Тарельчатые колонны: понятие, виды, выбор, изготовление своими руками. Основные типы ректификационных колонн Провальные тарелки для ректификационных колонн

Тарельчатые колонны: понятие, виды, выбор, изготовление своими руками. Основные типы ректификационных колонн Провальные тарелки для ректификационных колонн
Тарельчатые колонны: понятие, виды, выбор, изготовление своими руками. Основные типы ректификационных колонн Провальные тарелки для ректификационных колонн

Ректификация позволяет получить спирт высокой крепости и чистоты. Оба качества зависят от того, насколько хорошо человек, управляющий процессом, понимает его суть. Поэтому знать теорию ректификации надо каждому, кто хочет делать чистые и крепкие спиртные напитки на самогонном аппарате .

История ректификации

Начнем с процесса дистилляции, ведь именно он является предшественником ректификации. Нет точной информации о том, кто первый изобрел дистилляцию. В. Шнайдер, составитель словаря алхимических и фармацевтических терминов, считает, что данная заслуга принадлежит в первую очередь персам, которые использовали дистилляцию, чтобы получить розовую воду (эфир розы). Можно сделать вывод, что история дистилляции насчитывает более 3500 лет. Первоначально дистилляцией называли все процессы разделения смесей на компоненты. По мере их изучения процессы классифицировали и дали им наименование. Таким образом, в сейчас дистилляцией называют разделение веществ, основанное на испарении жидкости и последующей конденсации паров.


Аламбики были первыми аппаратами для дистилляции и конструкционно практически не изменились за несколько тысяч лет. Первоначально использовались, чтобы получать ароматные масла.

Наука не стояла на месте, процесс дистилляции тщательно изучался и совершенствовался. С начала XVI века наблюдалось большое количество работ по подбору испарительных кубов и системы обогрева аппаратов. Для обеспечения непрерывной работы колонны использовались водяные и песочные бани, применялись восковые свечи. Только к 1415 году впервые было предложено применять теплоизоляцию, а именно шерсть животных. В конце XVI века было выявлено преимущество водяного охлаждения конденсатора, до этого времени охлаждение было воздушным.

В период XVI по XIX век стремительно происходила модернизация аппаратурного оснащения. Исходя из инертности материалов по отношению к возгоняемым жидкостям, в перегонных кубах в качестве оптимальных использовались стекло и керамика, в дальнейшем нержавеющая сталь. В 1709 году впервые появились теории о дефлегмации (возвращении части сконденсировавшихся паров в колонну).

Результатом всех исследований и разработок стало изобретение первой ректификационной колонны непрерывного действия французскими инженерами Адамом, Бераром и Перье, получившие на нее патент в 1813 году. Она до сих пор соответствует современным ректификационным колоннам. С этого периода начинается история ректификации в науке и промышленности.

Понятие ректификации

Существуют различные определения ректификации.

Ректификация - это процесс разделения бинарных (двухкомпонентные смеси, например, спирт-вода) или многокомпонентных смесей за счет противоточного массо- и теплообмена между паром и жидкостью. Ректификация - разделение жидких смесей на практически чистые компоненты, отличающиеся по температуре кипения, путём многократных испарений жидкости и конденсации паров.

Несмотря на столь сложные формулировки, в процессе ректификации нет ничего трудного. Имея необходимое оборудование и базовые знания, ее с легкостью можно провести у себя на кухне.

Процесс ректификации

Э. Крель в своих трудах «Руководство по лабораторной перегонке» изложил основной принцип ректификации:

Обмен веществ (массообмен и теплообмен) происходит путем прохождения паровой смеси через наполнитель колонны.

На скорость и качество этого процесса влияют следующие факторы:

  1. Коэффициент диффузии (прохождение паровой смеси через наполнитель колонны);
  2. Концентрация возгоняемого вещества;
  3. Площадь поверхности контакта в колонне;
  4. Разность температур кипения разделяемых компонентов.

Можно сделать вывод, что процесс ректификации спирта будет лучше протекать при следующих условиях: хорошей диффузии, высокой концентрации отделяемого компонента, развитой площади контакта.

Особое внимание Крель уделил важности состояния межфазной поверхности и перечислил факторы, определяющие процесс ректификации:

  1. Свойства разделяемой смеси: летучесть компонентов, состав смеси, взаимная растворимость компонентов.
  2. Характеристика насадки: форма насадочного тела, способ укладки насадки, плотность заполнения колонны.
  3. Косвенные факторы: способ подачи жидкости в колонну, интенсивность и метод обогрева, рабочее давление.

Виды ректификационных колонн

В зависимости от применяемых контактных устройств, колонны делятся на тарельчатые и насадочные.

Тарельчатые ректификационные колонны

В основном распространены в нефтеперерабатывающей отрасли и на крупных производствах. Тарельчатые колонны представляют собой вертикальную трубу, в которой через определенное расстояние устанавливаются тарелки разной конфигурации, где идет контакт между паровой и жидкой фазами.

Недостаток колонн : дороговизна и большие габариты.

Преимущества : тарельчатая ректификационная колонна тоньше разделяет фракции.


Насадочные ректификационные колонны

На сегодняшний день широкое распространение получили насадочные колонны. Это те же вертикальные трубы, только в них устанавливается другое контактное устройство - насадка.

Насадки разделяются на два типа:

Нерегулярная - неупорядоченный слой насыпного или заполняемого инертного материала (например, спирально призматическая насадка СПН).

Преимущества : малый вес, большая площадь контакта.

Недостатки : высокое сопротивление, сложность правильного распределения паров и флегмы.


Регулярная - представляет собой скомпонованные в кассеты перфорированные сетки и листы (к ним относится регулярная проволочная насадка Панченкова (РПН).

Преимущества : высокая эффективность, малый перепад давления.

Недостатки : насадочная ректификационная колонна явных недостатков не показала.

Процессы в ректификационной колонне

Рассмотрим, что происходит в самой колонне на примере оборудования Фабрики «Доктор Губер». Здесь нет никакой магии или секретных технологий, все очень просто.

Ректификационные колонны для частного применения представляют собой вертикальные трубки диаметром от 40 до 50 мм, высотой не более 180 см, заполненные насадками РПН или СПН. Данные колонны оснащены холодильником или дефлегматором, а так же узлом отбора спирта.


Рассмотрим периодическую ректификацию на колонне насадочного типа с регулярной насадкой РПН, которую каждый сможет повторить в домашних условиях.

При нагреве куба с брагой, являющейся многокомпонентной смесью, в состав которой помимо воды и спирта входят побочные продукты брожения (альдегиды, кислоты, эфиры и т.д.), начинается процесс кипения и испарения данных компонентов. Температура начала процесса может быть разной, все зависит от качественного и количественного состава бражки или спирта-сырца. На протяжении процесса пар поднимается по колонне, начинает ее прогревать и частично конденсироваться, при этом образуется «дикую флегму».

Образование дикой флегмы происходит за счет охлаждения корпуса колонны, в связи с потерями тепла в окружающую среду. Возникают качественные и количественные потери по спирту (до 10%).

В стандартных ректификаторах проблема образования дикой флегмы решается с помощью теплоизолирования колонны.

Высококвалифицированные специалисты Фабрики Доктор Губер нашли другой способ решения данной проблемы путем создания колонны Торнадо. Структура колонны позволяет поднимающемуся пару проходить сначала по внешнему контуру колонны, создавая при этом активный подогрев. В результате потери тепла в окружающую среду от рабочей части колонны становятся минимальными. На выходе готовый продукт получается с улучшенными органолептическими и физико-химическими показателями.

После прогрева колонны пары достигают холодильника или дефлегматора, в котором они конденсируются и возвращаются в колонну в виде флегмы.

Поток флегмы направляется навстречу поднимающимся по колонне парам. Происходит массо- и теплообмен. Температура при ректификации спирта имеет ключевое значение: флегма на своем пути из зоны с низкой температурой в зону более высоких температур поглощает из потока паров высококипящие компоненты (сивушные масла) и выделяет легкокипящие компоненты (спирт). Так как процессы эти протекают на границе раздела фаз, то очень важно создать максимально возможную поверхность контакта. Для этого ректификационные колонны Доктор Губер оснащают РПН, который создает максимальную поверхность контакта по всей ее длине.

