Старт в науке. Решение простых линейных уравнений

Старт в науке. Решение простых линейных уравнений

В этом видео мы разберём целый комплект линейных уравнений, которые решаются по одному и тому же алгоритму — потому и они и называются простейшими.

Для начала определимся: что такое линейное уравнение и какое их них называть простейшим?

Линейное уравнение — такое, в котором присутствует лишь одна переменная, причём исключительно в первой степени.

Под простейшим уравнением подразумевается конструкция:

Все остальные линейные уравнения сводятся к простейшим с помощью алгоритма:

  1. Раскрыть скобки, если они есть;
  2. Перенести слагаемые, содержащие переменную, в одну сторону от знака равенства, а слагаемые без переменной — в другую;
  3. Привести подобные слагаемые слева и справа от знака равенства;
  4. Разделить полученное уравнение на коэффициент при переменной $x$ .

Разумеется, этот алгоритм помогает не всегда. Дело в том, что иногда после всех этих махинаций коэффициент при переменной $x$ оказывается равен нулю. В этом случае возможны два варианта:

  1. Уравнение вообще не имеет решений. Например, когда получается что-нибудь в духе $0\cdot x=8$, т.е. слева стоит ноль, а справа — число, отличное от нуля. В видео ниже мы рассмотрим сразу несколько причин, по которым возможна такая ситуация.
  2. Решение — все числа. Единственный случай, когда такое возможно — уравнение свелось к конструкции $0\cdot x=0$. Вполне логично, что какой бы $x$ мы ни подставили, все равно получится «ноль равен нулю», т.е. верное числовое равенство.

А теперь давайте посмотрим, как всё это работает на примере реальных задач.

Примеры решения уравнений

Сегодня мы занимаемся линейными уравнениями, причем только простейшими. Вообще, под линейным уравнением подразумевается всякое равенство, содержащее в себе ровно одну переменную, и она идет лишь в первой степени.

Решаются такие конструкции примерно одинаково:

  1. Прежде всего необходимо раскрыть скобки, если они есть (как в нашем последнем примере);
  2. Затем свести подобные
  3. Наконец, уединить переменную, т.е. всё, что связано с переменной — слагаемые, в которых она содержится — перенести в одну сторону, а всё, что останется без неё, перенести в другую сторону.

Затем, как правило, нужно привести подобные с каждой стороны полученного равенства, а после этого останется лишь разделить на коэффициент при «иксе», и мы получим окончательный ответ.

В теории это выглядит красиво и просто, однако на практике даже опытные ученики старших классов могут допускать обидные ошибки в достаточно простых линейных уравнениях. Обычно ошибки допускаются либо при раскрытии скобок, либо при подсчёте «плюсов» и «минусов».

Кроме того, бывает так, что линейное уравнение вообще не имеет решений, или так, что решением является вся числовая прямая, т.е. любое число. Эти тонкости мы и разберем в сегодняшнем уроке. Но начнем мы, как вы уже поняли, с самых простых задач.

Схема решения простейших линейных уравнений

Для начала давайте я еще раз напишу всю схему решения простейших линейных уравнений:

  1. Раскрываем скобки, если они есть.
  2. Уединяем переменные, т.е. все, что содержит «иксы» переносим в одну сторону, а без «иксов» — в другую.
  3. Приводим подобные слагаемые.
  4. Разделяем все на коэффициент при «иксе».

Разумеется, эта схема работает не всегда, в ней есть определенные тонкости и хитрости, и сейчас мы с ними и познакомимся.

Решаем реальные примеры простых линейных уравнений

Задача №1

На первом шаге от нас требуется раскрыть скобки. Но их в этом примере нет, поэтому пропускаем данный этап. На втором шаге нам нужно уединить переменные. Обратите внимание: речь идет лишь об отдельных слагаемых. Давайте запишем:

Приводим подобные слагаемые слева и справа, но тут уже это сделано. Поэтому переходим к четвертому шагу: разделить на коэффициент:

\[\frac{6x}{6}=-\frac{72}{6}\]

Вот мы и получили ответ.

