Технологический процесс изготовления воздуховода. Вентиляция из оцинкованной стали – универсальное решение Технология производства воздуховодов из оцинкованной стали

Технологический процесс изготовления воздуховода. Вентиляция из оцинкованной стали – универсальное решение Технология производства воздуховодов из оцинкованной стали

С вопросом правильной организации вентиляции человек сталкивается и при строительстве небольшого домика на даче, и при возведении промышленных цехов, и при обустройстве офисных зданий. Для каждого случая можно подобрать оптимальный вариант вентиляции, но использование воздуховодов из оцинкованной стали можно считать универсальным решением в любой ситуации.

О преимуществах оцинковки

В общем случае могут изготавливаться из таких материалов:

  • пластик – цена такого решения минимальна, но и область применения ограничивается частным строительством;

  • алюминиевые – отличаются коррозионной стойкостью, но алюминий довольно пластичный металл, так что такие вентиляционные каналы плохо переносят возможные нагрузки;
  • из оцинкованной стали – практически не имеют недостатков;
  • из подручных материалов. Например, воздуховод можно соорудить даже из обычных толстых, хорошо подогнанных друг к другу досок.

Обратите внимание! Дощатые вентиляционные каналы можно порекомендовать исключительно для проветривания хозяйственных построек, например, погребов или подвалов на даче.

Оцинкованные вентиляционные каналы могут применяться практически без ограничений. Они без проблем справятся с транспортировкой раскаленного воздуха или паров агрессивных веществ. Кроме того, сталь способна выдерживать большие температуры, сохраняя при этом достаточную прочность.

Пластик совершенно не способен выдерживать длительное воздействие повышенной температуры, да и воздействию химвеществ он ничего не сможет противопоставить. Единственным преимуществом этого материала можно назвать небольшой вес и легкость монтажа.

Вентиляционные трубы из оцинкованной стали могут без снижения технико-эксплуатационных показателей выдерживать:

  • температуру около +80ᵒС – без ограничения по времени;

Обратите внимание! Для безопасности персонала воздуховоды, транспортирующие раскаленный воздух, как правило, оборудуются теплоизоляционным слоем.

  • в течение короткого времени возможно повышение температуры воздуха до +200ᵒС. даже в случае пожара на предприятии вентиляционная система не допустит задымления территории;
  • оцинкованные трубы для вентиляции не требуют дополнительной защиты от влажности. Тонкий слой цинкового покрытия препятствует коррозии.

Обратите внимание! Даже при нарушении целостности слоя цинка, например, врезании самореза, сталь все равно остается защищенной. Дело в том, что сталь и цинк образуют гальваническую пару, и в результате химической реакции тонкая оксидная пленка покрывает срез.

Способы производства оцинкованных воздуховодов

Технология напрямую зависит от формы поперечного сечения трубы.

Вентиляционные трубы могут быть:

  • круглого сечения – оптимальные аэродинамические характеристики;

  • квадратного либо прямоугольного сечения – аэродинамика чуть похуже, зато легче установить благодаря плоским поверхностям.

Сырьем для изготовления оцинкованных воздуховодов служит тонкая листовая оцинкованная сталь. Как правило, толщина листа не превышает 1,0 мм, это обеспечивает баланс между приемлемым весом и достаточно высокой жесткостью.

Изготовление вентиляции из оцинковки выполняется по одной из 2-х методик:

  • в случае с круглым сечением используется либо спирально-навивная технология, либо простая вальцовка листового проката с последующим фальцевым соединением краев;
  • для профильных воздуховодов применяется только одна технология – лист оцинковки пропускается через ряд вальцов, которые и придают ему нужную форму. Затем края будущего вентиляционного канала соединяются.

Спирально-навивная технология

Отличается крайне высокой производительностью, в минуту станок обрабатывает примерно 60 м штрипсы. Производство вентиляции из оцинковки по этой технологии состоит в том, что станок просто изгибает стальную штрипсу так, что получается труба круглого сечения.

При этом соседние витки укладываются внахлест, за счет сильного натяжения край штрипсы немного деформируется и достигается герметичность соединения.

Помимо высокой производительности, трубы, произведенные по этой технологии отличаются высокой жесткостью. Винтовой шов играет роль ребра жесткости, так что в равным условиях такой воздуховоды выдержит большую нагрузку, чем его прямошовный собрат.