Качество получаемого спирта зависит от скорости отбора. А именно, чем больше флегмы забирается из колонны, тем хуже идет процесс массообмена, следовательно уменьшается крепость спирта на выходе из колонны. И наоборот, чем меньше забирается флегмы, тем лучше процесс массобмена и повышение крепости конечного продукта.

Для контроля скорости отбора спирта на колонны устанавливаются игольчатые краны для тонкой регулировки и смотровые стекла.

Создать развитую поверхность контакта недостаточно, необходимо ее правильно орошать. В насадочных колоннах имеет место пристеночный эффект. Флегма проходит не через насадку, а стекает по стенкам колонны, в результате чего падает эффективность ее работы. При правильном заполнении колонны этот эффект минимален, он практически отсутствует в колонне Торнадо, где устанавливается колпачковая тарелка с центральным изливом. В итоге флегма направляется ровно на насадку и достигается максимальный КПД данной колонны.

Что касается диаметра и высоты колонны, по данным Стедмана и Мак-Магона диаметр насадочных колонн оказывает незначительное влияние на качество разделяемых смесей.

Высота колонны. Речь идет о ее рабочей части (часть колонны, которая наполнена насадкой) должна быть не более (6-8)хD. Если высота больше данного выражения, то колонны заполняют секционно, чтобы избежать пристеночного эффекта.

Как выбрать ректификационную колонну

При выборе колонны обращайте внимание на следующие пункты:

  1. Материал колонны, в том числе и наполнитель, должны быть инертны по отношению к парам спирта;
  2. Колонна должна быть оснащена регулируемым узлом отбора;
  3. Наличие высокопроизводительного холодильника или дефлегматора;
  4. Обязательное присутствие атмосферного клапана для безопасной работы.

P.S. Ректификация спирта не сложный процесс и при наличии необходимого оборудования ее с легкостью можно провести в домашних условиях. К 2016 году ассортимент ректификационного оборудования безгранично возрастает. Несмотря на небольшие конструктивные отличия всех аппаратов, процесс ректификации остается неизменным и его качество будет в первую очередь зависеть от знаний и опыта человека, контролирующего процесс.

Цель статьи – разобрать теоретические и некоторые практические аспекты работы домашней ректификационной колонны, нацеленной на получение этилового спирта, а также развеять самые распространенные в Интернете мифы и разъяснить моменты, о которых «умалчивают» продавцы оборудования.

Ректификация спирта – разделение многокомпонентной спиртосодержащей смеси на чистые фракции (этиловый и метиловый спирты, воду, сивушные масла, альдегиды и другие), имеющие разную температуру кипения, путем многократного испарения жидкости и конденсации пара на контактных устройствах (тарелках или насадках) в специальных противоточных башенных аппаратах.

С физической точки зрения ректификация возможна, поскольку изначально концентрация отдельных компонентов смеси в паровой и жидкой фазах отличается, но система стремится к равновесию – одинаковому давлению, температуре и концентрации всех веществ в каждой фазе. При контакте с жидкостью пар обогащается легколетучими (низкокипящими) компонентами, в свою очередь, жидкость – труднолетучими (высококипящими). Одновременно с обогащением происходит обмен теплом.

Принципиальная схема

Момент контакта (взаимодействия потоков) пара и жидкости называется процессом тепломассообмена.

Благодаря разной направленности движений (пар поднимается вверх, а жидкость стекает вниз), после достижения системой равновесия в верхней части ректификационной колонны можно по отдельности отобрать практически чистые компоненты, входившие в состав смеси. Сначала выходят вещества с более низкой температурой кипения (альдегиды, эфиры и спирты), потом – с высокой (сивушные масла).

Состояние равновесия. Появляется на самой границе разделения фаз. Достигается только при одновременном соблюдении двух условий:

  1. Равное давление каждого отдельно взятого компонента смеси.
  2. Температура и концентрация веществ в обеих фазах (паровой и жидкой) одинакова.

Чем чаще система приходит в равновесие, тем эффективнее тепломасообмен и разделение смеси на отдельные составляющие.

Разница между дистилляцией и ректификацией

Как видно на графике, из 10% спиртового раствора (браги) можно получить самогон 40%, а при второй перегонке этой смеси выйдет 60-градусный дистиллят, при третьей – 70%. Возможны следующие интервалы: 10-40; 40-60; 60-70; 70-75 и так далее до максимума – 96%.

Теоретически, чтобы получить чистый спирт, требуется 9-10 последовательных дистилляций на самогонном аппарате. На практике перегонять спиртосодержащие жидкости концентрацией выше 20-30% взрывоопасно, к тому же из-за больших затрат энергии и времени экономически невыгодно.

С этой точки зрения, ректификация спирта – это минимум 9-10 одновременных, ступенчатых дистилляций, которые происходят на разных контактных элементах колонны (насадках или тарелках) по всей высоте.

Отличие Дистилляция Ректификация
Органолептика напитка Сохраняет аромат и вкус исходного сырья. Получается чистый спирт без запаха и вкуса (проблема имеет решение).
Крепость на выходе Зависит от количества перегонок и конструкции аппарата (обычно 40-65%). До 96%.
Степень разделения на фракции Низкая, вещества даже с разной температурой кипения перемешиваются, исправить это невозможно. Высокая, можно выделить чистые вещества (только с разной температурой кипения).
Способность убрать вредные вещества Низкая или средняя. Для повышения качества требуется минимум две перегонки с разделением на фракции хотя бы при одной из них. Высокая, при правильном подходе отсекаются все вредные вещества.
Потери спирта Высокие. Даже при правильном подходе можно извлечь до 80% от всего количества, сохранив приемлемое качество. Низкие. Теоретически, реально извлечь весь этиловый спирт без потери качества. На практике минимум 1-3% потерь.
Сложность технологии для реализации в домашних условиях Низкая и средняя. Подходит даже самый примитивный аппарат со змеевиком. Возможны улучшения оборудования. Технология перегонки проста и понятна. Самогонный аппарат обычно не занимает много места в рабочем состоянии. Высокая. Требуется специальное оборудование, изготовить которое без знаний и опыта невозможно. Процесс сложнее для понимания, нужна предварительная хотя бы теоретическая подготовка. Колонна занимает больше места (особенно по высоте).
Опасность (в сравнении друг с другом), оба процесса пожаро- и взрывоопасны. Благодаря простоте самогонного аппарата дистилляция несколько безопаснее (субъективное мнение автора статьи). Из-за сложного оборудования, при работе с которым существует риск допустить больше ошибок, ректификация опаснее.

Работа ректификационной колонны

Ректификационная колонна – устройство, предназначенное для разделения многокомпонентной жидкой смеси на отдельные фракции по температуре кипения. Представляет собой цилиндр постоянного или переменного сечения, внутри которого находятся контактные элементы – тарелки или насадки.

Также почти каждая колонна имеет вспомогательные узлы для подвода исходной смеси (спирта-сырца), контроля процесса ректификации (термометры, автоматика) и отбора дистиллята – модуль, в котором конденсируется, а затем принимается наружу извлеченный из системы пар определенного вещества.

Одна из самых распространенных домашних конструкции

Спирт-сырец – продукт перегонки браги методом классической дистилляции, который можно «заливать» в ректификационную колонну. Фактически это самогон крепостью 35-45 градусов.

Флегма – сконденсировавшийся в дефлегматоре пар, стекающий по стенкам колонны вниз.

Флегмовое число – отношение количества флегмы к массе отбираемого дистиллята. В спиртовой ректификационной колонне находятся три потока: пар, флегма и дистиллят (конечная цель). В начале процесса дистиллят не отбирают, чтобы в колонне появилась достаточно флегмы для тепломассообмена. Потом часть паров спирта конденсируют и отбирают из колонны, а оставшиеся спиртовые пары и дальше создают поток флегмы, обеспечивая нормальную работу.