Задача №2

В этой задаче мы можем наблюдать скобки, поэтому давайте раскроем их:

И слева и справа мы видим примерно одну и ту же конструкцию, но давайте действовать по алгоритму, т.е. уединяем переменные:

Приведем подобные:

При каких корнях это выполняется. Ответ: при любых. Следовательно, можно записать, что $x$ — любое число.

Задача №3

Третье линейное уравнение уже интересней:

\[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

Тут есть несколько скобок, однако они ни на что не умножаются, просто перед ними стоят различные знаки. Давайте раскроем их:

Выполняем второй уже известный нам шаг:

\[-x+x+2x=15-6-12+3\]

Посчитаем:

Выполняем последний шаг — делим все на коэффициент при «икс»:

\[\frac{2x}{x}=\frac{0}{2}\]

Что необходимо помнить при решении линейных уравнений

Если отвлечься от слишком простых задач, то я бы хотел сказать следующее:

  • Как я говорил выше, далеко не каждое линейное уравнение имеет решение — иногда корней просто нет;
  • Даже если корни есть, среди них может затесаться ноль — ничего страшного в этом нет.

Ноль — такое же число, как и остальные, не стоит его как-то дискриминировать или считать, что если у вас получился ноль, то вы что-то сделали неправильно.

Еще одна особенность связана с раскрытием скобок. Обратите внимание: когда перед ними стоит «минус», то мы его убираем, однако в скобках знаки меняем на противоположные . А дальше мы можем раскрывать ее по стандартным алгоритмам: мы получим то, что видели в выкладках выше.

Понимание этого простого факта позволит вам не допускать глупые и обидные ошибки в старших классах, когда выполнение подобных действий считается самим собой разумеющимся.

Решение сложных линейных уравнений

Перейдем к более сложным уравнениям. Теперь конструкции станут сложнее и при выполнении различных преобразований возникнет квадратичная функция. Однако не стоит этого бояться, потому что если по замыслу автора мы решаем линейное уравнение, то в процессе преобразования все одночлены, содержащие квадратичную функцию, обязательно сократятся.

Пример №1

Очевидно, что первым делом нужно раскрыть скобки. Давайте это сделаем очень аккуратно:

Теперь займемся уединением:

\[-x+6{{x}^{2}}-6{{x}^{2}}+x=-12\]

Приводим подобные:

Очевидно, что у данного уравнения решений нет, поэтому в ответе так и запишем:

\[\varnothing \]

или корней нет.

Пример №2

Выполняем те же действия. Первый шаг:

Перенесем все, что с переменной, влево, а без нее — вправо:

Приводим подобные:

Очевидно, что данное линейное уравнение не имеет решения, поэтому так и запишем:

\[\varnothing \],

либо корней нет.

Нюансы решения

Оба уравнения полностью решены. На примере этих двух выражений мы ещё раз убедились, что даже в самых простых линейных уравнениях всё может быть не так просто: корней может быть либо один, либо ни одного, либо бесконечно много. В нашем случае мы рассмотрели два уравнения, в обоих корней просто нет.

Но я бы хотел обратить ваше внимание на другой факт: как работать со скобками и как их раскрывать, если перед ними стоит знак «минус». Рассмотрим вот это выражение:

Прежде чем раскрывать, нужно перемножить всё на «икс». Обратите внимание: умножается каждое отдельное слагаемое . Внутри стоит два слагаемых — соответственно, два слагаемых и умножается.

И только после того, когда эти, казалось бы, элементарные, но очень важные и опасные преобразования выполнены, можно раскрывать скобку с точки зрения того, что после неё стоит знак «минус». Да, да: только сейчас, когда преобразования выполнены, мы вспоминаем, что перед скобками стоит знак «минус», а это значит, что все, что в низ, просто меняет знаки. При этом сами скобки исчезают и, что самое главное, передний «минус» тоже исчезает.

Точно также мы поступаем и со вторым уравнением:

Я не случайно обращаю внимание на эти мелкие, казалось бы, незначительные факты. Потому что решение уравнений — это всегда последовательность элементарных преобразований, где неумение чётко и грамотно выполнять простые действия приводит к тому, что ученики старших классов приходят ко мне и вновь учатся решать вот такие простейшие уравнения.

