Строение и функции хромосом. Хромосомы

Строение и функции хромосом. Хромосомы

Хромосомы эукариот

Центромера

Первичная перетяжка

X. п., в которой локализуется центромера и которая делит хромосому на плечи.

Вторичные перетяжки

Морфологический признак, позволяющий идентифицировать отдельные хромосомы в наборе. От первичной перетяжки отличаются отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают короткими и длинными и локализуются в разных точках по длине хромосомы. У человека это 13, 14, 15, 21 и 22 хромосомы.

Типы строения хромосом

Различают четыре типа строения хромосом:

  • телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце);
  • акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);
  • субметацентрические (с плечами неравной длины, напоминающие по форме букву L);
  • метацентрические (V-образные хромосомы, обладающие плечами равной длины).

Тип хромосом является постоянным для каждой гомологичной хромосомы и может быть постоянным у всех представителей одного вида или рода .

Спутники (сателлиты)

Сателлит - это округлое или удлинённое тельце, отделённое от основной части хромосомы тонкой хроматиновой нитью, по диаметру равный или несколько меньший хромосоме. Хромосомы, обладающие спутником принято обозначать SAT-хромосомами. Форма, величина спутника и связывающей его нити постоянны для каждой хромосомы.

Зона ядрышка

Зоны ядрышка (организаторы ядрышка ) - специальные участки, с которыми связано появление некоторых вторичных перетяжек.

Хромонема

Хромонема - это спиральная структура, которую удаётся увидеть в декомпактизованных хромосомах через электронный микроскоп. Впервые наблюдалась Баранецким в 1880 году в хромосомах клеток пыльников традесканции , термин ввёл Вейдовский. Хромонема может состоять из двух, четырёх и более нитей, в зависимости от исследуемого объекта. Эти нити образуют спирали двух типов:

  • паранемическую (элементы спирали легко разъединить);
  • плектонемическую (нити плотно переплетаются).

Хромосомные перестройки

Нарушение структуры хромосом происходит в результате спонтанных или спровоцированных изменений (например, после облучения).

  • Генные (точковые) мутации (изменения на молекулярном уровне);
  • Аберрации (микроскопические изменения, различимые при помощи светового микроскопа):

Гигантские хромосомы

Такие хромосомы, для которых характерны огромные размеры, можно наблюдать в некоторых клетках на определённых стадиях клеточного цикла . Например, они обнаруживаются в клетках некоторых тканей личинок двукрылых насекомых (политенные хромосомы) и в ооцитах различных позвоночных и беспозвоночных (хромосомы типа ламповых щёток). Именно на препаратах гигантских хромосом удалось выявить признаки активности генов .

Политенные хромосомы

Впервые обнаружены Бальбиани в -го, однако их цитогенетическая роль была выявлена Костовым, Пайнтером, Гейтцем и Бауером. Содержатся в клетках слюнных желёз , кишечника , трахей , жирового тела и мальпигиевых сосудов личинок двукрылых .

Хромосомы типа ламповых щеток

Бактериальные хромосомы

Имеются данные о наличии у бактерий белков, связанных с ДНК нуклеоида , но гистонов у них не обнаружено.

Литература

  • Э. де Робертис, В. Новинский, Ф. Саэс Биология клетки. - M.: Мир, 1973. - С. 40-49.

См. также

Wikimedia Foundation . 2010 .

  • Хромченко Матвей Соломонович
  • Хроника

Смотреть что такое "Хромосомы" в других словарях:

    ХРОМОСОМЫ - (от хромо... и сома), органоиды клеточного ядра, являющиеся носителями генов и определяющие наследств, свойства клеток и организмов. Способны к самовоспроизведению, обладают структурной и функциональной индивидуальностью и сохраняют её в ряду… … Биологический энциклопедический словарь

    ХРОМОСОМЫ - [Словарь иностранных слов русского языка

    ХРОМОСОМЫ - (от хромо... и греч. soma тело) структурные элементы ядра клетки, содержащие ДНК, в которой заключена наследственная информация организма. В хромосомах в линейном порядке расположены гены. Самоудвоение и закономерное распределение хромосом по… … Большой Энциклопедический словарь

