потребуется заключение трубопрово­дов в подземные каналы или реконструкция тепловой сети, то применение воздушной прокладки является нецелесообразным. Для обоснования применения способа прокладки трубопроводов на низких опорах должны быть выполнены технико-экономические рас­четы.

При надземной прокладке трубопрово­дов больших диаметров (800-1400 мм) це­лесообразной является их прокладка на от­дельно стоящих мачтах и опорах с примене­нием специальных сборных железобетонных конструкций заводского изготовления, отве­чающих конкретным гидрогеологическим ус­ловиям трассы тепломагистрали.

Опыт проектирования показывает эко­номичность применения свайных оснований под фундаменты как анкерных, так и проме­жуточных мачт и низких опор.

Надземные тепломагистрали большого диаметра (1200-1400 мм) значительной про­тяженности (5 - 10 км) построены по индиви­дуальным проектам с применением высоких и низких опор на свайном основании.

Имеется опыт строительства тепломагистрали с диаметрами труб D у = 1000 мм от ТЭЦ с применением свай-стоек на заболоченных участках трассы, где на глубине 4-6 м залегают скальные грунты.

Расчет опор на свайном основании на совместное действие вертикальных и гори­зонтальных нагрузок выполняется в соответ­ствии со СНиП II-17-77 «Свайные фун­даменты».

При проектировании низких и высоких опор для прокладки трубопроводов могут быть использованы конструкции унифициро­ванных сборных железобетонных отдельно стоящих опор, разработанных под техноло­гические трубопроводы [ 3 ].

Проект низких опор по типу «качаю­щихся» фундаментов, состоящих из железо­бетонного вертикального щита, устанавли­ваемого на плоскую фундаментную плиту, разработан АтомТЭП. Эти опоры могут применяться в различных грунтовых усло­виях (за исключением сильно обводненных и просадочных грунтов).

Одним из наиболее распространенных видов воздушной прокладки трубопроводов является прокладка последних на кронштей­нах, укрепляемых в стенах зданий. Примене­ние этого способа может быть рекомендова­но при прокладке тепловых сетей на терри­тории промышленных предприятий.

При проектировании трубопроводов, располагаемых по наружной или внутренней поверхности стен, следует выбирать такое размещение труб, чтобы они не закрывали оконных проемов, не мешали размещению других трубопроводов, оборудования и пр. Наиболее важным является обеспечение на­дежного закрепления кронштейнов в стенах существующих зданий. Проектирование про­кладки трубопроводов по стенам существую­щих зданий должно включать обследование стен в натуре и изучение проектов, по ко­торым они построены. При значительных нагрузках, передаваемых трубопроводами на кронштейны, необходимо производить рас­чет общей устойчивости конструкций здания.

Трубопроводы укладываются на крон­штейны с приваренными корпусами скользя­щих опор. Применение катковых подвижных опор при наружной прокладке трубопрово­дов не рекомендуется из-за трудности их пе­риодической смазки и очистки в период эксплуатации (без чего они будут работать как скользящие).

В случае недостаточной надежности стен здания должны быть осуществлены кон­структивные мероприятия по рассредоточе­нию усилий, передаваемых кронштейнами, путем уменьшения пролетов, устройства подкосов, вертикальных стоек и др. Крон­штейны, устанавливаемые в местах устройства неподвижных опор трубопроводов, дол­жны выполняться по расчету на действую­щие на них усилия. Обычно они требуют дополнительного крепления путем устрой­ства подкосов в горизонтальной и верти­кальной плоскостях. На рис. 4.6 приведена типовая конструкция кронштейнов для про­кладки одного или двух трубопроводов диаметром от 50 до 300 мм.

Рис. 4.6. Прокладка трубопроводов на кронштейнах.

Способ прокладки тепловых сетей при реконструкции выбирают в соответствии с указаниями СНиП 2.04.07-86 «Тепловые сети». В настоящее время в нашей стране около 84 % тепловых сетей прокладывают в каналах, около 6 % - бесканально, остальные 10 % - надземно. Выбор того или иного способа определяется местными условиями, как, например, характером грунта, наличием и уровнем грунтовых вод, требуемой надежностью, экономичностью строительства, а также эксплуатационными затратами на содержание. Способы прокладки разделяются на надземные и подземные.

Надземная прокладка тепловых сетей

Надземную прокладку теплосетей применяют редко, так как она нарушает архитектурный ансамбль местности, имеет при прочих равных условиях более высокие в сравнении с подземной прокладкой тепловые потери, не гарантирует от замерзания теплоносителя при неполадках и авариях, стесняет проезды. При реконструкции сетей ее рекомендуется применять при высоком уровне грунтовых вод, в условиях вечной мерзлоты, при неблагоприятном рельефе местности, на территориях промышленных предприятий, на площадках, свободных от застроек, вне пределов города или в местах, где она не влияет на архитектурное оформление и не мешает движению транспорта.

Преимущества надземной прокладки: доступность осмотра и удобство эксплуатации; возможность в кратчайшие сроки обнаружить и ликвидировать аварию в теплопроводах; отсутствие электрокоррозии от блуждающих токов и коррозии от агрессивных грунтовых вод; меньшая стоимость сооружения по сравнению со стоимостью подземных прокладок тепловых сетей. Надземную прокладку тепловых сетей осуществляют: на отдельно стоящих опорах (мачтах); на эстакадах с пролетным строением в виде прогонов, ферм или подвесных (вантовых) конструкций; по стенам зданий. Отдельно стоящие мачты или опоры могут быть выполнены из стали или железобетона. При небольших объемах строительства надземных тепловых сетей применяют стальные мачты из профильной стали, однако они дороги и трудоемки и поэтому вытесняются железобетонными. Мачты из железобетона особенно целесообразно применять при массовом строительстве на промышленных площадках, когда рентабельно организовать их изготовление в заводских условиях.

Для совместной прокладки теплосетей с другими трубопроводами различного назначения применяют эстакады, изготовляемые из металла или железобетона. В зависимости от количества одновременно прокладываемых трубопроводов пролетные строения эстакад могут быть одноярусными и многоярусными. Теплопроводы обычно прокладывают на нижнем ярусе эстакады, при этом трубопроводы с более высокой температурой теплоносителя размещают ближе к краю, обеспечивая тем самым лучшее расположение П-образных компенсаторов, имеющих различные размеры. При прокладке теплотрасс на территории промышленных предприятий применяют также способ надземной прокладки на кронштейнах, укрепляемых в стенах зданий. Пролет теплопроводов, т.е. расстояния между кронштейнами, выбирают с учетом несущей способности конструкций здания.

Подземная прокладка тепловых сетей

В городах и населенных пунктах для теплотрасс применяют в основном подземную прокладку, которая не портит архитектурного облика, не мешает движению транспорта и позволяет снизить теплопотери за счет использования теплозащитных свойств грунта. Промерзание грунта не опасно для теплопроводов, поэтому их можно прокладывать в зоне сезонного промерзания грунта. Чем меньше глубина заложения тепловой сети, тем меньше объем земляных работ и ниже стоимость строительства. Подземные сети чаще всего прокладывают на глубине от 0,5 до 2 м и ниже поверхности земли.