Разумеется, придёт день, и вы отточите эти навыки до автоматизма. Вам уже не придётся каждый раз выполнять столько преобразований, вы всё будете писать в одну строчку. Но пока вы только учитесь, нужно писать каждое действие отдельно.

Решение ещё более сложных линейных уравнений

То, что мы сейчас будем решать, уже сложно назвать простейшими задача, однако смысл остается тем же самым.

Задача №1

\[\left(7x+1 \right)\left(3x-1 \right)-21{{x}^{2}}=3\]

Давайте перемножим все элементы в первой части:

Давайте выполним уединение:

Приводим подобные:

Выполняем последний шаг:

\[\frac{-4x}{4}=\frac{4}{-4}\]

Вот наш окончательный ответ. И, несмотря на то, что у нас в процессе решения возникали коэффициенты с квадратичной функцией, однако они взаимно уничтожились, что делает уравнение именно линейным, а не квадратным.

Задача №2

\[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

Давайте аккуратно выполним первый шаг: умножаем каждый элемент из первой скобки на каждый элемент из второй. Всего должно получиться четыре новых слагаемых после преобразований:

А теперь аккуратно выполним умножение в каждом слагаемом:

Перенесем слагаемые с «иксом» влево, а без — вправо:

\[-3x-4x+12{{x}^{2}}-12{{x}^{2}}+6x=-1\]

Приводим подобные слагаемые:

Мы вновь получили окончательный ответ.

Нюансы решения

Важнейшее замечание по поводу этих двух уравнений состоит в следующем: как только мы начинаем умножать скобки, в которых находится более чем оно слагаемое, то выполняется это по следующему правилу: мы берем первое слагаемое из первой и перемножаем с каждым элементом со второй; затем берем второй элемент из первой и аналогично перемножаем с каждым элементом со второй. В итоге у нас получится четыре слагаемых.

Об алгебраической сумме

На последнем примере я хотел бы напомнить ученикам, что такое алгебраическая сумма. В классической математике под $1-7$ мы подразумеваем простую конструкцию: из единицы вычитаем семь. В алгебре же мы подразумеваем под этим следующее: к числу «единица» мы прибавляем другое число, а именно «минус семь». Этим алгебраическая сумма отличается от обычной арифметической.

Как только при выполнении всех преобразований, каждого сложения и умножения вы начнёте видеть конструкции, аналогичные вышеописанным, никаких проблем в алгебре при работе с многочленами и уравнениями у вас просто не будет.

В заключение давайте рассмотрим ещё пару примеров, которые будут ещё более сложными, чем те, которые мы только что рассмотрели, и для их решения нам придётся несколько расширить наш стандартный алгоритм.

Решение уравнений с дробью

Для решения подобных заданий к нашему алгоритму придется добавить еще один шаг. Но для начала я напомню наш алгоритм:

  1. Раскрыть скобки.
  2. Уединить переменные.
  3. Привести подобные.
  4. Разделить на коэффициент.

Увы, этот прекрасный алгоритм при всей его эффективности оказывается не вполне уместным, когда перед нами дроби. А в том, что мы увидим ниже, у нас и слева, и справа в обоих уравнениях есть дробь.

Как работать в этом случае? Да всё очень просто! Для этого в алгоритм нужно добавить ещё один шаг, который можно совершить как перед первым действием, так и после него, а именно избавиться от дробей. Таким образом, алгоритм будет следующим:

  1. Избавиться от дробей.
  2. Раскрыть скобки.
  3. Уединить переменные.
  4. Привести подобные.
  5. Разделить на коэффициент.

Что значит «избавиться от дробей»? И почему выполнять это можно как после, так и перед первым стандартным шагом? На самом деле в нашем случае все дроби являются числовыми по знаменателю, т.е. везде в знаменателе стоит просто число. Следовательно, если мы обе части уравнения домножим на это число, то мы избавимся от дробей.