    ХРОМОСОМЫ - ХРОМОСОМЫ, структуры, несущие генетическую информацию об организме, которая содержится только в ядрах клеток ЭУКАРИОТОВ. Хромосомы нитеобразны, они состоят из ДНК и обладают специфическим набором ГЕНОВ. У каждого вида организмов есть характерное… … Научно-технический энциклопедический словарь

    Хромосомы - Структурные элементы ядра клетки, содержащие ДНК, в которой заключена наследственная информация организма. В хромосомах в линейном порядке расположены гены. В каждой клетке человска присутствует 46 хромосом, разделенных на 23 пары, из которых 22… … Большая психологическая энциклопедия

    Хромосомы - * храмасомы * chromosomes самовоспроизводящиеся элементы клеточного ядра, сохраняющие структурнофункциональную индивидуальность и окрашивающиеся основными красителями. Являются главными материальными носителями наследственной информации: генов… … Генетика. Энциклопедический словарь

ХРОМОСОМА


СТРОЕНИЕ ХРОМОСОМ

  • Схема строения хромосомы в поздней профазе - метафазе митоза:

1-хроматида;

2-центромера;

3-короткое плечо;

4-длинное плечо

ЦЕНТРОМЕРА

  • ЦЕНТРОМЕРА (от центр + греч. meros - часть) - специализированный участок ДНК, в районе которого в стадии профазы и метафазы деления клетки соединяются две хроматиды, образовавшиеся в результате дупликации хромосомы.


ЗНАЧЕНИЕ ЦЕНТРОМЕРЫ

  • Центромера играет важную роль при расположении хромосом в виде метафазной пластинки

  • В процессе расхождения дочерних хромосом к полюсам клетки, так как при помощи центромеры каждая хроматида соединяется с нитями веретена деления.

  • Каждая центромера разделяет хромосому на два плеча.


ХРОМАТИДА

  • ХРОМАТИДА (от греч. chroma - цвет, краска + eidos - вид) - часть хромосомы от момента ее дупликации до разделения на две дочерние в анафазе, представляет собой нить молекулы ДНК соединенную с белками.

  • Хроматиды образуются в результате дупликации хромосом в процессе деления клетки.


  • Хромосомы имеются в ядрах всех клеток.

  • Каждая хромосома содержит наследственные инструкции - гены.


ГОМОЛОГИЧНЫЕ ХРОМОСОМЫ

  • От греч.Гомос - одинаковый

  • Гомологичные хромосомы - парные хромосомы, одинаковые по форме, размерам и набору генов.


ДИПЛОИДНЫЙ НАБОР ХРОМОСОМ

  • В клетках тела двуполых животных и растений каждая хромосома представлена двумя гомологичными хромосомами, происходящими одна от материнского, а другая от отцовского организма. Такой набор хромосом называют диплоидным (двойным )


ГАПЛОИДНЫЙ НАБОР ХРОМОСОМ

  • Половые клетки, образовавшиеся в результате мейоза, содержат только одну из двух гомологичных хромосом. Этот набор хромосом называют гаплоидным (одинарным).


ФУНКЦИИ ХРОМОСОМ

  • Осуществляют координацию и регуляцию процессов в клетке путем синтеза первичной структуры белка, информационной и рибосомальной РНК


ДИПЛОИДНЫЙ НАБОР ХРОМОСОМ У РАСТЕНИЙ


ДИПЛОИДНЫЙ НАБОР ХРОМОСОМ У ЖИВОТНЫХ

КОМАР – 6

ОКУНЬ – 28

ПЧЕЛА – 32

СВИНЬЯ – 38

МАКАК-РЕЗУС –42

КРОЛИК - 44

24-цветная FISH хромосом человека: a - метафазная пластинка (Рубцов Н. Б., Карамышева Т. В. Вестн. ВОГиС, 2000).