Недостатками подземных прокладок теплопроводов являются: опасность увлажнения и разрушения изоляции вследствие воздействия грунтовых или поверхностных вод, что приводит к резкому увеличению тепловых потерь, а также опасность внешней коррозии труб вследствие воздействия блуждающих электрических токов, влаги и агрессивных веществ, содержащихся в грунте. Подземные прокладки теплопроводов связаны с необходимостью вскрытия улиц, проездов и дворов.

Конструктивно подземные тепловые сети делятся на два принципиально различных вида: канальные и бесканальные.

Конструкция канала полностью разгружает теплопроводы от механического воздействия массы грунта и временных транспортных нагрузок и ограждает трубопроводы и тепловую изоляцию от коррозийного влияния почвы. Прокладка в каналах обеспечивает свободное перемещение трубопроводов при температурных деформациях как в продольном (осевом), так и в поперечном направлении, что позволяет использовать их самокомпенсирующую способность на угловых участках трассы.

Прокладка в проходных каналах (тоннелях) - наиболее совершенный способ, так как при этом обеспечивается постоянный доступ обслуживающего персонала к трубопроводам для осуществления контроля за их работой и производства ремонта, что наилучшим способом обеспечивает их надежность и долговечность. Однако стоимость прокладки в проходных каналах весьма высокая, а сами каналы имеют большие габариты (высота в свету - не менее 1,8 м и проход - 0,7 м). Проходные каналы устраивают обычно при прокладке большого числа труб, укладываемых в одном направлении, например на выводах с ТЭЦ.

Наряду с прокладкой в непроходных каналах все большее развитие получают бесканальные прокладки теплопроводов. Отказ от применения каналов при прокладке тепловых сетей весьма перспективен и является одним из путей удешевления их стоимости. Однако в бесканальных прокладках теплоизолированный трубопровод из-за непосредственного контакта с грунтом находится в условиях более активных физико-механических воздействий (влажность грунта, давление грунта и внешних нагрузок и т. п.), чем в канальных прокладках. Бесканальная прокладка возможна при использовании механически прочной теплогидроизоляционной оболочки, способной защитить трубопроводы от потерь теплоты и выдерживать нагрузки, передаваемые грунтом. Тепловые сети с диаметром труб до 400 мм включительно рекомендуется прокладывать преимущественно бесканальным способом.

Среди бесканальных прокладок наибольшее распространение за последние годы получили прогрессивные прокладки с использованием в качестве монолитной теплоизоляции армопенобетона, битумоперлита, асфальтокерамзитобетона, фенольного поропласта, пенополимербетона, пенополиуретана и других теплоизоляционных материалов. Бесканальные прокладки тепловых сетей продолжают совершенствоваться и получают все более широкое распространение в практике строительства и реконструкции. При реконструкции внутриквартальных теплотрасс имеются более широкие возможности прокладки сетей по подвальным помещениям, чем при новом строительстве, так как строительство новых участков часто опережает строительство зданий.

Монтаж тепловых сетей, прокладка труб

Монтаж трубопроводов и монтаж тепловой изоляции на них ведется с использованием предизолированных труб ППУ, фасонных изделий в ППУ изоляции (неподвижных опор, тройников и тройниковых ответвлений, переходов, концевых элементов и промежуточных элементов и др.), а также скорлупы ППУ. Ведется монтаж теплоизоляции прямых участков, ответвлений, элементов трубопровода, скользящих опор, шаровых кранов, а также производится монтаж стыковых соединений с применением муфты термоусадочной, ленты термоусадочной, компонентов ППУ, кожухов оцинкованных и скорлуп теплоизоляционных из пенополиуретана.

Прокладка тепловых сетей и монтаж теплоизоляции ППУ производится в несколько этапов – подготовительный этап (земляные работы, доставка труб ППУ и элементов на трассу, осмотр продукции), прокладка трубопроводов (монтаж труб и элементов), установка приборов системы ОДК и монтаж стыковых соединений.

Глубина заложения труб ППУ при прокладке теплосетей должна вестись с учетом разности плотности стальной трубы ППУ и теплоизоляционного слоя пенополиуретана, а также норм теплоотдачи и нормативно допустимых тепловых потерь.

Разработку траншей для бесканальной прокладки следует выполнять механическим способом с соблюдением требований СНиП 3.02.01 - 87 "Земляные сооружения".

Минимальную глубину заложения труб ППУ в полиэтиленовой оболочке при прокладке теплотрасс в земле следует принимать не менее 0,5 м вне пределов проезжей части и 0,7 м - в пределах проезжей части, считая до верха теплоизоляции.

Максимальную глубину заложения теплоизолированных труб при монтаже трубопроводов в ППУ изоляции при прокладке тепловых сетей следует определять расчетом с учетом устойчивости слоя ППУ на действие статической нагрузки.

Монтаж труб ППУ производится, как правило, на дне траншеи. Допускается производить сварку прямых участков в секции на бровке траншеи. Монтаж труб ППУ в полиэтиленовой оболочке производится при температуре наружного воздуха до -15 ... -18°С.

Резку стальных труб (в случае необходимости) производят газорезкой, при этом теплоизоляция снимается механизированным ручным инструментом на участке длиной 300 мм, а торцы теплоизоляции в ходе резки стальных труб закрываются увлажненной тканью или жестким экраном для защиты теплоизоляционного слоя пенополиуретана.

Сварку стыков труб и контроль сварных соединений трубопроводов при монтаже труб ППУ следует проводить в соответствии с требованиями СНиП 3.05.03-85 "Тепловые сети", ВСН 29-95 и ВСН 11-94.

При производстве сварочных работ необходимо иметь защиту пенополиуретановой изоляции и полиэтиленовой оболочки, а также концов проводов, выходящих из изоляции, от попадания искр.

При использовании в качестве защиты сварного соединения муфты термоусадочной, ее надевание на трубопровод производят до начала ведения сварных работ. При заделке стыка с использованием стыка заливочного или стыка из скорлупы ППУ, где в качестве защитного слоя используется оцинкованный кожух и термоусадочная лента, сварка труб ведется не зависимо от наличия материалов для заделки стыков.

Перед началом строительства теплотрассы при бесканальной прокладке труб, трубы ППУ, фасонные изделия в ППУ изоляции, теплоизолированные пенополиуретаном шаровые краны и элементы трубопроводной системы подвергают тщательному осмотру с целью обнаружения трещин, сколов, глубоких надрезов, проколов и других механических повреждений полиэтиленовой оболочки теплоизоляции. При обнаружении трещин, глубоких надрезов и иных повреждений покрытия труб ППУ в полиэтиленовой или оцинкованной оболочке, их заделывают путем экструзионной сварки, путем наложения термоусаживающихся манжет (муфт) или оцинкованных бандажей.

Перед монтажом теплотрассы бесканальной прокладки трубопроводы в ППУ изоляции и фасонные изделия в ППУ раскладывают на бровке или дне траншеи с помощью крана или трубоукладчика, мягких "полотенец" или гибких строп.