Для работы большинства установок флегмовое число должно быть не меньше 3, то есть 25% дистиллята отбирают, остальной – нужен в колонне для орошения контактных элементов. Общее правило: чем медленнее отбирать спирт, тем выше качество.

Контактные устройства ректификационной колонны (тарелки и насадки)

Отвечают за многократное и одновременное разделение смеси на жидкость и пар с последующей конденсацией пара в жидкость – достижение в колонне состояния равновесия. При прочих равных условиях, чем больше в конструкции контактных устройств, тем эффективнее ректификация в плане очистки спирта, поскольку увеличивается поверхность взаимодействия фаз, что интенсифицирует весь тепломасообмен.

Теоретическая тарелка – один цикл выхода из равновесного состояния с повторным его достижением. Для получения качественного спирта требуется минимум 25-30 теоретических тарелок.

Физическая тарелка – реально работающее устройство. Пар проходит сквозь слой жидкости в тарелке в виде множества пузырьков, создающих обширную поверхность контакта. В классической конструкции физическая тарелка обеспечивает примерно половину условий для достижения одного равновесного состояния. Следовательно, для нормальной работы ректификационной колонны требуется в два раза больше физических тарелок, чем теоретических (расчетных) минимум – 50-60 штук.

Насадки. Зачастую тарелки ставят только на промышленные установки. В лабораторных и домашних ректификационных колоннах в качестве контактных элементов используются насадки – скрученная специальным образом медная (либо стальная) проволока или сетки для мытья посуды. В этом случае флегма стекает тонкой струйкой по всей поверхности насадки, обеспечивая максимальную площадь контакта с паром.



Насадки из мочалок самые практичные

Конструкций очень много. Недостаток самодельных проволочных насадок – возможная порча материала (почернение, ржавчина), заводские аналоги лишены подобных проблем.

Свойства ректификационной колонны

Материал и размеры. Цилиндр колонны, насадки, куб и дистилляторы обязательно делают из пищевого, нержавеющего, безопасного при нагревании (равномерно расширяется) сплава. В самодельных конструкциях в качестве куба чаще всего используются бидоны и скороварки.

Минимальная длина трубы домашней ректификационной колонны – 120-150 см, диаметр – 30-40 мм.

Система нагрева. В процессе ректификации очень важно контролировать и быстро регулировать мощность нагрева. Поэтому самым удачным решением является нагрев с помощью ТЭНов, вмонтированных в нижнюю часть куба. Подвод тепла через газовую плиту не рекомендуется, поскольку не позволяет быстро менять температурный диапазон (высокая инертность системы).

Контроль процесса. Во время ректификации важно следовать инструкции производителя колонны, в которой обязательно указываются особенности эксплуатации, мощность нагрева, флегмовое число и производительность модели.



Термометр позволяет точно контролировать процесс отбора фракций

Очень сложно контролировать процесс ректификации без двух простейших приспособлений – термометра (помогает определить правильную степень нагрева) и спиртометра (измеряет крепость полученного спирта).

Производительность. Не зависит от размеров колонны, поскольку, чем выше царга (труба), тем больше физических тарелок находится внутри, следовательно, качественнее очистка. На производительность влияет мощность нагрева, которая определяет скорость движения потоков пара и флегмы. Но при переизбытке подаваемой мощности колонна захлебывается (перестает работать).

Средние значения производительности домашних ректификационных колон – 1 литр в час при мощности нагрева 1 кВт.

Влияние давления. Температура кипения жидкостей зависит от давления. Для успешной ректификации спирта давление вверху колонны должно быть приближено к атмосферному – 720-780 мм.рт.ст. В противном случае при уменьшении давления снизится плотность паров и увеличится скорость испарения, что может стать причиной захлебывания колонны. При слишком высоком давлении падает скорость испарения, делая работу устройства неэффективной (нет разделения смеси на фракции). Для поддержания правильного давления каждая колонна для ректификации спирта оборудована трубкой связи с атмосферой.

О возможности самодельной сборки. Теоретически, ректификационная колонна не является очень сложным устройством. Конструкции успешно реализуются умельцами в домашних условиях.

Но на практике без понимания физических основ процесса ректификации, правильных расчетов параметров оборудования, подбора материалов и качественной сборки узлов, использование самодельной ректификационной колоны превращается опасное занятие. Даже одна ошибка может привести к пожару, взрыву или ожогам.

В плане безопасности прошедшие испытания (имеют подтверждающую документацию) заводские колонны надежнее, к тому же поставляются с инструкцией (должна быть подробной). Риск возникновения критической ситуации сводится только к двум факторам – правильной сборке и эксплуатации согласно инструкции, но это проблема почти всех бытовых приборов, а не только колонн или самогонных аппаратов.

Принцип работы ректификационной колонны

Куб наполняют максимум на 2/3 объема. Перед включением установки обязательно проверяют герметичность соединений и сборки, перекрывают узел отбора дистиллята и подают охлаждающую воду. Только после этого можно начать нагрев куба.

Оптимальная крепость подаваемой в колонну спиртосодержащей смеси – 35-45%. То есть в любом случае перед ректификацией требуется дистилляция браги. Полученный продукт (спирт-сырец) потом перерабатывают на колонне, получая почти чистый спирт.

Это значит, что домашняя ректификационная колонна не является полной заменой классического самогонного аппарата (дистиллятора) и может рассматриваться лишь как дополнительная ступень очистки, более качественно заменяющая повторную дистилляцию (вторую перегонку), но нивелирующая органолептические свойства напитка.

Справедливости ради отмечу, что большинство современных моделей ректификационных колон предполагают работу в режиме самогонного аппарата. Для перехода к дистилляции нужно лишь перекрыть штуцер соединения с атмосферой и открыть узел отбора дистиллята.

Если одновременно перекрыть оба штуцера, то нагретая колонна может взорваться из-за избыточного давления! Не допускайте подобных ошибок!

На промышленных установках непрерывного действия зачастую брагу перегоняют сразу, но это возможно благодаря гигантским размерам и особенностям конструкции. Например, стандартом считается труба 80 метров высоты и 6 метров диаметра, в которой установлено в разы больше контактных элементов, чем на ректификационных колоннах для дома.



Размер имеет значение. Возможности спиртзаводов в плане очистки куба больше, чем при домашней ректификации

После включения жидкость в кубе доводится нагревателем до кипения. Образовавшийся пар поднимается вверх по колонне, затем попадает в дефлегматор, где конденсируется (появляется флегма) и по стенкам трубы возвращается в жидком виде в нижнюю часть колонны, на обратном пути контактируя с поднимающимся паром на тарелках или насадках. Под действием нагревателя флегма снова становится паром, а пар вверху опять конденсируется дефлегматором. Процесс становится циклическим, оба потока непрерывно контактируют друг с другом.

После стабилизации (пара и флегмы достаточно для равновесного состояния) в верхней части колонны скапливаются чистые (разделенные) фракции с самой низкой температурой кипения (метиловый спирт, уксусный альдегид, эфиры, этиловый спирт), внизу – с самой высокой (сивушные масла). По мере отбора нижние фракции постепенно поднимаются вверх по колонне.

В большинстве случаев стабильной (можно начинать отбор) считается колонна, в которой температура не меняется на протяжении 10 минут (общее время прогрева – 20-60 минут). До этого момента устройство работает «само на себя», создавая потоки пара и флегмы, которые стремятся к равновесию. После стабилизации начинается отбор головной фракции, содержащей вредные вещества: эфиры, альдегиды и метиловый спирт.

Ректификационная колонна не избавляет от необходимости разделять выход на фракции. Как и в случае с обычным самогонным аппаратом приходится собирать «голову», «тело» и «хвост». Разница только в чистоте выхода. При ректификации фракции не «смазываются» – вещества с близкой, но хотя бы на десятую долю градуса разной температурой кипения не пересекаются, поэтому при отборе «тела» получается почти чистый спирт. Во время обычной дистилляции разделить выход на фракции, состоящие только из одного вещества, невозможно физически какая бы конструкция не использовалась.