24-цветная FISH хромосом человека: b - pаскладка хромосом. (Рубцов Н. Б., Карамышева Т. В. Вестн. ВОГиС, 2000).


ВСЕ ХРОМОСОМЫ ЧЕЛОВЕКА


Наследственность и изменчивость в живой природе существуют благодаря хромосомам, генам, (ДНК). Хранится и передается в виде цепочки нуклеотидов в составе ДНК. Какая роль в этом явлении принадлежит генам? Что такое хромосома с точки зрения передачи наследственных признаков? Ответы на подобные вопросы позволяют разобраться в принципах кодирования и генетическом разнообразии на нашей планете. Во многом оно зависит от того, сколько хромосом входит в набор, от рекомбинации этих структур.

Из истории открытия «частиц наследственности»

Изучая под микроскопом клетки растений и животных, многие ботаники и зоологи еще в середине XIX века обратили внимание на тончайшие нити и мельчайшие кольцевидные структуры в ядре. Чаще других первооткрывателем хромосом называют немецкого анатома Вальтера Флемминга. Именно он применил анилиновые красители для обработки ядерных структур. Обнаруженное вещество Флемминг назвал "хроматином" за его способность к окрашиванию. Термин «хромосомы» в 1888 году ввел в научный оборот Генрих Вальдейер.

Одновременно с Флеммингом искал ответ на вопрос о том, что такое хромосома, бельгиец Эдуард ван Бенеден. Чуть раньше немецкие биологи Теодор Бовери и Эдуард Страсбургер провели серию экспериментов, доказывающих индивидуальность хромосом, постоянство их числа у разных видов живых организмов.

Предпосылки хромосомной теории наследственности

Американский исследователь Уолтер Саттон выяснил, сколько хромосом содержится в клеточном ядре. Ученый считал эти структуры носителями единиц наследственности, признаков организма. Саттон обнаружил, что хромосомы состоят из генов, с помощью которых потомкам от родителей передаются свойства и функции. Генетик в своих публикациях дал описания хромосомных пар, их движения в процессе деления клеточного ядра.

Независимо от американского коллеги, работы в том же направлении вел Теодор Бовери. Оба исследователя в своих трудах изучали вопросы передачи наследственных признаков, сформулировали основные положения о роли хромосом (1902-1903). Дальнейшая разработка теории Бовери-Саттона происходила в лаборатории нобелевского лауреата Томаса Моргана. Выдающийся американский биолог и его помощники установили ряд закономерностей размещения генов в хромосоме, разработали цитологическую базу, объясняющую механизм законов Грегора Менделя — отца-основателя генетики.

Хромосомы в клетке

Исследование строения хромосом началось после их открытия и описания в XIX веке. Эти тельца и нити содержатся в прокариотических организмах (безъядерных) и эукариотических клетках (в ядрах). Изучение под микроскопом позволило установить, что такое хромосома с морфологической точки зрения. Это подвижное нитевидное тельце, которое различимо в определенные фазы клеточного цикла. В интерфазе весь объем ядра занимает хроматин. В другие периоды различимы хромосомы в виде одной или двух хроматид.

Лучше видны эти образования во время клеточных делений — митоза или мейоза. В эукариотических клетках чаще можно наблюдать крупные хромосомы линейного строения. У прокариотов они меньше, хотя есть исключения. Клетки зачастую включают более одного типа хромосом, например свои собственные небольшие «частицы наследственности» есть в митохондриях и хлоропластах.

Формы хромосом

Каждая хромосома обладает индивидуальным строением, отличается от других особенностями окрашивания. При изучении морфологии важно определить положение центромеры, длину и размещение плеч относительно перетяжки. В набор хромосом обычно входят следующие формы:

  • метацентрические, или равноплечие, для которых характерно срединное расположение центромеры;
  • субметацентрические, или неравноплечие (перетяжка смещена в сторону одного из теломеров);
  • акроцентрические, или палочковидные, в них центромера находится практически на конце хромосомы;
  • точковые с трудно поддающейся определению формой.