Опускание в траншею изолированных труб ППУ следует производить плавно, без рывков и ударов о стенки и дно каналов и траншей. Перед монтажом труб ППУ в траншеи или каналы в обязательном порядке следует проверить целостность сигнальных проводов системы оперативно-дистанционного контроля (система СОДК) и их изолированность от стальной трубы.

Трубы ППУ, укладываемые на песчаное основание при бесканальной прокладке, с целью предотвращения повреждения оболочки не должны опираться на камни, кирпичи и другие твердые включения, которые следует удалить, а образовавшиеся углубления засыпать песком.

При необходимости контрольных расчетов глубин заложения теплопроводов с изоляцией ППУ в полиэтиленовой оболочке для конкретных условий прокладки расчетное сопротивление пенополиуретана следует принимать 0,1 МПа, полиэтиленовой оболочки - 1,6 МПа.

При необходимости подземной прокладки тепловых сетей с теплоизоляцией ППУ в полиэтиленовой оболочке на глубине более допустимой их следует прокладывать в каналах (тоннелях). При прокладке трасс под проезжей частью, железнодорожным полотном и другими объектами, находящимися над трубой ППУ, трубы в ППУ изоляции изготавливаются с усилением (накладные кольца из полиэтилена по всей длине оболочки) и прокладываются в стальном футляре, защищающем от внешних механических воздействий.

Теплопроводы прокладывают подземным или надземным способом. Подземный способ является основным в жилых, районах, так как при этом не загромождается территория и не ухудшается архитектурный облик города. Надземный способ применяют обычно на территориях промышленных предприятий при совместной прокладке энергетических и технологических трубопроводов. В жилых районах надземный способ используют только в особо тяжелых условиях: вечномерзлотные и проседающие при оттаивании грунты, заболоченные участки, большая густота существующих подземных сооружений, сильно изрезанная оврагами местность, пересечение естественных и искусственных препятствий.

Подземные теплопроводы в настоящее время прокладывают в проходных и непроходных каналах (применявшиеся ранее полупроходные каналы сейчас не используют) или бесканальным способом. Кроме того, в жилых микрорайонах распределительные сети прокладывают иногда в технических подпольях (коридорах, тоннелях) зданий, что удешевляет и упрощает строительство и эксплуатацию.

При прокладке в каналах и технических подпольях зданий теплопроводы защищены со всех сторон от механических воздействий и нагрузок и в некоторой степени от грунтовых и поверхностных вод. Для восприятия собственного веса теплопровода устанавливают специальные подвижные опоры. При бесканальной прокладке теплопроводы непосредственно контактируют с грунтом и внешние механические нагрузки воспринимаются трубой и теплоизоляционной конструкцией. При этом подвижных опор не устанавливают, а теплопроводы укладывают прямо на грунт или слой песка и гравия. Стоимость бесканальной прокладки на 25-30% меньше, чем в каналах, однако условия работы теплопроводов тяжелее.

Глубина заложения теплопроводов от верхнего уровня каналов или изоляционной конструкции (при бесканальной прокладке) до поверхности земли составляет 0,5--0,7 м. При высоком уровне грунтовых вод его искусственно снижают устройством попутного дренажа из гравия, песка и дренажных труб под каналом или изоляционной конструкцией.

Каналы в настоящее время изготовляют, как правило, из унифицированных сборных железобетонных деталей. Для защиты от грунтовых и поверхностных вод наружную поверхность каналов покрывают битумом с оклейкой гидрозащитным рулонным материалом. Для сбора влаги, которая попадает внутрь каналов, их дну следует придавать поперечный уклон не менее 0,002 в одну сторону, где делаются иногда закрытые (плитами, решетками) лотки, по которым вода стекает в сборные приямки, откуда отводится в водостоки.

Следует отметить, что, несмотря на гидроизоляцию каналов, естественная влага, содержащаяся в грунте, проникает в них через их наружные стенки, испаряется и насыщает воздух. При охлаждении влажного воздуха на перекрытиях и стенках канала скапливается влага, которая стекает вниз и может вызывать увлажнение изоляции.


В проходных каналах обеспечиваются наилучшие условия для работы, эксплуатации и ремонта теплопроводов, однако по капитальным затратам они являются наиболее дорогими. В связи с этим сооружать их целесообразно только на наиболее ответственных участках, а также при совместной прокладке теплопроводов с другими инженерными коммуникациями. При совместной прокладке различных коммуникаций проходные каналы называют коллекторами. В городах в настоящее время они получили широкое распространение. На рис. 6.4 показано сечение типового односекционного коллектора.

Проходные каналы (коллекторы) оборудуют естественной или принудительной вентиляцией, обеспечивающей температуру воздуха в канале не выше 40°С в периоды ремонтов и не выше 50°С при работе, электрическим освещением с напряжением до 30 В, телефонной свяью. Для сбора влаги в пониженных точках трассы устраивают приямки, сообщающиеся с водостоками или оборудованные откачивающими насосами с автоматическим или дистанционным управлением.

Рис. 6.4. Сечение типового городского коллектора

1 и 2 - подающий и обратный трубопроводы; 3 - конденсатопровод; 4 - телефонные кабели; 5 - силовые кабели; 6 - паропровод; 7 - водопровод

Габаритные размеры проходных каналов (коллекторов) выбирают из условия свободного доступа ко всем элементам теплопроводов, позволяющего проводить полный капитальный ремонт их без вскрытий и разрушений дорожных покрытий. Ширину прохода в канале принимают не менее 700 мм, а высоту- не менее 2 м (допускается принимать высоту до балки 1,8 м). Через каждые 200-250 м по трассе делают люки, оборудованные для спуска в канал лестницами или скобами. В местах расположения большого количества оборудования могут устраиваться специальные уширения (камеры) или сооружаться павильоны.

Непроходные каналы применяют обычно для теплопроводов диаметром до 500-700 мм. Изготовляют их прямоугольной, сводчатой и цилиндрической формы из железобетонных плит и сводов, асбестоцементных и металлических труб и др. При этом между поверхностью теплопроводов и стенками канала оставляют, как правило, воздушный зазор, через который происходит высыхание тепловой изоляции и удаление влаги из каналов. В качестве примера на рис. 6.5 показано сечение прямоугольного непроходного канала, изготовляемого из унифицированных сборных железобетонных деталей.

Рис. 6.5. Сечения непроходного канала

1 и 2 - лотковые блоки соответственно нижний и верхний; 3 - соединительный элемент с цементной забелкой; 4 - опорная плита; 5 - песчаная подготовка

Габаритные размеры непроходных каналов выбирают в основном в зависимости от расстояния между теплопроводами и между поверхностями теплоизоляционной конструкции и каналов, а также из условия обеспечения удобного доступа к оборудованию в камерах. Для уменьшения расстояния между теплопроводами оборудование на них иногда устанавливают вразбежку.