Если колонна выведена на оптимальный режим работы, то при отборе «тела» трудностей не возникает, так как температура всё время стабильна.

Нижние фракции («хвосты») при ректификации отбирают, ориентируясь по температуре или по запаху, но в отличие от дистилляции эти вещества не содержат спирта.

Возвращение спирту органолептических свойств. Зачастую «хвосты» требуются, чтобы вернуть спирту-ректификату «душу» – аромат и вкус исходного сырья, например, яблока или винограда. После завершения процесса в чистый спирт добавляют некоторое количество собранных хвостовых фракций. Концентрацию рассчитывают эмпирическим путем, экспериментируя на небольшом количестве продукта.

Преимущество ректификации в возможности добыть практически весь содержащийся в жидкости спирт без потери его качества. Это значит, что «головы» и «хвосты», полученные на самогонном аппарате, можно переработать на ректификационной колонне и получить безопасный для здоровья этиловый спирт.

Захлебывание ректификационной колонны

Каждая конструкция имеет предельную скорость движения пара, после которой течение флегмы в кубе сначала замедляется, а потом и вовсе прекращается. Жидкость накапливается в ректификационной части колонны и происходит «захлебывание» – прекращение тепломассообменного процесса. Внутри происходит резкий перепад давления, появляется посторонний шум или бульканье.

Причины захлебывания ректификационной колонны:

  • превышение допустимой мощности нагрева (встречается наиболее часто);
  • засорение нижней части устройства и переполнение куба;
  • очень низкое атмосферное давление (характерно для высокогорий);
  • напряжение в сети выше 220В – в результате мощность ТЭНов возрастает;
  • конструктивные ошибки и неисправности.

Тарельчатые колонны для дистилляции имеют небольшую укрепляющую способность и традиционно используются при производстве виски, коньяка и других благородных напитков. Небольшое количество тарелок позволяет сохранить органолептику сырья при высокой стабильности и производительности аппарата.

Материал

Медные тарельчатые колонны со смотровыми окнами из-за своей похожести называют флейтами, а изготовленные в корпусе из стекла – хрустальными. Понятно, что эти названия всего лишь маркетинговый ход и к самой конструкции не имеют отношения.

Медь – материал недешёвый, поэтому и подход к его обработке тщательный. Медная флейта от ведущих производителей – произведение искусства и предмет их гордости. Стоимость изделия может составлять абсолютно любую сумму, которую готов потратить покупатель.

Ненамного дешевле флейты в корпусе из нержавеющей стали, а самый бюджетный вариант – в корпусе из стекла.

Конструктивные особенности и виды тарельчатых колонн

Наибольшее распространение получили модульные конструкции колонн на базе тройников-отводов или цилиндров из боросиликатного стекла. Естественно, это большое количество лишних соединительных деталей и завышенная стоимость.

Более простой вариант представляет собой готовые блоки на 5-10 тарелок. Здесь выбор шире, а цена умеренней. Как правило, этот вариант изготавливают в стеклянных корпусах.

Есть и совсем бюджетные варианты – просто вставки для существующих царг.

Их можно набирать из комплектующих в любом требуемом количестве.

Конструкция может быть разной, но если такие тарельчатые колонны применять с металлическими колбами, теряется наглядность процесса. Намного труднее понять, в каком режиме работает колонна, а для работы с тарелками это очень важно.

Для герметизации каждого этажа применяют простые силиконовые диски.

Естественно, это менее надежно, чем уплотнительные прокладки в модульных конструкциях, но в целом работают неплохо.

Как альтернатива существует упрощенная модульная конструкция, где каждый этаж собирается из простых и недорогих деталей, а вся конструкция стягивается воедино шпильками.

Преимуществом модульных колонн является в первую очередь их ремонтопригодность и открытость для модификаций. Например, легко дополнить колонну на нужном уровне узлом промежуточного отбора фракций и штуцером под термометр. Стоит всего лишь поменять тарелку.

Более дешевым вариантом являются колонны с ситчатыми тарелками. Это не означает, что качество продукта с их использованием будет хуже. Но они требуют более точного управления.

Еще более дешевы провальные тарелки, но их рабочий диапазон очень узок, поэтому нужно быть готовым к точному управлению нагревом источниками со стабилизированной мощностью. В основном провальные тарелки используют на НБК.

Наиболее распространенный материал для изготовления тарелок – медь, нержавейка и фторопласт. Возможно их любое сочетание. Медь и нержавейка материалы привычные, фторопласт – один из самых инертных материалов, сравнимый с платиной. Но вот его смачиваемость плохая.

Если сравнивать фторопластовую тарелку с нержавеющей, то она будет намного быстрее затапливаться.

Количество тарелок в колонне как правило ограничивают 5 для получения дистиллятов крепостью 88-92% и 10 для очищенных дистиллятов с укреплением до 94-95%.

Модульные колонны позволяют сделать набор нужного количества тарелок из различного материала.

Разница между насадочной и тарельчатой колонной

«У меня есть насадочная колонна, нужна ли мне тарельчатая?» – этот вопрос рано или поздно становится перед каждым винокуром. Обе колонны реализуют технологию тепломассообмена, но в их работе есть существенные отличия.

Количество ступеней укрепления

Насадочная колонна работает в режиме максимального разделения на предзахлебной мощности. Регулируя флегмовое число, можно менять количество теоретических тарелок в широком диапазоне: от нуля до бесконечности (при полностью отключенном дефлегматоре и работе колонны на себя).

Тарельчатой колонне характерно конструктивно заданное количество ступеней разделения. Одна физическая тарелка имеет КПД от 40 до 70 %. Другими словами, две физические тарелки дают одну ступень разделения (укрепления, теоретическую тарелку). В зависимости от режима работы КПД меняется не на столько, чтобы существенно повилять на количество ступеней.

Удерживающая способность

Насадочная колонна со своей малой удерживающей способностью позволяет хорошо очищать дистиллят от головной фракции и как-то сдерживать хвостовую.

Тарельчатая колонна имеет на порядок большую удерживающую способность. Это мешает ей сделать такую жесткую очистку от «голов», но позволяет прекрасно сдержать хвосты. То есть выровнять дистиллят по химическому составу. При этом чем больше нужно очистить дистиллят от примесей, тем больше тарелок требуется поставить. Простая задача, решаемая практически. Один раз нашел для себя оптимальное количество тарелок и больше не думаешь об этом.

Чувствительность к управляющим воздействиям

Насадочная колонна очень чувствительна к перепаду давления воды в дефлегматоре или изменению мощности нагрева. Небольшое их изменение приводит к изменению количества ступеней укрепления в разы или даже в десятки раз.

КПД тарелок может поменяться максимум в 1,5 раза, да и то при очень большом и целевом изменении этих параметров. Можно считать, что настроенная тарельчатая колонна, с точки зрения разделяющей способности, практически не будет реагировать на обычные небольшие перепады давления воды или напряжения.

Производительность

Производительность насадочной колонны в основном зависит от её диаметра. Оптимальным диаметром для современных насадок является 40-50 мм, при дальнейшем увеличении диаметра стабильность процессов падает. Начинают проявлять себя пристеночные эффекты и каналообразование. Тарельчатые колонны такими слабостями не страдают. Их диаметр и производительность можно увеличивать до любого необходимого значения. Лишь бы хватило мощности нагрева.

Технологические особенности получения ароматных дистиллятов

При использовании насадочных колонн для ограничения степени укрепления мы вынуждены применять более короткие царги и более крупную насадку. Иначе эфиры, дающие основную вкусоароматику дистилляту, создадут с примесями головной фракции азеотропы, затем быстро вылетят из куба. Отбор «голов» производим коротко, «тело» — на повышенной скорости. Что касается «хвостов», то малое количество насадки и короткая царга не дает полностью сдержать сивуху. К отбору хвостовых фракций приходится переходить раньше или работать с малыми кубовыми навалками.