Функции хромосом

Хромосомы состоят из генов — функциональных единиц наследственности. Теломеры — концы плеч хромосомы. Эти специализированные элементы служат для защиты от повреждения, препятствуют слипанию фрагментов. Центромера выполняет свои задачи при удвоении хромосом. На ней есть кинетохор, именно к нему крепятся структуры веретена деления. Каждая пара хромосом индивидуальна по месту расположения центромеры. Нити веретена деления работают таким образом, что в дочерние клетки отходит по одной хромосоме, а не обе. Равномерное удвоение в процессе деления обеспечивают точки начала репликации. Дупликация каждой хромосомы начинается одновременно в нескольких таких точках, что заметно ускоряет весь процесс деления.

Роль ДНК и РНК

Выяснить, что такое хромосома, какую функцию выполняет эта ядерная структура, удалось после изучения ее биохимического состава и свойств. В эукариотических клетках ядерные хромосомы образованы конденсированным веществом — хроматином. По данным анализа, в его состав входят высокомолекулярные органические вещества:

Нуклеиновые кислоты принимают самое непосредственное участие в биосинтезе аминокислот и белков, обеспечивают передачу наследственных признаков из поколения в поколение. ДНК содержится в ядре эукариотической клетки, РНК сосредоточена в цитоплазме.

Гены

Рентгеноструктурный анализ показал, что ДНК образует двойную спираль, цепи которой состоят из нуклеотидов. Они представляют собой углевод дезоксирибозу, фосфатную группу и одно из четырех азотистых оснований:


Участки спиралевидных дезоксирибонуклеопротеидных нитей — это гены, несущие закодированную информацию о последовательности аминокислот в белках или РНК. При размножении наследственные признаки от родителей потомству передаются в виде аллелей генов. Они определяют функционирование, рост и развитие конкретного организма. По мнению ряда исследователей, те участки ДНК, что не кодируют полипептиды, выполняют регулирующие функции. Геном человека может насчитывать до 30 тыс. генов.

Набор хромосом

Общее число хромосом, их особенности — характерный признак вида. У мухи-дрозофилы их количество — 8, у приматов — 48, у человека — 46. Это число является постоянным для клеток организмов, которые относятся к одному виду. Для всех эукариотов существует понятие «диплоидные хромосомы». Это полный набор, или 2n, в отличие от гаплоидного — половинного количества (n).

Хромосомы в составе одной пары гомологичны, одинаковы по форме, строению, местоположению центромер и других элементов. Гомологи имеют свои характерные особенности, которые их отличают от других хромосом в наборе. Окрашивание основными красителями позволяет рассмотреть, изучить отличительные черты каждой пары. присутствует в соматических же — в половых (так называемых гаметах). У млекопитающих и других живых организмов с гетерогаметным мужским полом формируются два вида половых хромосом: Х-хромосома и Y. Самцы обладают набором XY, самки — XX.

Хромосомный набор человека

Клетки организма человека содержат 46 хромосом. Все они объединяются в 23 пары, составляющие набор. Есть два типа хромосом: аутосомы и половые. Первые образуют 22 пары — общие для женщин и мужчин. От них отличается 23-я пара — половые хромосомы, которые в клетках мужского организма являются негомологичными.

Генетические черты связаны с половой принадлежностью. Для их передачи служат Y и Х-хромосома у мужчин, две X у женщин. Аутосомы содержат оставшуюся часть информации о наследственных признаках. Существуют методики, позволяющие индивидуализировать все 23 пары. Они хорошо различимы на рисунках, когда окрашены в определенный цвет. Заметно, что 22-я хромосома в геноме человека - самая маленькая. Ее ДНК в растянутом состоянии имеет длину 1,5 см и насчитывает 48 млн пар азотистых оснований. Специальные белки гистоны из состава хроматина выполняют сжатие, после чего нить занимает в тысячи раз меньше места в ядре клетки. Под электронным микроскопом гистоны в интерфазном ядре напоминают бусы, нанизанные на нить ДНК.