Бесканальную прокладку применяют обычно для труб небольших диаметров (до 200-300 мм), так как при прокладке таких труб в непроходных каналах условия их работы получаются практически более трудными (из-за заноса воздушного зазора в каналах грязью и сложности удаления из них влаги при этом). В последние годы в связи с повышением надежности бесканальной прокладки теплопроводов (путем внедрения сварки, более совершенных теплоизоляционных конструкций и др.) ее начинают использовать и для труб больших диаметров, (500 мм и более).

Теплопроводы, прокладываемые бесканальным способом, подразделяют в зависимости от вида теплоизоляционной конструкции: в монолитных оболочках, литые (сборно-литые) и засыпные (рис. 6.6) и в за висимости от характера восприятия весовых нагрузок: разгруженные и неразгруженные.

Рис. 6.6. Типы бесканальных теплопроводов

а -в сборной и монолитной оболочке; б-литые и сборно-литые; в - засыпные

Конструкции в монолитных оболочках выполняют обычно в заводских условиях. На трассе производится только стыковая сварка отдельных элементов и изоляция стыковых соединений. Литые конструкции могут изготовляться как в заводских условиях, так и на трассе путем заливки трубрпроводов (и стыковых соединений после опрессовки) жидкими исходными теплоизоляционными материалами с последующим их схватыванием (затвердеванием). Засыпную изоляцию выполняют на смонтированных в траншеях и спрессованных трубопроводах из сыпучих теплоизоляционных материалов.

К разгруженным относятся конструкции, в которых теплоизоляционное покрытие обладает достаточной механической прочностью и разгружает трубопроводы от внешних нагрузок (веса грунта, веса проходящего на поверхности транспорта и т. п.). К ним относятся литые (сборно-литые) и монолитные оболочки.

В неразгруженных конструкциях внешние механические нагрузки передаются через тепловую изоляцию непосредственно на трубопровод. К ним относятся засыпные теплопроводы.

На подземных теплопроводах оборудование, требующее обслуживания (задвижки, сальниковые компенсаторы, дренажные устройства спускники, воздушники и др.), размещают в специальных камерах, а гибкие компенсаторы - в нишах. Камеры и ниши, как и каналы, сооружают из сборных железобетонных элементов. Конструктивно камеры выполняют подземными или с надземными павильонами. Подземные камеры устраивают при трубопроводах Небольших диаметров и применении задвижек с ручным приводом. Камеры с надземными павильонами обеспечивают лучшее обслуживание крупногабаритного оборудования, в частности, задвижек с электро- и гидроприводами, которые устанавливают обычно при диаметрах трубопроводов 500 мм и более. На рис. 6.8 показана конструкция подземной камеры.

Габаритные размеры камер выбирают из условия обеспечения удобства и безопасности обслуживания оборудования. Для входа в подземные камеры в углах по диагонали устраивают люки - не менее двух при внутренней площади до 6 м 2 и не менее четырех при большей площади. Диаметр люка принимают не менее 0,63 м. Под каждым люком устанавливают лестницы или скобы с шагом не более 0,4 м для спуска в камеры. Днище камер выполняют с уклоном > 0,02 к одному из углов (под люком), где устраивают прикрываемые сверху решеткой приямки для сбора воды глубиной не менее 0,3 м и размерами в плане 0,4x0,4 м. Вода из приямков отводится самотеком или при помощи насосов в водостоки либо приемные колодцы.

Рис. 6.8. Подземная камера

Надземные теплопроводы прокладывают на отдельно стоящих опорах (низких и высоких) и мачтах, на эстакадах со сплошным пролетным строением в виде ферм или балок и на тягах, прикрепленных к верхушкам мачт (вантовые конструкции). На промышленных предприятиях применяют иногда упрощенные прокладки: на консолях (кронштейнах) по конструкциям зданий и подставках (подушках) по крышам зданий.

Опоры и мачты выполняют, как правило, железобетонными или металлическими. Пролетные строения эстакад и анкерные стойки (не подвижные опоры) обычно изготовляют металлическими. При этом строительные конструкции могут сооружаться одно-, двух- и много ярусными..

Прокладка теплопроводов на отдельно стоящих опорах и мачтах является наиболее простой и применяется обычно при небольшом числе труб (две - четыре). В настоящее время в СССР разработаны типовые конструкции отдельно стоящих низких и высоких железобетонных опор, выполняемых с одной стойкой в виде Т-образной опоры и с двумя отдельными стойками или рамами в виде П-образных опор. Для уменьшения количества стоек трубопроводы большого диаметра могут использоваться в качестве несущих конструкций для укладки или подвески к ним трубопроводов малого диаметра, требующих более частой установки опор. При прокладке теплопроводов на низких опорах расстояние между их нижней образующей и поверхностью земли должно быть не меньше 0,35 м при ширине группы труб до 1,5 м и не менее 0,5 м при ширине более 1,5 м.

Прокладка теплопроводов на эстакадах является наиболее дорогой и требует наибольшего расхода металла. В связи с этим ее целесообразно применять при большом числе труб (не менее пяти-шести), а также при необходимости регулярного надзора за ними. При этом трубопроводы больших диаметров опираются обычно непосредственно на стойки эстакад, а малых - на опоры, уложенные в пролетном строении.

Прокладка теплопроводов на подвесных (вантовых) конструкциях является наиболее экономичной, так как позволяет значительно увеличить расстояние между мачтами и тем самым уменьшить расход строительных материалов. При совместной прокладке трубопроводов различных диаметров между мачтами выполняются прогоны из швеллеров, подвешенных на тягах. Такие прогоны позволяют устанавливать дополнительные опоры для трубопроводов малых диаметров.

Для обслуживания оборудования (задвижек, сальниковых компенсаторов) устраивают площадки с ограждениями и лестницами: стационарные при расстоянии от низа теплоизолирующей конструкции до поверхности земли 2,5 м и более или передвижные - при меньшем расстоянии, а в труднодоступных местах и на эстакадах - проходные мостики. При прокладке теплопроводов на низких опорах в местах установки оборудования должно предусматриваться покрытие поверхности земли бетоном, а на оборудовании - устройство металлических кожухов.

Трубы и араматура . Для строительства тепловых сетей используют стальные трубы, соединяемые при помощи электрической или газовой сварки. Стальные трубы подвергаются внутренней и наружной коррозии, что снижает срок службы и надежность тепловых сетей. В связи с этим для местных систем горячего водоснабжения, которые подвержены усиленной коррозии, применяют трубы стальные оцинкованные. В ближайшем будущем намечается применение эмалированных труб.

Из стальных труб для тепловых сетей в настоящее время используют в основном электросварные с продольным прямым и спиральным швом и бесшовные, горячедеформированные и холоднодеформированные, изготовляемые из сталей марок Ст. 3, 4, 5, 10, 20 и низколегированных. Выпускаются электросварные трубы до условного диаметра 1400 мм, бесшовные - 400 мм. Для сетей горячего водоснабжения могут применяться также водогазопроводные стальные трубы.