Тарельчатая колонна имеет сравнительно большую удерживающую способность, поэтому с удержанием сивухи вопросов нет. Для отбора «голов» и «тела» 5-10 физических тарелок дают 3-5 ступеней укрепления. Это позволяет проводить перегон по правилам обычной дистилляции. Спокойно, без риска лишить дистиллят аромата, отбирать «головы», а при сборе «тела» не задумываться о преждевременном подходе «хвостов». Запотевание на нижних тарелках в конце отбора наглядно даст знать о необходимости поменять тару. Степень очистки можно задать, изменяя количество тарелок.

Пяти или десяти тарелок недостаточно, чтобы по степени очистки приблизиться к спирту, но попасть в требования ГОСТ по дистилляту реально.

Использование тарельчатых колонн при перегонке фруктового или зернового сырья особенно для дальнейшей выдержки в бочках значительно упрощает жизнь винокуру.

Основы выбора конструктивных размеров тарелок для колонны

Рассмотрим конструкции самых распространенных для бытовых целей тарелок.

Провальная тарелка

По своей сути это просто пластина с отверстиями, которые могут быть круглыми, прямоугольными, и т.д.

Флегма стекает в относительно крупные отверстия навстречу пару, что определяет главный недостаток провальных тарелок – необходимость точного регулирования заданного режима.

Небольшое уменьшение мощности нагрева приводит к тому, что вся флегма проваливается в куб, а увеличение мощности запирает флегму на тарелке и приводит к захлебу. Эти тарелки могут удовлетворительно работать в сравнительно узком диапазоне изменения нагрузок, где они вполне конкурентоспособны.

Простота конструкции и высокая производительность провальных тарелок, наряду с привычным в домашнем винокурении нагревом ТЭНами со стабилизированным по напряжению источником питания, привела к их широкому применению для непрерывных бражных колонн (НБК), что в сочетании с корпусом из боросиликатного или кварцевого стекла, делает настройку колонны простой и наглядной.

Для расчета количества и диаметра отверстий исходят из условия обеспечения барботажа. Экспериментально определено, что суммарная площадь отверстий должна быть равной 15-30% от площади тарелки (сечения трубы). В общем случае для БК периодического действия базовый диаметр отверстий порядка 9-10% от диаметра колонны позволяет попасть в рабочую зону.

Диаметр отверстий провальных тарелок для НБК подбирают, исходя из свойств сырья. Если при перегонке сахарной браги и вина достаточно отверстий диаметром 5-6 мм, то при перегонке мучных заторов диаметр отверстий 7-8 мм предпочтительнее. Впрочем, тарелки для НБК имеют свои особенности расчета, поскольку плотность паров по высоте колонны значительно меняется, то размеры необходимо просчитывать для каждой тарелки отдельно, иначе их работа будет далека от оптимальной.

Ситчатая тарелка с переливом

Если диаметры отверстий провальной тарелки сделать менее 3 мм, то уже при относительно небольшой мощности флегма будет запираться на тарелке и без дополнительных устройств перелива будет происходить её затопление. Но оборудованная такими устройствами ситчатая тарелка существенно расширяет свой рабочий диапазон.


Схема устройства ситчатой колонны:
1 – корпус; 2 – ситчатая тарелка; 3 – переливная трубка; 4- стакан

С помощью переливных устройств на этих тарелках задается максимальный уровень флегмы, что позволяет избежать раннего затопления и более уверенно работать с высокой нагрузкой по пару. Это не мешает флегме при выключении нагрева полностью слиться в куб и перезапускать колонну придется с нуля, как и обычно для всех провальных тарелок.

При упрощенном расчете таких тарелок исходят из следующих соотношений:

  • суммарная площадь отверстий 7-15% от площади сечения трубы;
  • соотношение между диаметрами отверстий и шагом между ними около 3,5;
  • диаметр сливных трубок примерно 20% от диаметра тарелки.

В сливных отверстиях обязательно ставятся гидрозатворы, чтобы избежать прорыва пара. Ситчатые тарелки нужно устанавливать строго горизонтально для прохождения пара сквозь все отверстия и во избежание стекания флегмы сквозь них.

Колпачковые тарелки

Если вместо отверстий в тарелках сделать паропроводные трубки высотой больше, чем сливные трубки, и накрыть их колпачками с прорезями, то получим совершенно новое качество. Эти тарелки при отключении нагрева не сольют флегму. Разделенная по фракциям флегма останется на тарелках. Поэтому для продолжения работы достаточно будет включить нагрев.

Кроме того, такие тарелки имеют конструктивно закрепленный слой флегмы на поверхности, они работают в более широком диапазоне мощностей нагрева (нагрузок по пару) и изменениях флегмового числа (от полного отсутствия до полного возврата флегмы).

Немаловажно и то, что колпачковые тарелки имеют относительно высокий КПД – порядка 0,6-0,7. Все это, наряду с эстетичностью процесса, и определяет популярность колпачковых тарелок.

При расчете конструктива исходят из следующих пропорций:

  • площадь паровых трубок -порядка 10% от сечения колонны;
  • площадь прорезей – 70-80% от площади паровых трубок;
  • площадь слива 1/3 от суммарной площади паровых трубок (диаметр примерно 18-20% от диаметра сечения трубы);
  • нижние тарелки проектируют с большим уровнем флегмы и большим сечением прорезей для того, чтобы они работали как удерживающие;
  • верхние тарелки изготавливают с меньшим уровнем флегмы и сечением прорезей для того, чтобы они работали как разделяющие.

Исходя из графиков, приведенных у Стабникова, видим, что при слое флегмы в 12 мм (2 кривая) максимальный КПД достигается при скорости пара порядка 0,3-0,4 м/с.

Для колонны в 2” с внутренним диаметром 48 мм необходимая полезная мощность нагрева составит:

N = V * S / 750;

  • V – скорость пара в м/с;
  • N – мощность в кВт, S – площадь сечения колонны в мм².

N = 0,3 * 1808 / 750 = 0,72 кВт.

Можно подумать, что 0,72 кВт определяют небольшую производительность. Возможно, с учетом доступной мощности стоит увеличить диаметр колонны? Наверно, это правильно. Распространенные диаметры кварцевых стёкол для диоптров – 80, 108 мм. Возьмем 80 мм с толщиной стенки 4 мм, внутренний диаметр 72 мм, площадь сечения 4069 мм². Пересчитаем мощность – получим 1,62 кВт. Ну уже получше, для домашней газовой плиты подходит.

Выбрав диаметр колонны и расчетную мощность, определим высоту переливной трубочки и расстояние между тарелками. Для этого воспользуемся следующим уравнением:

V = (0,305 * H / (60 + 0,05 * H)) — 0,012 * Z (м/с);

  • H – расстояние между тарелками;
  • Z – высота трубочки перелива (т.е. толщина слоя флегмы на тарелке).

Скорость пара 0,3 м/с, высота тарелки не должна быть меньше её диаметра. Для нижних тарелок высота слоя флегмы побольше. Для верхних поменьше.

Рассчитаем наиболее близкие варианты сочетаний высот тарелок и перелива, мм: 90-11; 100-14; 110-18; 120-21. С учетом того, что стандартное стекло имеет высоту 100 мм, для модульной конструкции выбираем пару 100-14 мм. Естественно, это всего лишь наш выбор. Можно взять и больше, тогда лучше будет защита от брызгоуноса с увеличением мощности.

Если конструкция не модульная, то простора для творчества больше. Можно сделать нижние тарелки с большей удерживающей способностью 100-14, а верхнюю с большей разделительной – 90-11.

Колпачки выбираем из стандартных и доступных размеров. Например, заглушки для медной трубы 28 мм, паровые трубы – труба 22 мм. Высота паровой трубки должна быть больше, чем у переливной, скажем 17 мм. Зазоры для прохода пара между колпачком и паровой трубой должны иметь большую площадь сечения, чем у паровой трубы.

Прорези для прохождения пара в каждом колпачке обязательно площадью сечения порядка 0,75 от площади паровой трубы. Форма прорезей особой роли не играет, но их лучше выполнять максимально узкими, чтобы пар разбивался на более мелкие пузырьки. Это увеличивает площадь соприкосновения фаз. Увеличение количества колпачков так же идет на пользу процессу.