Пример №1

\[\frac{\left(2x+1 \right)\left(2x-3 \right)}{4}={{x}^{2}}-1\]

Давайте избавимся от дробей в этом уравнении:

\[\frac{\left(2x+1 \right)\left(2x-3 \right)\cdot 4}{4}=\left({{x}^{2}}-1 \right)\cdot 4\]

Обратите внимание: на «четыре» умножается все один раз, т.е. если у вас две скобки, это не значит, что каждую из них нужно умножать на «четыре». Запишем:

\[\left(2x+1 \right)\left(2x-3 \right)=\left({{x}^{2}}-1 \right)\cdot 4\]

Теперь раскроем:

Выполняем уединение переменной:

Выполняем приведение подобных слагаемых:

\[-4x=-1\left| :\left(-4 \right) \right.\]

\[\frac{-4x}{-4}=\frac{-1}{-4}\]

Мы получили окончательное решение, переходим ко второму уравнению.

Пример №2

\[\frac{\left(1-x \right)\left(1+5x \right)}{5}+{{x}^{2}}=1\]

Здесь выполняем все те же действия:

\[\frac{\left(1-x \right)\left(1+5x \right)\cdot 5}{5}+{{x}^{2}}\cdot 5=5\]

\[\frac{4x}{4}=\frac{4}{4}\]

Задача решена.

Вот, собственно, и всё, что я хотел сегодня рассказать.

Ключевые моменты

Ключевые выводы следующие:

  • Знать алгоритм решения линейных уравнений.
  • Умение раскрывать скобки.
  • Не стоит переживать, если где-то у вас появляются квадратичные функции, скорее всего, в процессе дальнейших преобразований они сократятся.
  • Корни в линейных уравнениях, даже самых простых, бывают трех типов: один единственный корень, вся числовая прямая является корнем, корней нет вообще.

Надеюсь, этот урок поможет вам освоить несложную, но очень важную для дальнейшего понимания всей математики тему. Если что-то непонятно, заходите на сайт, решайте примеры, представленные там. Оставайтесь с нами, вас ждет еще много интересного!

Уравнение – это математическое выражение, являющееся равенством, содержащее неизвестное. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например: соотношение вида (x – 1)2 = (x – 1)(x – 1) выполняется при всех значениях x.

Если уравнение, содержащее неизвестное x, выполняется только при определенных, а не при всех значениях x, как в случае тождества, то может оказаться полезным определить те значения x, при которых это уравнение справедливо. Такие значения x называются корнями или решениями уравнения. Например, число 5 является корнем уравнения 2x + 7= 17.

В разделе математики, который называется теорией уравнений, основным предметом изучения являются методы решения уравнений. В школьном курсе алгебры уравнениям уделяется большое внимание.

История изучения уравнений насчитывает много веков. Самыми известными математиками, внесшими вклад в развитие теории уравнений, были:

Архимед (около 287–212 до н. э.) - древнегреческий ученый, математик и механик. При исследовании одной задачи, сводящейся к кубическому уравнению, Архимед выяснил роль характеристики, которая позже получила название дискриминанта.

Франсуа Виет жил в XVI в. Он внес большой вклад в изучение различных проблем математики. В частности, он ввел буквенные обозначения коэффициентов уравнения и установил связь между корнями квадратного уравнения.

Леонард Эйлер (1707 – 1783) - математик, механик, физик и астроном. Автор св. 800 работ по математическаму анализу, дифференциальных уравнений, геометрии, теории чисел, приближённым вычислениям, небесной механике, математике, оптике, баллистике, кораблестроению, теории музыки, и т. д. Оказал значительное влияниена развитие науки. Вывел формулы (Формулы Эйлера), выражающие тригонометрические функции переменного х через показательную функцию.

Лагранж Жозеф Луи (1736 - 1813 гг.), французский математик и механик. Ему принадлежат выдающиеся исследования, среди них исследования по алгебре (симметрической функции корней уравнения, по дифференциальным уравнениям (теория особых решений, метод вариации постоянных).

Ж. Лагранж и А. Вандермонд - французские математики. В 1771 г. впервые применили способ решения систем уравнений (способ подстановки).

Гаусс Карл Фридрих (1777 -1855 гг.) - немецкий математик. Написал книгу, в которой излагается теория уравнений деления круга (т. е. уравнений xn - 1 = 0), которая во многом была прообразом Галуа теории. Помимо общих методов решения этих уравнений, установил связь между ними и построением правильных многоугольников. Он, впервые после древнегреческих учёных, сделал значительный шаг вперёд в этом вопросе, а именно: нашёл все те значения n, для которых правильный n-угольник можно построить циркулем и линейкой. Изучал способ сложения. Сделал вывод, что системы уравнений можно между собой складывать, делить, и умножать.