В последние годы ведутся работы по использованию для теплоснабжения неметаллических труб (асбестоцементных; полимерных, стеклянных и др.). К их достоинствам относится высокая антикоррозионная устойчивость, а у полимерных и стеклянных труб и более низкая шероховатость по сравнению со стальными трубами. Асбестоцементные и стеклянные трубы соединяют при помощи специальных конструкций, а полимерные трубы - на сварке, что значительно упрощает монтаж и повышает надежность и герметичность соединений. Основным недостатком указанных неметаллических труб являются невысокие допустимые значения температур и давлений теплоносителя-примерно 100°С и 0,6 МПа. В связи с этим их можно использовать только в сетях, работающих с низкими параметрами воды, например в системах горячего водоснабжения, конденсатопроводах и др.

Арматура, применяемая в тепловых сетях, по назначению подразделяется на запорную, регулировочную, предохранительную (защитную), дросселирующую, конденсатоотводящую и контрольно-измерительную.

К основной арматуре общего назначения относят обычно запорную арматуру, так как она используется наиболее широко непосредственно на трассе тепловых сетей. Остальные виды арматуры устанавливаются, как правило, в тепловых пунктах, насосных и дросселирующих подстанциях и др.

Основными типами запорной арматуры тепловых сетей являются задвижки и вентили. Задвижки применяются обычно в водяных сетях, вентили - в паровых. Изготовляют их из стали и чугуна с фланцевыми и муфтовыми присоединительными концами, а также с концами под приварку труб на различные условные диаметры.

Запорная арматура в тепловых сетях устанавливается на всех трубопроводах, отходящих от источника тепла, в узлах ответвлений с d y >100 мм, в узлах ответвлений к отдельным зданиям при d y 50 мм и длине ответвления l > 30 м или к группе зданий с суммарной нагрузкой до 600 кВт (0,5 Гкал/ч), а также на штуцерах для спуска воды, выпуска воздуха и пусковых дренажей. Кроме того, в водяных сетях устанавливаются секционирующие задвижки: при d y >100 мм через l ce кц <1000 м; при d y =350...500 мм через l секц <1500 м при условии спуска воды из секции и ее заполнения водой не более чем за 4 ч, и при d y > 600 мм через l c екц <3000 м при условии спуска воды из секции и ее заполнения водой не более чем за 5 ч.

В местах установки секционирующих задвижек делаются перемычки между подающими и обратными трубопроводами с диаметром, равным 0,3 диаметра основных трубопроводов, для создания циркуляции теплоносителя при авариях. На перемычке последовательно устанавливаются две задвижки и контрольный вентиль между ними на d y = 25 мм для проверки плотности закрытия задвижек.

Для облегчения открытия задвижек с d y > 350 мм на водяных сетях и с d y > 200 мм и р у >1,6 МПа на паровых сетях, требующих большого вращательного момента, делают обводные линии (разгрузочные байпасы) с запорным вентилем. В этом случае затвор разгружается от сил давления при открытии задвижек и уплотнительные поверхности предохраняются от износа. В паровых сетях обводные линии используются также для пуска паропроводов. Задвижки с d y > 500 мм, требующие для своего открытия или закрытия вращательного момента более 500 Н-м, должны применяться с электроприводом. С электроприводом предусматривают также все задвижки при дистанционном управлении.

Трубы и арматуру выбирают из выпускаемого сортамента в зависимости от условного давления, рабочих (расчетных) параметров теплоносителя и окружающей среды.

Условное давление определяет максимально допустимое давление, которое длительно могут выдержать трубы и арматура определенного типа при нормальной температуре среды + 20°С. При повышении температуры cреды допустимое давление снижается.

Рабочие давления и температуры теплоносителя для выбора труб, арматуры и оборудования тепловых сетей, а также для расчета трубопроводов на прочность и при определении нагрузок на строительные конструкции должны приниматься равными, как правило, номинальным (максимальным) значениям в подающих трубопроводах или на нагнетании насосов с учетом рельефа местности. Значения рабочих параметров для различных случаев, а также ограничения при выборе материалов труб и арматуры в зависимости от рабочих параметров теплоносителя и окружающей среды указаны в СНиП II-36-73.

Нагретая вода из ТЭЦ или районной котельной насосами подается потребителям по наружным тепловым сетям для централизованного снабжения теплом промышленных предприятий, жилых домов и зданий общественного назначения.

Трассу тепловых сетей в городах и других населенных пунктах прокладывают в отведенных для инженерных сетей технических полосах параллельно красным линиям улиц, дорог и проездов. Трасса тепловых сетей проходит между проезжей частью и полосой зеленых насаждений, Внутри микрорайонов и кварталов трасса тепловых сетей должна также проходить вне проезжей части дорог.

Для тепловых сетей в городах и других населенных пунктах предусматривается подземная прокладка: в непроходных и проходных каналах; в городских и внутри-квартальных коллекторах совместно с другими инженерными сетями и без устройства каналов (тепловые сети диаметром до 500 мм).

На территориях промышленных предприятий тепловые сети прокладывают на отдельно стоящих низких и высоких опорах или эстакадах. Допускается совместная надземная прокладка тепловых сетей с технологическими трубопроводами, независимо от параметров теплоносителя и параметров среды в технологических трубопроводах,


Наиболее часто тепловые сети прокладывают в непроходных каналах из сборного железобетона (), которые бывают одноячейковые, двухъячейковые и многоячейковые.

Рис. 142. Непроходные каналы КЛ: а - одноячейковые, б - двухъячейковые; 1 - лотковый элемент, 2 - песчаная подготовка, 3 - плита перекрытия, 4 - цементная шпонка, 5 - песок

Рис. 143. Прокладка тепловых сетей: а - в непроходном канале с битумоперлитовой изоляцией, б - бесканальная, Ц - циркуляционный трубопровод, Г - трубопровод горячей воды, X - трубопровод холодной воды, Т- обратный трубопровод системы отопления, Гп -ведающий трубопровод системы отопления

На , а показан один из вариантов внутри-квартальной прокладки тепловых сетей в непроходных каналах. В одном канале прокладываются трубопроводы системы отопления, в другом - трубопроводы системы горячего водоснабжения, между каналами непосредственно в грунте проходят трубопроводы холодного водопровода.

При прокладке тепловых сетей в зоне грунтовых вод наружные поверхности стен и перекрытий тепловых каналов следует покрывать битумной изоляцией, а также устраивать дренажи для понижения уровня грунтовых вод по трассе.

Тепловую изоляцию устраивают для трубопроводов тепловых сетей, арматуры, фланцевых соединений, компенсаторов и опор труб независимо от температуры теплоносителя и способов прокладки. Температура на поверхности теплоизоляционной конструкции трубопровода в технических подпольях и подвалах жилых и общественных зданий должна быть не более 45° С, а в тоннелях, коллекторах, камерах и других местах, доступных обслуживанию, не более 60° С.

В настоящее время промышленность выпускает индустриальную битумоперлитовую тепловую изоляцию теплопроводов, которую наносят на трубы методом прессования на заводе. Такую изоляцию изготовляют двух типов: для прокладки теплопроводов и водопроводных сетей бесканальным способом непосредственно в грунте и в непроходных каналах (см. ,а); для прокладки теплопроводов и водопроводных сетей в технических подпольях зданий, проходных каналах, а также внутри помещений.