Режимы работы колонны тарельчатого типа

Любые барботажные колонны могут работать в нескольких режимах. При малых скоростях пара (малой мощности нагрева) возникает пузырьковый режим. Пар в виде пузырьков движется сквозь слой флегмы. Поверхность контакта фаз минимальна. При повышении скорости пара (мощности нагрева) отдельные пузырьки на выходе из прорезей сливаются в сплошную струю, а через небольшие расстояния из-за сопротивления барботажного слоя, струя распадается на множество мелких пузырьков. Образуется обильный пенный слой. Зона контакта – максимальна. Это пенный режим.

Если продолжить повышать скорость подачи пара, то длинна струй пара увеличивается, и они выходят на поверхность барботажного слоя не разрушаясь, образуя большое количество брызг. Площадь контакта снижается, эффективность тарелки падает. Это струйный или инжекционный режим.

Переход от одного режима к другому не имеет четких границ. Поэтому даже при расчете промышленных колонн определяют только скорости пара по нижнему и верхнему пределу работы. Рабочую же скорость (мощность нагрева) просто выбирают в этом диапазоне. Для домашних же колонн проводится упрощенный расчет на некую среднюю мощность нагрева, чтобы осталась возможность для регулировок в процессе работы.

Желающим провести более точные расчеты можно порекомендовать книгу А.Г. Касаткина «Основные процессы и аппараты химической промышленности».

P. S. Вышеизложенное не является полноценной методикой, позволяющей рассчитать оптимальные размеры каждой тарелки применительно к любому конкретному случаю и не претендует на точность или наукообразность. Но всё же этого достаточно, чтобы сделать рабочую тарельчатую колонну своими руками или разобраться в достоинствах и недостатках колонн, предлагаемых на рынке.

Любители приготовления домашних спиртных напитков со временем приходят к необходимости повышения качества. Лучшим решением является получение чистого спирта и разбавление его по требуемому рецепту.

Получить чистый спирт поможет ректификационная колонна. Совсем недавно информация о домашней ректификации была недоступной, сегодня большое количество специализированных форумов и блогов подробно освещает процесс домашней ректификации и постройки соответствующего оборудования.

Ректификация — процесс очистки спирта от легких эфирных и тяжелых сивушных составляющих, избавление продукта от глюкозы, сахаров и кислот. Процесс ректификации позволяет получить чистый этиловый спирт до 96°.

Получившееся сырье применяется в технических, медицинских целях, а также для приготовления высококачественного спиртного.

Справка. Чтобы без ошибок сделать аппарат своими руками, нужно понимать физику и химию процессов ректификации.

Спирт-сырец или брага нагреваются в кубе. Пары поднимаются по царге, самые тяжелые части конденсируются в нижней части набивки и стекают в куб. Пары полегче поднимаются выше набивки, конденсируются и стекают в куб. Новая порция паров поднимается, нагревает уже стекающую флегму, из нее испаряются легкие фракции — вступает в силу основополагающий принцип тепломассообмена.

Самые легкие частицы достигают холодильника Димрота, где охлаждаются и стекают. Когда в ректификационной колонне пары «выстроились» по этажам в соответствии с плотностью, начинается отбор спирта в верхней части колонны. Начинающие ректификаторы допускают ошибку именно на этом этапе — или допускают «захлеб» — излишнее возникновение флегмы, или отбирают много продукта, тогда страдает «этажность» и получившийся спирт будет с примесями.

Сделать ректификационную колонну в домашний условиях довольно сложно. Серьезные производители подробно рассчитывают и испытывают свой товар, прилагают подробную инструкцию. Перед самодельщиком стоит выбор:

  1. Повторить задумку популярных производителей, скопировать уже существующий аппарат. При необходимости в проверенные схемы можно внести правки и доработки.
  2. Сконструировать свою схему, отличающуюся от прочих.

Из чего состоит ректификационная колонна, и ее чертеж?

Домашний мастер может изготовить царговую ректификационную колонну. Она прощает многие ошибки, и результат будет гарантирован.

Чертеж ректификационной колонны

Перегонный куб

Это емкость, куда встраиваются нагреватели, испаряется брага или спирт-сырец.

Характеристики емкости:

  1. Прочность. Вес ректификационной трубы будет приходиться на крышку, поэтому куб должен быть жестким.
  2. Химическая нейтральность к спирту. Идеальный материал — пищевая хромникелевая сталь (нержавейка).
  3. Удобность. Емкость нужно поднимать, перемещать, сливать из него барду (перегон). Объем емкости рассчитывается в зависимости от требуемой производительности аппарата, мощности нагревателей.
  4. Утепление. Теплопотери должны быть минимальны. поэтому и стенки, и дно должно быть «упаковано» в утеплитель без мостиков холода.

Царга для самогонного аппарата

Царга — это труба, которая устанавливается на куб. По сути, это и есть основной каркас ректификационной колонны. Существует тарельчатая царга, но она редко применяется в домашних условиях.

Характеристики:

  1. Прочность. Толщина стенки царги обычно принимается от 1 до 1.5 мм. Это создает достаточную прочность при небольшом весе.
  2. Химическая нейтральность.
  3. Утепление. Чтобы выстроить в колонне пары различных фракций «по этажам», царга должна быть хорошо утеплена. Отлично подойдет рукав из вспененного полипропилена или лотки из пенополистирола, применяемые в сантехнике.
  4. Разборность. Для удобства чистки и хранения царгу можно сделать разборной — из колен 30-40 см. Это позволит регулировать высоту аппарата, что влияет на скорость и качество продукции.
  5. Наличие смотровых стеклянных участков.
  6. Диаметр. Если это тонкая трубка (до 2 дюймов), набивка не нужна — все процессы происходят на стенках. Такая колонна называется пленочной. Диаметры выше требуют применения насадки — уплотнительной набивки для повышения площади тепломассообмена.

Набивка или насадка

Набивка нужна для осаждения флегмы, ее повторного испарения. Главная характеристика набивки — площадь. В качестве набивки применяют камни определенных пород, сито из нержавеющей стали, стружечные спирали из нержавейки.

В продаже есть много уже готовых решений, домашние мастера придумали различные недорогие варианты-заменители. Чаще всего для замены заводским набивкам используются металлические сеточки для мытья посуды или металлическая стружка.

От объема и плотности насадки зависит выстраивание паров по этажам. Если в колонне используется мелкая стружечная призматическая насадка, нужно сделать решетчатую опору, чтобы насадка не попадала в куб.

Охладитель Димрота

Вверху ректификационной колонны находится охладитель — трубка, свитая в спираль.

По ней циркулирует холодная вода. Он полностью охлаждает все легкие пары. Характеризуется плоскостью наклона, мощностью, длиной.

Узел отбора

Он служит для того, чтобы отобрать спирт из верхнего «этажа». Отбор осуществляется не полностью, большая часть флегмы возвращается в царгу. Соотношение забранного продукта к вернувшейся в царгу флегмы называется флегмовым числом.

Чам выше флегмовое число, тем меньше производительность аппарата, тем чище получается продукт.

Существуют три вида отбора:

  1. По браге. узел отбора находится выше холодильника Димрота, и улавливает прорвавшиеся пары. Они доохлаждаются в дополнительном проточном холодильнике.
  2. По жидкости. Охладившаяся флегма «верхних этажей», капая с холодильника, отбирается через наклонные плоскости или отстойник.
  3. По пару. Часть пара поднимается вверх, к Димроту, а часть устремляется к дополнительному холодильнику, где конденсируется. Обеспечивается стабильное флегмовое число, не изменяемое в течении всего времени перегонки.

Дополнительный холодильник

Несет вспомогательную функцию.

Что делает:

  • доохлаждает получившийся продукт,
  • осаждает случайно попавшие пары,
  • охлаждает готовый продукт.