О. И. Сомов – обогатил разные части математики важными и многочисленными трудами, среди них теория определённых алгебраических уравнений высших степеней.

Галуа Эварист (1811-1832 гг.), - французский математик. Основной его заслугой является формулировка комплекса идей, к которым он пришёл в связи с продолжением исследований о разрешимости алгебраических уравнений, начатых Ж. Лагранжем, Н. Абелем и др. , создал теорию алгебраических уравнений высших степеней с одним неизвестным.

А. В. Погорелов (1919 – 1981 гг.) - В его творчестве связаны геометрические методы с аналитическими методами теории дифференциальных уравнений с частными производными. Его труды оказали существенное влияние также на теорию нелинейных дифференциальных уравнений.

П. Руффини - итальянский математик. Посвятил ряд работ, доказательству неразрешимости уравнения 5-й степени, систематически использует замкнутость множества подстановок.

Не смотря на то, что ученые давно изучают уравнения, науке не известно, как и когда у людей возникла необходимость использовать уравнения. Известно только, что задачи, приводящие к решению простейших уравнений, люди решали с того времени, как стали людьми. Еще 3 - 4 тысячи лет до н. э. египтяне и вавилоняне умели решать уравнения. Правило решения этих уравнений, совпадает с современным, но неизвестно, как они до этого дошли.

В Древнем Египте и Вавилоне использовался метод ложного положения. Уравнение первой степени с одним неизвестным можно привести всегда к виду ах + Ь = с, в котором а, Ь, с целые числа. По правилам арифметических действий ах = с - b,

Если Ь > с, то с b число отрицательное. Отрицательные числа были египтянам и многим другим более поздним народам неизвестны (равноправно с положительными числами их стали употреблять в математике только в семнадцатом веке). Для решения задач, которые мы теперь решаем уравнениями первой степени, был изобретен метод ложного положения. В папирусе Ахмеса 15 задач решается этим методом. Египтяне имели особый знак для обозначения неизвестного числа, который до недавнего прошлого читали «хау» и переводили словом «куча» («куча» или «неизвестное количество» единиц). Теперь читают немного менее неточно: «ага». Способ решения, примененный Ахмесом, называется методом одного ложного положения. При помощи этого метода решаются уравнения вида ах = b. Этот способ заключается в том, что каждую часть уравнения делят на а. Его применяли как египтяне, так и вавилоняне. У разных народов применялся метод двух ложных положений. Арабами этот метод был механизирован и получен ту форму, в которой он перешел в учебники европейских народов, в том числе в «Арифметику» Магницкого. Магницкий называет способ решения «фальшивым правилом» и пишет в части своей книги, излагающей этот метод:

Зело бо хитра есть сия часть, Яко можеши ею все класть. Не токмо что есть во гражданстве, Но и высших наук в пространстве, Яже числятся в сфере неба, Якоже мудрым есть потреба.

Содержание стихов Магницкого можно вкратце передать так: эта часть арифметики весьма хитрая. При помощи ее можно вычислить не только то, что понадобится в житейской практике, но она решает и вопросы «высшие», которые встают перед «мудрыми». Магницкий пользуется «фальшивым правилом» в форме, какую ему придали арабы, называя его «арифметикой двух ошибок» или «методой весов». Индийские математики часто давали задачи в стихах. Задача о лотосе:

Над озером тихим, с полмеры над водой, Был виден лотоса цвет. Он рос одиноко, и ветер волной Нагнул его в сторону, и уж нет

Цветка над водой. Нашёл его глаз рыбака В двух мерах от места, где рос. Сколько озера здесь вода глубока? Тебе предложу я вопрос.

Виды уравнений

Линейные уравнения

Линейные уравнения – это уравнения вида: ах + b = 0, где a и b – некоторые постоянные. Если а не равно нулю, то уравнение имеет один единственный корень: х = - b: а (ах + b; ах = - b; х = - b: а.).

Например: решить линейное уравнение: 4х + 12 = 0.

Решение: Т. к а = 4, а b = 12, то х = - 12: 4; х = - 3.