Генетические заболевания

Существует более 3 тыс. наследственных болезней разного типа, обусловленных повреждениями и нарушениями в хромосомах. К их числу относится синдром Дауна. Для ребенка с таким генетическим заболеванием характерно отставание в умственном и физическом развитии. При муковисцидозе происходит сбой в функциях желез внешней секреции. Нарушение ведет к проблемам с потоотделением, выделению и накоплению слизи в организме. Она затрудняет работу легких, может привести к удушью и летальному исходу.

Нарушение цветового зрения — дальтонизм — невосприимчивость к некоторым частям цветового спектра. Гемофилия приводит к ослаблению свертываемости крови. Непереносимость лактозы не позволяет организму человека усваивать молочный сахар. В кабинетах планирования семьи можно узнать о предрасположенности к тому или иному генетическому заболеванию. В крупных медицинских центрах есть возможность пройти соответствующее обследование и лечение.

Генотерапия — направление современной медицины, выяснение генетической причины наследственных заболеваний и ее устранение. С помощью новейших методов в патологические клетки вместо нарушенных вводят нормальные гены. В таком случае врачи избавляют больного не от симптомов, а от причин, вызвавших заболевание. Проводится только коррекция соматических клеток, методы генной терапии пока не применяются массово по отношению к половым клеткам.

Хромосомы - это интенсивно окрашенное тельце, состоящее из молекулы ДНК, связанной с белками-гистонами. Хромосомы формируются из хроматина в начале деления клеток (в профазе митоза), но лучше их изучать в метафазе митоза. Когда хромосомы располагаются в плоскости экватора и хорошо видны в световой микроскоп, ДНК в них достигают максимальной спирализации.

Хромосомы состоят из 2 сестринских хроматид (удвоенных молекул ДНК), соединенных друг с другом в области первичной перетяжки - центромеры. Центромера делит хромосому на 2 плеча. В зависимости от расположения центромеры хромосомы подразделяются на:

    метацентрические центромера расположена в середине хромосомы и плечи ее равны;

    субметацентрические центромера смещена от середины хромосом и одно плече короче другого;

    акроцентрические - центромера расположена близко к концу хромосомы и одно плечо значительно короче другого.

В некоторых хромосомах есть вторичные перетяжки, отделяющие от плеча хромосомы участок, называемый спутником, из которого в интерфазном ядре образуется ядрышко.

Правила хромосом

1. Постоянство числа. Соматические клетки организма каждого вида имеют строго определенное число хромосом (у человека -46, у кошки- 38, у мушки-дрозофилы - 8, у собаки -78. у курицы -78).

2. Парность. Каждая хромосома в соматических клетках с диплоидным набором имеет такую же гомологичную (одинаковую) хромосому, идентичную по размерам, форме, но неодинаковую по происхождению: одну - от отца, другую - от матери.

3. Индивидуальность. Каждая пара хромосом отличается от другой пары размерами, формой, чередованием светлых и темных полос.

4. Непрерывность. Перед делением клетки ДНК удваивается и в результате получается 2 сестринские хроматиды. После деления в дочерние клетки попадает по одной хроматиде и, таким о6разом, хромосомы непрерывны - от хромосомы образуется хромосома.

Все хромосомы подразделяются на аутосомы и половые хромосомы. Аутосомы - все хромосомы в клетках, за исключением половых хромосом, их 22 пары. Половые - это 23-я пара хромосом, определяющая формирование мужского и женского организма.

В соматических клетках имеется двойной (диплоидный) набор хромосом, в половых - гаплоидный (одинарный).

Определенный набор хромосом клетки, характеризующийся постоянством их числа, размером и формой, называется кариотипом.

Для того чтобы разобраться в сложном наборе хромосом, их располагают попарно по мере убывания их величины, с учетом положения центромеры и наличия вторичных перетяжек. Такой систематизированный кариотип называется идиограммой.

Впервые такая систематизация хромосом была предложена на конгрессе генетиков в Денвере (США, 1960 г.)