Подробнее о том, что из себя представляет ректификационная колонна, и каков принцип её работы, вы узнаете из этого видео:

Выбор конструкции

Размеры и конструкция аппарата зависит от ряда факторов:

  1. Требуемая производительность. при большей производительности царга с набивкой будет выше и шире — пара проходит больше. Охладитель и узел отбора также должны обеспечить достаточную эффективность. Минимальная длина царги — 1.5 метра, лучше сделать ее разборной из трех колен — 1 метр, 0.2 метра, 0.5 метра. это позволит использовать аппарат как для дистилляции, так и для ректификации.
  2. Возможные размеры. Часто домашние ректификационные колонны ограничены в размерах из-за высоты потолка. Сэкономить место поможет смещение холодильника димрота в верхней части аппарата, или размещение его перпендикулярно царге (молот Тора).
  3. Доступ к технологиям металлообработки. Аппарат из нержавеющей стали прослужит долго и не будет окислять спирт, но для соединения деталей потребуется аргоновая сварка или электроды по нержавейке. Варить нержавейку сложно. При возможности можно применять лабораторное термостойкое стекло, но оно слишком хрупкое. Отличный вариант для самодельщика — медь. Она легко паяется газовой горелкой, в продаже есть большое количество
  4. Объем заправляемого сырья. Чем больше применяемый куб, тем выше должна быть производительность. Испарение спирта происходит при 75 — 80 °С, снижение температуры снизит скорость процесса.
  5. Бюджет. При минимальном бюджете рассматривать надо простую, но эффективную конструкцию с механическими регулировками. Если бюджет не стеснен, аппарат дополняется точными игольчатыми кранами, дополнительными узлами и автоматикой управления.

Для домашнего дистиллирования наиболее простой будет колонна с кубом до 50 литров со встроенными ТЭНами мощностью 3 Квт. Диаметр колонны 32 мм, узел отбора по жидкости по мотивам конструкции Алекса Бокакобы, холодильник Димрота, вставленный выше узла отбора.

Дополнительный охладитель не нужен, вместо него отлично служит пластиковая трубка длиной 1.5 метра, охлаждаемая воздухом. В качестве насадки можно использовать насадку Панченко, СПН или металлические нержавеющие мочалки для посуды. Все соединения производятся на недорогие сантехнические резьбовые соединения.

Оптимальные расчеты

Расчет колонны начинается с определения следующих параметров:

  1. Возможная высота. Практика показывает, что для домашнего аппарата оптимальной будет высота в 1.5 — 2 метра. Если в роли нагревателя используется газовая плита, высота царги будет 1.2 — 1.5 метра. Диаметр зависит от высоты, среднее соотношение — 1/50. К примеру, царга 1.5 метра должна быть не больше 32 мм. (округляем до стандартных труб).
  2. Мощность ТЭНа или нагревателя. Царга 1.5 метра будет иметь производительность примерно 300 мл/час, что соответствует 300 ватт мощности ТЭНа. Мощность нагревателя должна быть достаточной для нагрева до 70 °С объема браги в течении 1 часа, а также иметь возможность оптимального регулирования.
  3. Объем куба. Это утепленная емкость с удобным размером, транспортабельная. Для экономии высоты помещения диаметр и высота должны быть примерно одинаковыми. От объема куба зависит количество нагретых паров. Для домашнего использования удобны кеги из-под пива 25, 30, 50 литров. Алюминиевые бидоны или бачки лучше не использовать — алюминий быстро корродирует.
  4. Мощность охладителей. Охладитель должен полностью справляться с конденсированием паров при минимальном протоке воды. Точной формулы расчета мощности охладителя не существует, количество витков и длина подбирается опытным путем. Для нашей конструкции вполне достаточно 30 сантиметров плотно навитой спирали из трубки 6 мм. Лучше изготовить холодильник с запасом мощности и регулировать скоростью подачи холодной воды.

Как сделать из фитинговой сантехники в домашних условиях?

Действия следующие:

  • Закупаем материалы — 2 метра трубы 32 мм из меди; олово для пайки; 15 см медной трубки диаметром 8 мм, 2 метра трубки 6 мм; игольчатый кран, пластиковый шланг диаметром 8 мм. Приобретаем готовую насадку или заменитель — керамический гравий, металлическая мочалка. Наиболее простые соединители — клампы или латунная резьба.
  • Делаем царгу. Делим трубу на отрезки 1 метр, 0.3 метра, 0.5 метра. Отрезок 10 сантиметров припаиваем к крышке куба, вставляем сеточку для задержки насадки. На каждый стык припаиваем кламповое соединение или сантехническую резьбу из меди или латуни.

  • Собираем узел отбора по мотивам Алекса Бокакоба. На трубке длиной 0.3 метра ближе к нижнему краю делаем два угловых пропила под 30 — 40 градусов. В пропилы вставляем пластинки из меди, обрезаем и запаиваем. Сверлим отверстие для трубки отбора жидкости, отверстие должно находиться внизу «кармашка» нижней пластинки. На трубку отбора припаиваем резьбу для игольчатого крана, который будет регулировать отбор. Сбоку и чуть выше отверстия отбора вставляем трубку «прямотока». Он нужен, чтобы контролировать флегмовое число. Прямоток проводит флегму из «кармашка» отбора ниже, флегма капает в центр насадки. Средняя часть прямотока выполнена из прозрачной пластиковой трубки.

  • Собираем охладитель , для чего плотно навиваем медную трубку, набитую песком на штырь диаметром 12 мм. Штырь извлекается, песок вытряхивается и выдувается. Получается спираль, один конец которой нужно продеть внутрь. Начало и конец трубки продевается в латунный «стаканчик» с резьбой и запаиваются — это пробка. Получившийся холодильник вставляется выше узла отбора, капающая флегма собирается наклонными плоскостями.

  • Перед применением засыпаем насадку в царгу. Насадка не должна плотно закупоривать трубу, пар должен свободно проходить через нее.

  • При желании можно сделать проточный доохладитель. Он состоит из двух трубок, диаметром 10 и 12 мм. Длина тонкой трубки на 3 см. короче, чем толстой. Трубки вставляются одна в другую и торцы запаиваются. К толстой трубке припаиваются вход и выход холодной воды.

Колонна собрана и готова к использованию. Перед применением детали лучше промыть слабым раствором уксусной кислоты при помощи ершика.

Посмотрите видео, в котором показано, как собрать ректификационную колонну своими руками:

Режимы работы

Режимы следующие:

  1. Нагрев браги до 72 -75 °С. Охладитель Димрота работает с минимальной мощностью.
  2. Прогрев колонны и выстраивание «этажей» конденсации флегмы. На протяжении всей колонны идет активный барботаж и паромассообмен. Важно не допустить перенасыщения колонны, иначе будет «захлеб» — флегма закупорит весь диаметр царги. Подбираем мощность нагревателей так, чтобы возле узла отбора температура была 71 — 75 °С.
  3. Начало отбора. При отборе по жидкости неизбежно нарушается стройная пирамида в царге, поэтому флегмовое число нужно будет корректировать. Плотность пара постепенно падает, инстенсивность отбора также. Первая отобранная жидкость — «головы» — содержат летучие эфирные составляющие. Объем голов доходит до 20 % от планируемого содержания спирта.
  4. Отбор основного товарного спирта идет до появления запаха сивушных масел.
  5. При желании вытянуть из сырья все возможное , вытягиваем «хвосты» — последнюю часть спиртсодержащих паров. В них большое количество сивушных масел, хвосты смешиваются в «головами» и применяются при дальнейших ректификациях.
  6. Завершение ректификации — выключение нагревателя, остывание труб.

Весь цикл в в зависимости от желаемого качества продукции может продолжаться сравнительно долго — от 8 часов до 2 суток.

Средняя производительность собранной нами колонны — 250-300 мл. 96° спирта в час.

Нужно ли проектировать оборудование?

Процесс расчета, сборки и испытаний самодельного оборудования приносит огромное удовольствие. Результат после правок и доработок будет гарантирован. Однако первые трудности или неудачи способны остудить пыл начинающих ректификаторов.

В итоге самостоятельного конструирования на результат влияют даже незначительные нюансы — плотность набивки, угол наклона, диаметр трубок Димрота… В случае, если нужен быстрый и гарантированный результат — лучше приобрести готовый аппарат от производителя. При покупке важно знать устройство, продуктивность и назначение аппарата, чтобы не купить подделку или неэффективный прибор.