Проверка: 4 (- 3) + 12 = 0; 0 = 0.

Т. к 0 = 0, то -3 является корнем исходного уравнения.

Ответ. х = -3

Если а равно нулю, и b равно нулю, то корнем уравнения ах + b = 0 является любое число.

Например:

0 = 0. Т. к 0 равно 0, то корнем уравнения 0х + 0 = 0 является любое число.

Если а равно нулю, а b не равно нулю, то уравнение ах + b = 0 не имеет корней.

Например:

0 = 6. Т. к 0 не равно 6, то 0х – 6 = 0 не имеет корней.

Системы линейных уравнений.

Система линейных уравнений – это система, все уравнения которой линейные.

Решить систему - значит найти все ее решения.

Прежде чем решать систему линейных уравнений, можно определить число её решений.

Пусть дана система уравнений: {а1х + b1y = с1, {а2х + b2y = c2.

Если а1 делённое на а2 не равно b1 делённое на b2, то система имеет одно единственное решение.

Если а1 делённое на а2 равно b1 делённое на b2, но равно с1 делённое на с2, то система не имеет решений.

Если а1 делённое на а2 равно b1 делённое на b2, и равно с1 делённое на с2, то система имеет бесконечно много решений.

Система уравнений, имеющая, по крайней мере, одно решение, называется совместной.

Совместная система называется определенной, если она имеет конечное число решений, и неопределенной, если множество ее решений бесконечно.

Система, не имеющая ни одного решения, называется несовместной или противоречивой.

Способы решения линейных уравнений

Всего есть несколько способов решения линейных уравнений:

1) Метод подбора. Это самый простейший способ. Он заключается в том, что подбирают все допустимые значения неизвестного путём перечисления.

Например:

Решить уравнение.

Пусть х = 1. Тогда

4 = 6. Т. к 4 не равно 6, то наше предположение, что х = 1 было неверным.

Пусть х = 2.

6 = 6. Т. к 6 равно 6, то наше предположение, что х = 2 было верным.

Ответ: х = 2.

2) Способ упрощения

Этот способ заключается в том, что все члены содержащие неизвестное переносим в левую часть, а известные в правую с противоположным знаком, приводим подобные, и делим обе части уравнения на коэффициент при неизвестном.

Например:

Решить уравнение.

5х – 4 = 11 + 2х;

5х – 2х = 11 + 4;

3х = 15; : (3) х = 5.

Ответ. х = 5.

3) Графический способ.

Он заключается в том, что строится график функций данного уравнения. Т. к в линейном уравнение у = 0, то график будет параллелен оси ординат. Точка пересечения графика с осью абсцисс будет решением данного уравнения.

Например:

Решить уравнение.

Пусть у = 7. Тогда у = 2х + 3.

Построим график функций обоих уравнений:

Способы решения систем линейных уравнений

В седьмом классе изучают три способа решения систем уравнений:

1) Способ подстановки.

Этот способ заключается в том, что в одном из уравнений выражают одно неизвестное через другое. Полученное выражение подставляют в другое уравнение, которое после этого обращается в уравнение с одним неизвестным, затем решают его. Получившееся значение этого неизвестного подставляют в любое уравнение исходной системы и находят значение второго неизвестного.

Например.

Решить систему уравнений.

5х - 2у - 2 = 1.

3х + у = 4; у = 4 - 3х.

Подставим полученное выражение в другое уравнение:

5х – 2(4 – 3х) -2 = 1;

5х – 8 + 6х = 1 + 2;

11х = 11; : (11) х = 1.

Подставим полученное значение в уравнение 3х + у = 4.

3 · 1 + у = 4;

3 + у = 4; у = 4 – 3; у = 1.

Проверка.

/3 · 1 + 1 = 4,

\5 · 1 – 2 · 1 – 2 = 1;

Ответ: х = 1; у = 1.

2) Способ сложения.

Этот способ заключается в том, что если данная система состоит из уравнений, которые при почленном сложении образуют уравнение с одним неизвестным, то решив это уравнение, мы получим значение одного из неизвестных. Получившееся значение этого неизвестного подставляют в любое уравнение исходной системы и находят значение второго неизвестного.