Битумоперлитовая изоляция представляет собой смесь вспученного перлитового песка, нефтяного битума и пассивирующей добавки, которая надежно защищает трубопроводы от коррозии. Сверху битумоперлитовой изоляции наносят покровный слой из двух слоев стеклоткани, наклеенной на битумной мастике или латексе СКС-65.

Для сварки теплопроводов на трассе концы труб по 200 мм с каждой стороны должны быть не изолированы.


Бесканальная совмещенная прокладка трубопроводов тепловых сетей, горячего и холодного водоснабжения с битумоперлитной изоляцией ( , б) допускается во всех грунтах, кроме просадочных. При бесканальной прокладке трубопроводов в сухих грунтах с коэффициентом фильтрации Кф, равным 5 м/сут и более, дренаж не требуется. Во всех остальных случаях необходимо устраивать попутный дренаж. Бесканальную прокладку трубопроводов тепловых сетей и горячего водоснабжения используют на трассы. В местах поворотов и установки компенсаторов следует предусматривать камеры или каналы.

Глубина заложения трубопроводов с битумоперлитовой изоляцией на участках бесканальной прокладки должна быть не менее 0,8 м от спланированной поверхности земли до верха изоляции из условий прочности и защиты холодного водопровода от промерзания.

Проходной канал для большого числа труб изображен на рис. 144.

Рис. 144. Прокладка тепловых сетей в проходном канале:

1 - подающие трубопроводы, 2 - скользящая опора, 3 - стальная балка, 4 - обратный трубопровод, 5 - изоляция трубопроводов, 6-боковые стенки канала, 7 -лоток для дренажа

Такие каналы имеют большие поперечные сечения, что позволяет обслуживающему персоналу контролировать и ремонтировать трубопроводы. Проходные каналы устраивают главным образом на территориях больших промышленных предприятий и на выводах теплопроводов от мощных ТЭЦ. Стенки 6 проходных каналов делают из железобетона, бетона или кирпича; перекрытие проходных каналов, как правило,- из сборного железобетона.

В проходных каналах необходимо устраивать лоток 7 для стока воды. Уклон дна канала в сторону места отвода воды должен быть не менее 0,002. Опорные конструкции для труб, расположенных в проходных каналах, изготовляют из стальных балок 3, консольно заделанных

прямолинейных участках в стены или укрепленных на стойках. Высота проходного канала должна быть около 2000 мм, ширина канала - не менее 1800 мм.

Трубопроводы в каналах укладывают на подвижные или неподвижные опоры.

Подвижные опоры служат для передачи веса теплопроводов на несущие конструкции. Кроме того, они обеспечивают Перемещение труб, происходящее вследствие изменения их длины при изменениях температуры теплоносителя. Подвижные опоры бывают скользящие и катковые.

Рис. 145. Опоры: в - скользящая, б - катковая, в - неподвижная

Скользящее опоры ( , а) используют в тех случаях, когда основание под опоры может быть сделано достаточно прочным для восприятия больших горизонтальных нагрузок. В противном случае прибегают к Катковым опорам ( , б), создающим меньшие горизонтальные нагрузки. Поэтому при прокладке труб больших диаметров в тоннелях на каркасах или на мачтах следует ставить катковые опоры.

Неподвижные опоры ( ,в) служат для распределения удлинений трубопровода между компенсаторами и для обеспечения равномерной работы последних. В камерах подземных каналов и при надземных прокладках неподвижные опоры выполняют в виде металлических конструкций, сваренных или соединенных на болтах с трубами. Эти конструкции заделывают в фундаменты, стены и перекрытия каналов.

Для восприятия температурных удлинений и разгрузки труб от температурных напряжений на теплосети устанавливают гнутые и сальниковые компенсаторы.

Рис. 146. Гнутые компенсаторы

Гнутые компенсаторы () П- и S-образные изготовляют из труб и отводов (гнутых, крутоизогнутых и сварных) для трубопроводов диаметром от 50 до 1000 мм. Эти компенсаторы устанавливают в непроходных каналах, когда невозможен осмотр проложенных трубопроводов, а также в зданиях при бесканальной прокладке. Допустимый радиус изгиба труб при изготовлении компенсаторов составляет 3,5-4,5 наружного диаметра трубы.

Гнутые П-образные компенсаторы располагают в нишах. Размеры ниши по высоте совпадают с размерами канала, а в плане определяются размерами компенсатора и зазорами, необходимыми для свободного перемещения компенсатора при температурной деформации. Ниши, где установлены компенсаторы, перекрывают железобетонными плитами.

Рис. 147. Сальниковые компенсаторы: а - односторонний, б -двусторонний; 1 - корпус. 2 -стакан, 3- фланцы

Сальниковые компенсаторы изготовляют односторонние ( , а) и двусторонние ( , б) на давление до 1,6 МПа для труб диаметром от 100 до 1000 мм. Сальниковые компенсаторы имеют небольшие размеры, большую компенсирующую способность и оказывают незначительное сопротивление протекающей жидкости.

Сальниковые компенсаторы состоят корпуса 1 с фланцем 3 на уширенной передней части. В корпус компенсатора вставлен подвижный стакан 2 с фланцем для установки компенсатора на трубопроводе. Чтобы сальниковый компенсатор не пропускал теплоноситель между кольцами, в промежутке между корпусом и стаканом укладывают сальниковую набивку. Сальниковую набивку сжимают фланцевым вкладышем с помощью шпилек, ввинчиваемых в корпус компенсатора. Компенсаторы крепят к неподвижным опорам.

Камера для установки задвижек на тепловых сетях изображена на рис. 148.

Рис. 148. Камера для установки задвижек на тепловых сетях:

1 - ответвление подающего магистрального трубопровода, 2 - ответвление об» ратного магистрального трубопровода, 3 - камера, 4- параллельные задвижки, 5 - опоры трубопроводов, 6 - обратный магистральный трубопровод, 7 - подающий магистральный трубопровод

При подземных прокладках теплосетей для обслуживания запорной арматуры устраивают подземные камеры 3 прямоугольной формы. В камерах прокладывают ответвления 1 я 2 сети к потребителям. Горячая вода подается в здание по трубопроводу, укладываемому с правой стороны канала. Подающий 7 и обратный 6 трубопроводы устанавливают на опоры 5 и покрывают изоляцией.

Стены камер выкладывают из кирпича, блоков или панелей, перекрытия - сборные из железобетона в виде ребристых или плоских плит, дно камеры - из бетона. Вход в камеры - через чугунные люки. Для спуска в камеру под люками в стене заделывают скобы. Высота камеры должна быть не менее 1800 мм. Ширину выбирают с таким расчетом, чтобы проходы между стенами и трубами были не менее 500 мм.

Трубопроводы тепловых сетей могут быть проложены на земле, в земле и над землей. При любом способе монтажа трубопроводов необходимо обеспечивать наибольшую надежность работы системы теплоснабжения при наименьших капитальных и эксплуатационных затратах.