В 1971 г. в Париже классифицировали хромосомы по окраске и чередованию темных и светлых полос гетеро-и эухроматина.

Для изучения кариотипа генетики используют метод цитогенетического анализа, при котором можно диагностировать ряд наследственных заболеваний, связанных с нарушением числа и формы хромосом.

1.2. Жизненный цикл клетки.

Жизнь клетки от момента возникновения в результате деления до ее собственного деления или смерти называется жизненным циклом клетки. В течение всей жизни клетки растут, дифференцируются и выполняют специфические функции.

Жизнь клетки между делениями называется интерфазой. Интерфаза состоит из 3-х периодов: пресинтетического, синтетического и постсинтетического.

Пресuнтетический период следует сразу за делением. В это время клетка интенсивно растет, увеличивая количество митохондрий и рибосом.

В синтетический период происходит репликация (удвоение) количества ДНК, а также синтез РНК и белков.

В постсинmетический период клетка запасается энергией, синтезируются белки ахроматинов ого веретена, идет подготовка к митозу.

Существуют различные типы деления клеток: амитоз, митоз, мейоз.

Амитоз - прямое деление прокариотических клеток и некоторых клеток у человека.

Митоз - непрямое деление клеток, во время которого из хроматина образуются хромосомы. Путем митоза делятся соматические клетки эукариотических организмов, в результате чего дочерние клетки получают точно такой же набор хромосом, какой имела дочерняя клетка.

Митоз

Митоз состоит из 4-х фаз:

    Профаза - начальная фаза митоза. В это время начинается спирализация ДНК и укорочение хромосом, которые из тонких невидимых нитей хроматина становятся короткими толстыми, видимыми в световой микроскоп, и располагаются в виде клубка. Ядрышко и ядерная оболочка исчезает, и ядро распадается, центриоли клеточного центра расходятся по полюсам клетки, между ними растягиваются нити веретена деления.

    Метафаза - хромосомы движутся к центру, к ним прикрепляются нити веретена. Хромосомы располагаются в плоскости экватора. Они хорошо видны в микроскоп и каждая хромосома состоит из 2-х хроматид. В этой фазе можно сосчитать число хромосом в клетке.

    Анафаза - сестринские хроматиды (появившиеся в синтетическом периоде при удвоении ДНК) расходятся к полюсам.

    Телофаза (telos греч. - конец) противоположна профазе: хромосомы из коротких толстых видимых становятся тонкими длинными невидимыми в световой микроскоп, формируются ядерная оболочка и ядрышко. Заканчивается телофаза разделением цитоплазмы с образованием двух дочерних клеток.

Биологическое значение митоза заключается в следующем:

    дочерние клетки получают точно такой же набор хромосом, который был у материнской клетки, поэтому во всех клетках тела (соматических) поддерживается постоянное число хромосом.

    делятся все клетки, кроме половых:

    происходит рост организма в эмбриональном и постэмбриональном периодах;

    все функционально устаревшие клетки организма (эпителиальные клетки кожи, клетки крови, клетки слизистых оболочек и др.) заменяются новыми;

    происходят процессы регенерации (восстановления) утраченных тканей.

Схема митоза

При воздействии неблагоприятных условий на делящуюся клетку веретено деления может неравномерно растянуть хромосомы к полюсам, и тогда образуются новые клетки с разным набором хромосом, возникает патология соматических клеток (гетероплоидия аутосом), что приводит к болезни тканей, органов, организма.

). Хроматин неоднороден, и некоторые типы такой неоднородности видны под микроскопом. Тонкая структура хроматина в интерфазном ядре, определяемая характером укладки ДНК и ее взаимодействия с белками, играет важную роль в регуляции транскрипции генов и репликации ДНК и, возможно, клеточной дифференцировки .

Последовательности нуклеотидов ДНК, которые образуют гены и служат матрицей для синтеза мРНК , распределены по всей длине хромосом (отдельные гены, разумеется, слишком малы, чтобы их можно было видеть под микроскопом). К концу XX столетия примерно для 6000 генов было установлено, на какой хромосоме и в каком участке хромосомы они находятся и каков характер их сцепления (то есть положения друг относительно друга).