Например:

Решить систему уравнений.

/3у – 2х = 5,

\5х – 3у = 4.

Решим полученное уравнение.

3х = 9; : (3) х = 3.

Подставим полученное значение в уравнение 3у – 2х = 5.

3у – 2 · 3 = 5;

3у = 11; : (3) у = 11/3; у = 3 2/3.

Итак, х = 3; у = 3 2/3.

Проверка.

/3 · 11/3 – 2 · 3 = 5,

\5 · 3 – 3 · 11/ 3 = 4;

Ответ. х = 3; у = 3 2/3

3) Графический способ.

Этот способ основан на том, что в одной системе координат строятся графики уравнений. Если графики уравнения пересекаются, то координаты точки пересечения являются решением данной системы. Если графики уравнения являются параллельными прямыми, то данная система не имеет решений. Если графики уравнений сольются в одну прямую, то система имеет бесконечно много решений.

Например.

Решить систему уравнений.

18х + 3у - 1 = 8.

2х - у = 5; 18х + 3y - 1 = 8;

У = 5 - 2х; 3у = 9 - 18х; : (3) у = 2х - 5. у = 3 - 6х.

Построим графики функций у = 2х - 5 и у = 3 - 6х на одной системе координат.

Графики функций у = 2х - 5 и у = 3 - 6х пересекаются в точке А (1; -3).

Следовательно решением данной системы уравнений будет х = 1 и у = -3.

Проверка.

2 · 1 - (- 3) = 5,

18 · 1 + 3 · (-3) - 1 = 8.

18 - 9 – 1 = 8;

Ответ. х = 1; у = -3.

Заключение

На основании всего выше изложенного можно сделать вывод, что уравнения необходимы в современном мире не только для решения практических задач, но и в качестве научного инструмента. Поэтому так много ученых изучали этот вопрос и продолжают изучать.

Как правило, уравнения появляются в задачах, в которых требуется найти некую величину. Уравнение позволяет сформулировать задачу на языке алгебры. Решив уравнение, мы получим значение нужной величины, которая называется неизвестной. «У Андрея в кошельке несколько рублей. Если умножить это число на 2, а затем вычесть 5, получится 10. Сколько денег у Андрея?» Обозначим неизвестную сумму денег за х и запишем уравнение: 2х-5=10.

Чтобы говорить о способах решения уравнений , сначала нужно определить основные понятия и познакомиться с общепринятыми обозначениями. Для разных типов уравнений существуют различные алгоритмы их решения. Проще всего решаются уравнения первой степени с одной неизвестной. Многим со школы знакома формула для решения квадратных уравнений. Приемы высшей математики помогут решить уравнения более высокого порядка. Множество чисел, на которых определено уравнение, тесно связано с его решениями. Также интересна взаимосвязь между уравнениями и графиками функций, так как представление уравнений в графическом виде великолепно помогает в их .

Описание . Уравнение - это математическое равенство с одной или несколькими неизвестными величинами, например 2х+3у=0.

Выражения по обе стороны знака равенства называются левой и правой частями уравнения . Буквами латинского алфавита обозначаются неизвестные. Хотя число неизвестных может быть любым, далее мы расскажем только об уравнениях с одной неизвестной, которую будем обозначать за х.

Степень уравнения - это максимальная степень, в которую возводится неизвестная. Например,
$3x^4+6x-1=0$ - уравнение четвертой степени, $x-4x^2+6x=8$ - уравнение второй степени.

Числа, на которые умножается неизвестная, называются коэффициентами . В предыдущем примере неизвестная в четвертой степени имеет коэффициент 3. Если при замене х на это число выполняется заданное равенство, то говорят, что это число удовлетворяет уравнению. Оно называется решением уравнения , или его корнем. Например, 3 является корнем, или решением, уравнения 2х+8=14, так как 2*3+8=6+8=14.

Решение уравнений . Допустим, что мы хотим решить уравнение 2х+5=11.

Можно подставить в него какое-нибудь значение х, например х=2. Заменим х на 2 и получим: 2*2+5=4+5=9.

Здесь что-то не так, потому что в правой части уравнения мы должны были получить 11. Попробуем х=3: 2*3+5=6+5=11.