Прямошовные трубы

Вентиляционные оцинкованные трубы, произведенные по этой технологии по технико-эксплуатационным показателям почти не отличаются от спирально-навивных. Разве что обладают чуть меньшей жесткостью.

Весь техпроцесс можно разделить на 3 этапа:

  • нарезается штрипса нужной длины;
  • она пропускается через ряд вальцов;
  • выполняется соединение соседних краев металла.

Что касается профильного трубопровода, то довольно часто на торцах секции подготавливается все для последующего фланцевого соединения. По такой же технологии проходит изготовление вентиляционных коробов из оцинкованной стали.

Элементы оцинкованной вентиляции

При монтаже вентиляционной системы понадобятся не только вентиляционные каналы из оцинковки, но и ряд фасонных элементов. Например, отводы под разные углы поворота, заглушки, решетки, тройники и т. д. Без этих элементов монтаж выполнить просто невозможно.

Отводы

Это – один из самых распространенных видов фасонных элементов, используется в тех случаях, когда нужно обеспечить плавный поворот воздуховода. Главная характеристика отвода – угол поворота, выпускаются варианты, обеспечивающие поворот на угол от 15ᵒ до 90ᵒ.

Обратите внимание! Оцинкованная вентиляция будет работать значительно хуже, если воздуховод много раз поворачивает под большим углом. Это снижает скорость потока воздуха.

Что касается производства отводов, то для этого используется штрипса переменной ширины. За счет неодинаковой ширины при сгибании ее ширина кольца получается разной. Из нескольких таких колец и состоит весь отвод, регулируя ширину штрипсы теоретически можно получить любой угол отвода, но для удобства они выпускаются с шагом 15ᵒ.

Вентиляционный короб

Строго говоря вентиляционный короб – это просто вертикальный прямоугольный или квадратный канал в котором размещено несколько каналов сечением поменьше. В зависимости от условий эксплуатации могут использоваться пластиковые, алюминиевые или оцинкованные короба для вентиляции.

Если мысленно рассечь эту конструкцию поперек, то наблюдатель увидит не 1, а 3 канала. Самый крупный – общий вентиляционный канал, а 2 поменьше – обеспечивают отвод неприятных запахов из нижележащей квартиры. Как правило, 1 отвод используется на кухне и 1 – в ванной комнате или уборной.

Учитывая небольшую площадь кухонь и ванных комнат большинства квартир, многие люди задумываются о том, как максимально уменьшить площадь короба и сделать его незаметным. Вентиляционные оцинкованные короба могут с этим помочь.

Обратите внимание! Жильцы многоэтажных домов часто заблуждаются, считая венткороб своей собственностью, и сносят его. Если дело дойдет до разбирательства в суде, то горе-строители должны будут своими руками восстановить разрушенное.

Прочие фасонные элементы

Помимо отводов при монтаже вентиляции могут понадобиться такие фасонные элементы как:

  • переходы или утки – используются для смещения воздуховода. Параллельно со смещением за счет уменьшение диаметра можно регулировать скорость воздушного потока;

  • заглушки – используются при необходимости перекрыть свободный конец трубы;
  • шиберы – регулирующие устройства;
  • противопожарные клапаны;
  • крестовины и тройники – служат для создания сложных узлов вентиляционной сети;

  • ниппели – используются при монтаже труб;
  • вентиляционные решетки из оцинкованной стали – используются для защиты от попадания в помещение насекомых, мелких животных и мусора из вентканала.

О технологии монтажа

Что касается крепления канала к стенам или потолку, то можно обойтись и обычными хомутами или даже просто подвесить трубу на металлическую ленту. В промышленных зданиях для прокладки воздуховода в стену вмуровывается кронштейн, и труба опирается на него.

Обратите внимание! Если скорость движения воздуха высока, то крепление воздуховода хомутами или с помощью металлической ленты не обеспечит достаточной жесткости. Труба будет дребезжать, поэтому нужно более надежное крепление.

Отдельное внимание нужно уделить герметичности стыков отдельных секций.