Неоднородность метафазных хромосом, как уже упоминалось, можно увидеть даже при световой микроскопии. При дифференциальном окрашивании по меньшей мере в 12 хромосомах обнаружены различия в ширине некоторых полос между гомологичными хромосомами ( рис. 66.3). Такие полиморфные участки состоят из некодирующих высокоповторяющихся последовательностей ДНК.

Методы молекулярной генетики сделали возможной идентификацию огромного числа меньших по размеру и потому не выявляемых при световой микроскопии полиморфных участков ДНК. Эти участки выявляют как полиморфизм длин рестрикционных фрагментов, варьирующие по числу тандемные повторы и полиморфизм коротких тандемных повторов (моно-, ди-, три- и тетрануклеотидных). Такая изменчивость фенотипически обычно не проявляется.

Однако полиморфизм служит удобным инструментом пренатальной диагностики благодаря сцеплению определенных маркеров с мутантными генами, вызывающими заболевания (например, при миопатии Дюшенна), а также при установлении зиготности близнецов , установлении отцовства и прогнозирования отторжения трансплантата .

Трудно переоценить значение таких маркеров, особенно широко распространенных в геноме высокополиморфных коротких тандемных повторов, для картирования генома человека. В частности, они позволяют установить точный порядок и характер взаимодействия локусов, играющих важную роль в обеспечении нормального онтогенеза и клеточной дифференцировки. Это касается и тех локусов, мутации в которых приводят к наследственным заболеваниям.

Различимые под микроскопом участки на коротком плече акроцентрических аутосом ( рис. 66.1) обеспечивают синтез рРНК и образование ядрышек , поэтому их называют районами ядрышкового организатора . В метафазе они неконденсированы и не окрашиваются. Районы ядрышкового организатора примыкают к находящимся на конце короткого плеча хромосомы конденсированным участкам хроматина - спутникам. Спутники не содержат генов и являются полиморфными участками.

В небольшой части клеток удается выявить другие деконденсированные в метафазе участки, так называемые ломкие участки , где могут происходить "полные" разрывы хромосомы. Клиническое значение имеют нарушения в единственном подобном участке, расположенном на конце длинного плеча Х-хромосомы. Такие нарушения вызывают синдром ломкой Х-хромосомы .

Другие примеры специализированных районов хромосом - теломеры и центромеры .

Пока точно не установлена роль гетерохроматина , на долю которого приходится значительная часть генома человека. Гетерохроматин конденсирован в течение практически всего клеточного цикла, он неактивен и реплицируется поздно. Большинство участков конденсированы и неактивны во всех клетках (), хотя другие, например Х-хромосома, могут быть как конденсированными и неактивными, так и деконденсированными и активными ( факультативный гетерохроматин). Если из-за хромосомных аберраций гены оказываются рядом с гетерохроматином, то активность таких генов может изменяться или даже блокироваться. Поэтому проявления хромосомных аберраций , таких, как дупликации или делеции, зависят не только от затронутых локусов, но и от типа хроматина в них. Многие хромосомные аномалии, не являющиеся летальными, затрагивают неактивные или инактивируемые участки генома. Возможно, этим объясняется, что трисомии по некоторым хромосомам или моносомии по Х-хромосоме совместимы с жизнью.

Проявления хромосомной аномалии зависят также от нового расположения структурных и регуляторных генов по отношению друг к другу и к гетерохроматину.

К счастью, многие структурные особенности хромосом удается надежно обнаружить цитологическими методами. В настоящее время существует ряд методов дифференциального окрашивания хромосом ( рис. 66.1 и рис. 66.3). Расположение и ширина полос идентичны в каждой паре гомологичных хромосом, за исключением полиморфных участков, поэтому окрашивание можно использовать в клинической цитогенетике для идентификации хромосом и выявления в них структурных нарушений.