Капитальные затраты определяются стоимостью строительно-монтажных работ и затраты на оборудование и материалы для прокладки трубопровода. В эксплуатационные включают затраты по обслуживанию и содержанию трубопроводов, а так же затраты связанные с потерей тепла в трубопроводах и расходом электроэнергии на всей трассе. Капитальные затраты определяются в основном стоимостью оборудования и материалов, а эксплуатационные - стоимостью тепла, электроэнергии и ремонта.

Основными видами прокладками трубопроводов являются подземная и надземная . Подземная прокладка трубопроводов наиболее распространена. Она подразделяется на прокладку трубопроводов непосредственно в земле (бесканальная) и в каналах. При наземной прокладке трубопроводы могут находиться на земле или над землей на таком уровне, что бы они не препятствовали движению транспорта. Надземные прокладки применяются на загородных магистралях при пересечении оврагов, рек, железнодорожных путей и других сооружений.

Надземные прокладки трубопроводов в каналах или лотках расположенных на поверхности земли или частично заглубленных, применяются, как правило, в районах с вечномерзлыми грунтами.

Способ монтажа трубопроводов зависит от местных условий объекта - назначения, эстетических требований, наличия сложных пересечений с сооружениями и коммуникациями, категории грунта - и должен приниматься на основании технико-экономических расчетов возможных вариантов. Минимальные капитальные затраты требуются на монтаж теплотрассы с использованием подземной прокладки труб без излояции и каналов. Но значительные потери тепловой энергии, особенно во влажных грунтах, приводят к существенным дополнительным затратам и к преждевременному выходу трубопроводов из строя. В целях обеспечения надежности работы теплопроводов необходимо применять механическую и тепловую их защиту.

Механическая защита труб при монтаже труб под землей может быть обеспечена путем устройства каналов, а тепловая защита - путаем применения тепловой изоляции, нанесенной непосредственно на наружную поверхность трубопроводов. Изоляция труб и прокладка их в каналах увеличивают первоначальную стоимость теплотрассы, но быстро окупаются в процессе эксплуатации за счет повышения эксплуатационной надежности и уменьшения тепловых потерь.

Подземная прокладка трубопроводов.

При монтаже трубопроводов тепловых сетей под землей могут быть использованы два способа:

  1. Непосредственная прокладка труб в земле (бесканальная).
  2. Прокладка труб в каналах (канальная).

Прокладка трубопроводов в каналах.

Для того, что бы защитить теплопро-вод от внешних воздействий, и для обеспечения свободного теплового удлинения труб предназначе-ны каналы. В зависимости от ко-личества прокладывае-мых в одном направле-нии теплопроводов при-меняют непроходные, по-лу проходные или про-ходные каналы.

Для закрепления трубопровода, а так же обеспечения свободного перемещения при температурных удлинениях трубы укладывают па опоры. Что бы обеспечить отток воды лотки укладываются с уклоном не менее 0,002. Вода из нижних точек лотков удаляется самотеком в систему дренажа или из специальных приямков при помощи насоса откачивается в канализацию.

Кроме продольного уклона лотков, перекрытия так же должны иметь поперечный уклон порядка 1-2% для отвода паводковой и атмосферной влаги. При высоком уровне грунтовых вод наружную поверхность стенок, перекрытия и дна канала покрывают гидроизоляцией.

Глубина прокладки лотков принимается из условия минимального объема земляных работ и равномерного распре-деления сосредоточенных нагрузок на перекрытие при движении автотранспорта. Слой грунта над каналом должен состав-лять порядка 0,8—1,2 м и не менее. 0,6 м в мес-тах, где движение автотранспорта запрещено.

Непроходные каналы применяются при большом числе труб небольшого диа-метра, а так же двухтрубной прокладке для всех диаметров. Их конструкция зависит от влажности грунтов. В сухих грунтах наибольшее распространение получили блочные каналы с бетонными или кирпичными стенками либо железобе-тонные одно- или многоячейковые.

Стенки канала могут иметь толщину 1/2 кирпича (120 мм) при трубопроводах небольшого диаметра и 1 кирпич (250 мм) при трубопроводах крупных диа-метров.

Стенки возводят только из обыкновенного кирпича марки не ниже 75. Силикатный кирпич из-за малой его морозоустойчивости применять не рекомендуется. Каналы перекрывают железобетонной плитой. Кирпичные каналы в зависимости от категории грунта имеют несколько разновидностей. В плотных и сухих грунтах дно канала не требует бетонной подготов-ки, достаточно хорошо утрамбовать щебень непосредст-венно в грунт. В слабых грунтах на бетонное основание укладывают дополнительно железобетонную плиту. При высоком уровне стояния грунтовых вод для их отвода предусматривают дренаж. Стенки возводят после монтажа и изоляции трубопро-водов.

Для трубопроводов крупных диаметров применяют каналы, собираемые из стандартных железобетонных эле-ментов лоткового типа КЛ и КЛс, а также из сборных железо-бетонных плит КС.

Каналы типа КЛ состоят из стандартных лотковых элемен-тов, перекрываемых плоскими железобетонными плитами.

Каналы типа КЛс состоят из двух лотковых элементов, уложенных друг на друга и соединенных на цементном растворе при помощи двутавра.

В каналах типа КС стеновые панели устанав-ливают в пазы плиты днища и заливают бетоном. Эти каналы перекрывают плоскими железобетонными плитами.

Основания каналов всех типов выполняют из бетонных плит или пес-чаной подготовки в зависимости от вида грунта.

Наряду с рассмотрен-ными выше каналами применяются и другие их типы.

Сводча-тые каналы состоят из железобетонных сводов или скорлуп полукруглой формы, которыми накрывают трубопровод. На дне траншеи выпол-няют лишь основание ка-нала.

Для трубопроводов крупного диаметра применяют сводчатый двухячейковый ка-нал с разделительной стенкой, при этом свод канала образуется из двух полусводов.

При монтаже непроходного ка-нала, предназначенного для прокладки в мокрых и слабых грунтах стенки и дно канала выполняют в виде железобе-тонного корытообразного лотка, а перекрытие состоит из сборных железобетонных плит. Наружная поверхность лотка (стенки и дно) покрывается гидроизоляцией из двух слоев рубероида на битумной мастике, поверхность основания также покрывают гидроизоляцией затем устанавливают или бетонируют лоток. Перед засыпкой траншеи гидроизоляцию защищают спе-циальной стенкой, выполненной из кирпича.

Замена труб, вышедших из строя, или ремонт тепловой изоляции в таких каналах возможны только при разработке групп, а иногда и разборки мостовой. Поэтому тепловая сеть в непроход-ных каналах трассируется вдоль газонов или на территории зе-леных насаждений.

Полупроходные каналы. В сложных условиях пересечения теплопроводами существующих подземных устройств (под проезжей частью, при высоком уровне стояния грунтовых вод) вместо непроходных устраивают полупроходные каналы. Полу-проходные каналы применяют также при небольшом количестве труб в тех местах, где по условиям эксплуатации вскрытие про-езжей части исключено. Высоту полупроходного канала прини-мают равной 1400 мм. Каналы выполняют из сборных железобе-тонных элементов. Конструкции полупроходных и проходных каналов практически аналогичны.