Соединение может выполняться несколькими способами:

  • ниппельное . Сам ниппель – участок трубы чуть меньшего диаметра, просто вставляется в воздуховод с усилием и проворачивается. Инструкция по выполнению муфтового соединения выглядит так же, а единственное отличие состоит в том, что диаметр муфты больше, чем диаметр воздуховода;

  • фланцевое – прочность стыка достигается простым затягиванием болтов;

  • фальцевое – надежный стык обеспечивается за счет совместной деформации металла разных секций труб.

Изготовление собственными силами даже небольших партий воздуховодов, необходимых для оборудования систем вентиляции на объектах различного назначения, как правило, выгодно не только с экономической точки зрения. А если компания оказывает услуги по предоставлению оборудования для вентиляционных систем и выполняет их монтаж, наличие собственных производственных участков дает возможность снизить цены и получить преимущество на рынке.

Сегодня производство воздуховодов может выполняться по нескольким технологиям и быть организовано по-разному территориально. Что касается организации производства, то оно может быть:

  • Организовано на стационарной производственной базе;
  • Иметь выездной характер и развертываться непосредственно на объекте, где производится монтаж системы вентиляции;
  • Использовать комбинированные подходы к организации производства.

И тот, и другой метод организации производства имеет свои преимущества, что в конечном итоге позволяет снизить себестоимость готовой продукции и транспортные расходы. Например, при работе над крупными объектами часто гораздо выгоднее доставить станки и оборудование на объект, чем нести значительные транспортные расходы на перевозку воздуховодов, изготовленных на основном производстве.

Технологии производства воздуховодов прямоугольного сечения

Воздуховоды прямоугольного и квадратного сечения часто используются для обустройства систем вентиляции и могут изготавливаться как с применением сварки или пайки, так и с использованием механического замка. Сама технология производства воздуховодов прямоугольного сечения достаточно проста и состоит из нескольких этапов:

  • Вначале выполняют раскрой листа металла по развертке готового изделия;
  • Затем готовая заготовка гнется на листогибочном станке до придания требуемой формы;
  • Производится заделка стыков либо по технологии фальцевого замка, сварки или пайки.

Стоит отметить, что механический замок более быстр в изготовлении и технология изготовления такого стыка менее трудоемка, его использование приводит к несколько большему расходу металла. К том же стыки воздуховода получаются негерметичными и могут ухудшить показатели работы вентиляционной системы со значительной протяженностью. Впрочем, при малой толщине металлического листа, а значит и невысокой стоимости воздуховода, такой замок может считаться оптимальным для изготовления воздуховодов для вентиляционных рукавов небольшой и средней протяженности.

При малой толщине листа, из которого изготавливают воздуховод, для достижения полной герметичности конструкции может использоваться пайка. Если же толщина металла составляет от 1.5 и более мм, может применяться сварное соединение шва.

Воздуховоды круглого сечения могут изготавливаться двумя методами:

  • Путем гибки на вальцовочных станках с последующей сваркой шва или использования фальцевого замка;
  • По технологии навивки на навивном станке из металлической ленты.

Технология вальцовки имеет практически те же особенности, что и изготовление прямоугольных воздуховодов. Что касается навивных воздуховодов, процесс их изготовления более простой, не требует последующей заделки швов. К тому же, навивные воздуховоды могут быть изготовлены нестандартной длины, что позволяет оптимизировать затраты при изготовлении вентиляционных систем нестандартного типа.

Доброго времени суток!

Ни одно жилое, офисное, торговое, производственное или складское помещение сегодня . И воздуховоды из оцинкованной стали заслуженно занимаю лидирующие позиции среди различных вентканалов. О том, чем обусловлена эта популярность и как не растеряться в многообразии представленного ассортимента, мы расскажем в очередном материале.

Оцинкованные воздуховоды - наиболее распространённый вид вентиляционных труб. Что легко объясняется .

Преимущества оцинковки:

  • Малый вес, благодаря которому устанавливаемые конструкции создают незначительные нагрузки на строения. Кроме того лёгкость материала облегчает процесс доставки к месту монтажа и проведение инженерных работ.
  • Гибкость материала даёт возможность придавать элементам воздуховода любую форму, что не только расширяет их модельный ряд, но и позволяет улучшать аэродинамические характеристики магистрали.
  • Прочность и устойчивость к воздействию открытого огня и агрессивных сред. Это значительно расширяет сферу использования и увеличивает продолжительность эксплуатации вентиляционных труб из тонколистовой оцинкованной стали от 10 лет и более.
  • Невысокая стоимость .