В последнее время довольно много людей не доверяют качеству алкоголя, предлагаемого магазинами, да и стоимость такой продукции высока. Поэтому зачастую на кухнях рядом с различными бытовыми приборами можно увидеть самогонный аппарат. Ведь домашние спиртосодержащие напитки экологически чистые и для здоровья в разумных количествах менее вредны. Однако перед всеми винокурами стоит проблема: очистка алкоголя от вредных примесей и неприятного запаха. Опытными и экономными хозяевами для этого применяется ректификационная колонна. Ну а новичкам, чтобы не отставать от более продвинутых винокуров, нужно узнать, что такое ректификационная колонна в самогонном аппарате.

Ректификационная колонна позволяет производить спиртосодержащие напитки, такие как водка, виски, наливки высокой очистки и высокой крепости (до 97 %). Устройство обычной ректификационной колонны следующее:

  1. Испарительный куб.
  2. Колонна со специальной насадкой, в которой идут процессы тепломассообмена (царга).
  3. Дефлегматор.
  4. Узел сбора дистиллята.

Испарительный куб

Испарительный куб представляет собой емкость, в которой нагревается брага. В процессе этого она испаряется, и пар поднимается по колонне. Вверху ректификатора жидкость разделяется на отдельные фракции.

Испарительный куб нагревают на любом виде плит. А некоторые его модели предполагают наличие нагревательного прибора. Покупной куб обязательно оснащается термометром, который позволяет вести контроль за нагревом браги. Испарительный куб абсолютно герметичен. Во время кипения важно, чтобы жидкость и пар оставались внутри. Куб нельзя заполнять брагой больше чем на 2/3 его объема, иначе жидкость будет выплескиваться из емкости.

Царга

В этой части ректификационной колонны происходят следующие процессы:

  1. Брага, находящаяся в кубе, под действием тепла испаряется и поднимается по колонне. Там установлен холодильник.
  2. Дефлегматор обеспечивает конденсацию паров спирта и получение дистиллята.
  3. Дистиллят опускается по спиртовой колонне. В этот момент происходит столкновение его с паром - тепломассообмен.
  4. В результате этого процесса испаряемая часть фракции идет вверх колонны. Здесь она конденсируется, а затем уходит в канал отбора.

Не стоит забывать, что если увеличить высоту колонны, то тепломассобмен проходит активнее. Это приводит к тому, что на выходе получается более ректификованный спирт.

Ректификационная насадка

Ректификационная насадка имеет две части:

  1. Узел отбора спирта. В промышленной ректификационной колонне эта деталь снабжена смотровым стеклом, которое позволяет определить скорость отбора спирта.
  2. Дефлегматор. Иногда эта часть называется холодильником. Дефлегматор расположен вверху ректификационной колонны. Он нужен для сбора самогонных паров и превращения их во флегму, которая отпускается вниз. Здесь происходит ее обогащение парами спирта. После того как флегма попадет в узел отбора, испаряемая часть выходит наружу.

Ректификационная колонна устроена просто, поэтому принцип ее работы поддается несложному объяснению. Этот механизм выполняет функцию фильтра, в котором оседают сивушные масла. В нем происходит постоянное взаимодействие спиртовых паров и жидкости, другими словами, ректификация. После того как брага прогреется до 70 градусов в испарительном кубе, спирт начинает испаряться. Он поднимается по трубе и оказывается в дефлегматоре. В этой части с паром происходит повторная конденсация при охлаждении водой. Конденсат (флегма) стекает и снова встречается с горячим паром. Происходит обмен между двумя составляющими - процесс насыщения флегмы паром, а пара - жидкостью, которая имеет низкую температуру кипения.

Окончательная конденсация пара идет в холодильнике. На выходе получается очищенный спирт, который стекает в емкость для приема. Вверху ректификационной колонны расположен атмосферный клапан. Он нужен для того, чтобы пары, не имеющие в своем составе спирта и не подверженные конденсации, покидали механизм.

Непрерывная ректификация идет за счет специальных контактных элементов - физических тарелок в покупных ректификационных колоннах и металлических губок или стеклянных шариков в образцах, изготовленных своими руками. Эти части нужны для увеличения эффективности взаимодействия пара и флегмы.

Виды колонн

Существуют следующие виды ректификационных колонн:

  1. Тарельчатого типа. Такие агрегаты имеют внутри тарелки, которые установлены на определенном расстоянии. На них и осуществляется тепломассообмен. Ректификационные колонны такого вида стоят дорого и довольно громоздки. Но обладают главным достоинством - фракции отделяются точно.
  2. Насадочного типа. Механизм имеет медную насадку двух видов. Первый - это заполняющая колонну россыпь мелких элементов из нержавеющей стали. Неравномерное размещение их затрудняет проход паров и отток флегмы. Второй тип - насадка Панченкова, которая совершает эффективный тепломассообмен.

Можно ли сделать полноценную ректификационную колонну своими руками?

В продаже есть удобные и качественные самогонные аппараты с ректификационной колонной. Но их стоимость высока. Поэтому мужчины, которые умеют работать с металлами, могут самостоятельно изготовить агрегат. Для создания колонны применяют материалы, не вступающие в химические реакции со спиртом и не выделяющие со временем различных элементов, вредных для здоровья человека. Для создания агрегата потребуются:

  1. Емкость нужного объема в качестве перегонного куба. Это может быть любой медный или эмалированный сосуд. Подойдет и нержавеющая сталь. Если будет небольшой выход алкоголя, то используют и скороварку.
  2. Корпус колонны в виде царги или трубы. На прилавках магазинов можно быстро найти уже готовую 15-сантиметровую царгу. Приобретают несколько штук и соединяют их. А можно без проблем сделать эту деталь из нержавеющей трубы диаметром 0,5 сантиметра и толщиной стенок 1,5–2 миллиметра. На ней с обеих сторон делают резьбу: низ присоединяют к кубу, а верх - к дефлегматору. Царга должна быть не менее одного метра в высоту, иначе вредные фракции не будут удаляться, и сивушные масла окажутся в дистилляте. В результате получится продукт низкого качества. Если делать трубу длиннее 1,5 метра, то увеличится время на ректификацию, а эффективность останется прежней.
  3. Дефлегматор для охлаждения и конденсации пара. Он может быть рубашечным или прямоточным. Изготовляют из двух труб, между которыми движется вода. Дефлегматор Димрота считается более эффективным. Корпусом становится труба, внутри которой есть тонкая трубка в виде спирали. В ней и циркулирует холодная вода. Кожухотрубный дефлегматор - из нескольких труб. В самой большой крепят маленькие. В них пар конденсируется.
  4. Насадки для царги. Они увеличивают поверхности, по которым течет флегма. Значит, вредные примеси осаждаются и не попадают в домашний алкоголь. Насадки в виде керамических шариков или нарезанных кухонных мочалок из нержавейки должны полностью заполнять царгу. Используют и насадку Панченкова. Она является самым лучшим вариантом.
  5. Узел для отбора дистиллята.
  6. Холодильник. Эта деталь изготовляется таким же образом, как и рубашечный дефлегматор. Но берутся трубки с меньшим диаметром. В холодильнике есть проходы для воды. В нижнее отверстие она входит, из верхнего жидкость направляется по трубкам к дефлегматору.
  7. Мелкие детали, чтобы соединить части.
  8. Термометр.

Метод ректификации имеет и сторонников, и противников. Он может похвастаться следующими положительными сторонами:

  1. На выходе получается крепкий спирт высокого качества, который не содержит вредных для здоровья человека примесей. Он станет прекрасной основой для любого алкогольного напитка.
  2. Можно приготовить самогон с нужной органолептикой.
  3. Прибор довольно просто сконструировать самостоятельно.

Винокуры отмечают недостатки:

  1. Весь процесс ректификации длится долго. В час получается всего один литр дистиллята.
  2. Производственные конструкции стоят дорого.

Однако, учитывая несомненную пользу колонны, ее все-таки стоит приобрести. И тогда к качеству самогона претензий не будет.