Проходные каналы применяют при наличии большого количества труб. Их прокладывают под мостовыми крупных магистралей, на территориях боль-ших промышленных предприятий, на участках, прилегающих к зданиям теплоэлектроцентралей. Наряду с теплопроводами в проходных каналах располагают и другие подземные коммуни-кации - электрокабели, телефонные кабели, водопровод, газо-провод и т. п. В коллекторах обеспечивается свободный доступ обслуживающего персонала к трубопроводам для осмотра и ликвидации аварии.

Проходные каналы должны иметь естественную вентиляцию с трехкратным обменом воздуха, обеспечивающую температуру воздуха не более 40° С, и освещение. Входы в проходные каналы устраивают через каждые 200 - 300 м. В местах, где располага-ются сальниковые компенсаторы, предназначенные для восприя-тия тепловых удлинений, запорные устройства и другое оборудо-вание, устраивают специальные ниши и дополнительные люки. Высота проходных каналов должна быть не менее 1800 мм.

Их конструкции бывают трех типов — из ребри-стых плит, из звеньев рамной конструкции и из блоков.

Проходные каналы из ребристых плит , выполняют из четырех железобетонных панелей: днища, двух стенок и плиты перекрытия, изготовляемых заводским способом на про-катных станах. Панели соединены болтами, а наружная поверх-ность перекрытия канала покрывается изоляцией. Секции канала устанавливаются па бетонную плиту. Вес одной секции такого ка-нала сечением 1,46х1,87 м и длиной 3,2 м составляет 5 т, входы устраивают через каждые 50 м.

Проходной канал из железо-бетонных звеньев рамной конструкции , сверху покрывается изоляцией. Элементы канала имеют длину 1,8 и 2,4 м и бывают нормальной и повышенной прочности при заглублении соответст-венно до 2 и 4 м над перекрытием. Железобетонную плиту подкладывают только под стыками звеньев.

Следующий вид это коллектор, изготовляемый из же-лезобетонных блоков трех типов: Г-образного стенового, двух плит перекрытия и днища. Блоки в стыках соединяются моно-литным железобетоном. Эти коллекторы выполняются также нормальными и усиленными.

Бесканальная прокладка.

При бесканальной прокладке за-щиту трубопроводов от механических воздействий выполняет усиленная тепловая изоляция — оболочка.

Достоинствами бесканальной прокладки трубопроводов являются: сравнительно небольшая стоимость строительно-мон-тажных работ, уменьшение объема земляных работ и сокраще-ние сроков строительства. К ее недостаткам относятся: усложне-ние ремонтных работ и затруднение перемещения трубопрово-дов, зажатых грунтом. Бесканальную прокладку трубопроводов широко применяют в сухих песчаных грунтах. Она находит при-менение в мокрых грунтах, но с обязательным устройством в зо-не расположения труб дренажа.

Подвижные опоры при бесканальной прокладке трубопрово-дов не применяются. Трубы с теплоизоляцией укладывают не-посредственно на песчаную подушку, находящуюся на предвари-тельно выровненном дне траншеи. Песчаная подушка, являю-щаяся постелью для труб, имеет наилучшие упругие свойства и допускает наибольшую равномерность температурных переме-щений. В слабых и глинистых грунтах слой песка на дне траншеи должен быть толщиной не менее 100-150 мм. Неподвижные опо-ры при бесканальной прокладке труб представляют собой желе-зобетонные стенки, устанавливаемые перпендикулярно теплопро-водам.

Компенсация тепловых перемещений труб при любом спосо-бе их бесканальной прокладки обеспечивается при помощи гну-тых или сальниковых компенсаторов, устанавливаемых в специ-альных нишах или камерах.

На поворотах трассы во избежание зажатия труб в грунте и обеспечения возможных перемещений устраивают непроходные каналы. В местах пересечения стенки капала трубопроводом в результате неравномерной осадки грунта и основания канала происходит наибольший изгиб трубопроводов. Во избежание из-гиба трубы необходимо оставлять в отверстии стенки зазор, за-полняя его эластичным материалом (например, асбестовым шну-ром). Тепловая изоляция трубы включает в себя утеплительный слой из автоклавного бетона с объемным весом 400 кг/м3, имеющего стальную арматуру, гидроизоляционное покрытие, состоящей из трех слоев бризола на битумно-резиновой мастике, в состав которой входят 5—7% резиновой крошки и защитный слой, вы-полненный из асбестоцементной штукатурки по стальной сет-ке.

Обратные магистрали трубопроводов изолируются таким же образом, как и подающие. Однако наличие изоляции об-ратных магистралей зависит от диаметра труб. При диаметре труб до 300 мм устройство изоляции обяза-тельно; при диаметре труб 300-500 мм устройство изоляции должно быть определено технике экономическим расчетом исходя из местных условий; при диаметре труб 500 мм и более уст-ройство изоляции не предусматривается. Трубопроводы при такой изоляции укладывают непосредст-венно на выровненный уплотненный грунт основания траншеи.

Для понижения уровня грунтовых вод предусматривают специальные дренажные трубопроводы, которые укладывают на глубине 400 мм от дна канала. В зависимости от условий работы дренажные устройства могут быть выполнены из различных труб: для безнапорных дренажей применяют керамические бетонные и асбестоцементные, а для напорных - стальные и чу-гунные.

Дренажные трубы прокладывают с уклоном 0,002—0,003. На поворотах и при перепадах уровней труб устраивают специаль-ные смотровые колодцы по типу канализационных.

Надземная прокладка трубопроводов.

Если исходить из удобства монтажа и обслуживания то прокладка труб над землей является более выгодна чем прокладка под землей. Так же это требует меньших материальных затрат. Однако это поритит внешний вид окружающей среды и поэтому такой вид прокладки труб не везде может применяться.

Несущими конструкциями при надземной прокладке трубо-проводов служат: для небольших и средних диаметров — надзем-ные опоры и мачты, обеспечивающие расположение труб на нужном расстоянии от поверхности; для трубопроводов больших диаметров, как правило, опоры-эстакады. Опоры, обычно, выполняют из железобетонных блоков. Мачты и эстака-ды могут быть как стальными, так и железобетонными. Расстоя-ние между опорами и мачтами при надземной прокладке должно быть равно расстоянию между опорами в каналах и зависит от диаметров трубопроводов. В целях сокращения количества мачт устраивают при помощи растяжек промежуточные опоры.

При надземной прокладке тепловые удлинения трубопрово-дов компенсируются при помощи гнутых компенсаторов, требу-ющих минимальных затрат времени на обслуживание. Обслуживание арматуры производится со специально устраиваемых площадок. В качестве подвижных следует применить катковые опоры, создающие минимальные горизонтальные усилия.

Так же при надземной прокладке трубопроводов могут применяться низкие опоры, которые могут быть выполнены из металла или низких бетонных блоков. В местах пересечения такой трассы с пешеходными дорожками устанавливают специальные мостики. А при пересечении с автодорогами - или выполняют компенсатор нужной высоты или под дорогой прокладывают канал для прохода труб.