Ответ верный. Получается, что если неизвестная принимает значение 3, то равенство выполняется . Следовательно, мы показали, что число 3 является решением уравнения.

Способ, который мы использовали для решения этого уравнения, называется методом подбора . Очевидно, что он неудобен в использовании. Более того, его даже нельзя назвать методом. Чтобы убедиться в этом, достаточно попробовать применить его к уравнению вида $x^4-5x^2+16=2365$.

Методы решения . При существуют так называемые «правила игры», с которыми будет полезно ознакомиться. Наша цель - определить значение неизвестной, которое удовлетворяет уравнению. Поэтому нужно каким-либо способом выделить неизвестную. Для этого необходимо перенести члены уравнения из одной его части в другую. Первое правило решения уравнений таково…

1. При переносе члена уравнения из одной части в другую его знак меняется на противоположный: плюс меняется на минус и наоборот. Рассмотрим в качестве примера уравнение 2х+5=11. Перенесем 5 из левой части в правую: 2х=11-5. Уравнение примет вид 2х=6.

Перейдем ко второму правилу.
2. Обе части уравнения можно умножать и делить на число, не равное нулю. Применим это правило к нашему уравнению: $x=\frac62=3$. В левой части равенства осталась только неизвестная х, следовательно, мы нашли ее значение и решили уравнение.

Мы только что рассмотрели простейшую задачку - линейное уравнение с одной неизвестной . Уравнения этого типа всегда имеют решение, более того, их всегда можно решить с помощью простейших операций: сложения, вычитания, умножения и деления. Увы, не все уравнения столь же просты. Более того, степень их сложности возрастает очень быстро. Например, уравнения второй степени легко решит любой ученик средней школы, но способы решения систем линейных уравнений или уравнений высших степеней изучаются только в старших классах.

Уравнение, представляющее собой квадратный трехчлен, обыкновенно называется квадратным уравнением. С точки зрения алгебры оно описывается формулой a*x^2+b*x+c=0. В данной формуле х - это неизвестное, которое требуется найти (его называют свободной переменной); a, b и c - числовые коэффициенты. В отношении компонентов указанной существует ряд ограничений: так, коэффициент а не должен быть равен 0.

Решение уравнения: понятие дискриминанта

Значение неизвестного х, при котором квадратное уравнение превратится в верное равенство, называют корнем такого уравнения. Для того чтобы решить квадратное уравнение, необходимо сначала найти значение специального коэффициента - дискриминанта, который покажет количество корней у рассматриваемого равенства. Дискриминант вычисляется по формуле D=b^2-4ac. При этом результат вычисления может оказаться положительным, отрицательным или равным нулю.

При этом следует иметь в виду, что понятие требует, чтобы лишь коэффициент а был строго отличающимся от 0. Следовательно, коэффициент b может быть равным 0, а само уравнение в этом случае вид a*x^2+c=0. В такой ситуации следует использовать значение коэффициента, равное 0, и в формулах расчета дискриминанта и корней. Так, дискриминант в этом случае будет рассчитываться как D=-4ac.

Решение уравнения при положительном дискриминанте

В случае, если дискриминант квадратного уравнения оказался положительным, из этого можно сделать вывод, что данное равенство имеет два корня. Указанные корни можно вычислить по следующей формуле: x=(-b±√(b^2-4ac))/2a=(-b±√D)/2a. Таким образом, для расчета значения корней квадратного уравнения при положительном значении дискриминанта используются известные значения коэффициентов, имеющихся в . Благодаря использованию суммы и разности в формуле расчета корней результатом вычислений будут два значения, обращающие рассматриваемое равенство в верное.

Решение уравнения при нулевом и отрицательном дискриминанте

В случае, если дискриминант квадратного уравнения оказался равным 0, можно сделать вывод о том, что указанное уравнение имеет один корень. Строго говоря, в этой ситуации корней у уравнения по-прежнему два, однако вследствие нулевого дискриминанта они будут равны между собой. В этом случае x=-b/2a. Если же в процессе вычислений значение дискриминанта оказывается отрицательным, следует сделать вывод о том, что рассматриваемое квадратное уравнение не имеет корней, то есть таких значений x, при которых оно обращается в верное равенство.