Вентканалы из оцинковки просты в обслуживании. Они не требуют предварительного грунтования, так как металл не подвержен активному коррозийному процессу. Эстетическая привлекательность позволяет их не красить.

К недостаткам оцинкованной стали стоит отнести:

  • Повышенный уровень шума, характерный для любой металлической конструкции. Однако данную проблему позволяет решить либо продуманная схема разводки, минимизирующая число изгибов и переходов, либо звукоизоляция.
  • Склонность к образованию и скоплению конденсата. Как решение - утепление трубопровода.
  • Подверженность к деформации в результате мощного механического воздействия, вызванного сильным ударом, смещением или падением конструкции. При обычных условиях эксплуатации подобных сложностей не возникает.

Сочетание качества, стоимости материала и разнообразие технологий, позволяющих минимизировать недостатки, делает оцинкованные трубопроводы самыми востребованными типами воздуховодов, используемых в обустройстве вентиляционных магистралей.

Виды воздуховодов из оцинковки

Разнообразие оцинкованных воздуховодов обусловлено рядом технических характеристик, которыми наделяются изделия в процессе производства. Так выделяют следующие виды изделий:

  1. По форме поперечного сечения: прямоугольные или круглые.
  2. По типу шва: сварные и фальцевые.
  3. По направлению шва: спирально-навивные и прямошовные.

Прямоугольные и круглые

Стальной воздуховод круглый Стальной воздуховод прямоугольный
Аэродинамика Равномерное распределение воздуха и, как следствие, улучшенная аэродинамика. Высокое аэродинамическое сопротивление
Скорость перемещения воздушной массы Высокая. Низкая. При больших размерах контура требуется принудительная циркуляция воздуха.
Коэффициент шума Хорошие шумопоглащающие свойства из-за отсутствия эффекта турбулентности. Требуется качественная звукоизоляция.
Требования к уходу Высокая скорость движения воздуха предотвращает оседание частиц грязи и пыли в трубопроводе. Требует проведения периодической очистки трубопровода.
Расчётные данные Форма сечения затрудняет проведение расчёта данных по площади конструкции. Прямоугольная конфигурация облегчает проведение расчётов.
Монтаж Изделия легче и не требуют усиленных креплений. Экономия времени и низкие трудозатраты. Тяжесть конструкции требует обустройства надёжных фиксаторов.
Стоимость Дешевле в среднем на 30%. Минимальные затраты на перевозку, хранение, монтаж и теплоизоляцию. В виду высокой эстетичности отпадают затраты на маскировку и декорирование магистрали.

Преимущество прямоугольных воздухопроводов заключается в конфигурации и разнообразии модельного ряда, что позволяет адаптировать вентиляционный контур под особенности любого помещения без ущерба для расчётной площади сечения, играя с шириной и высотой трубы.

Прямошовные и спирально-навивные

Прямошовные изготавливаются путём загиба листа оцинкованной стали в круглую или прямоугольную трубу. Такая технология удешевляет продукцию, но она же ограничивает её длину, что увеличивает количество соединительных элементов трубопровода.


Спирально-навивные (спирально-замковые или спирально-сварные) воздуховоды скручиваются из тонкой металлической ленты. При этом шов идёт по спирали и играет роль ребра жёсткости, что увеличивает прочность трубы, а при использовании метода сварки обеспечивает её герметичность.

Спирально-навивные воздуховоды характеризуются:

  • меньшим весом;
  • повышенной герметичностью;
  • небольшим количеством стыковых элементов;
  • увеличенной скоростью движения воздушной массы, т.к. спиральная форма создаёт дополнительное вращение в замкнутом контуре;
  • пониженным уровнем шума.

Однако ребристость поверхности провоцируют скопление пыли внутри трубопровода.

Герметичность и плотность

Герметичность и давление - показатели, определяющие в итоге эффективность и стоимость вентиляционного контура. Негерметичная магистраль снижает качество воздухообмена и влечёт за собой необоснованное завышение мощности насосного оборудования, увеличение расходов на энергоносители, а также приводит к скапливанию конденсата внутри труб.

Выделяют 3 класса герметичности воздуховодов:

  1. A (низкий). Воздухопроницаемость от 1,35 до 0,45 л/сек/м².
  2. B (средний). Воздухопроницаемость от 0,45 до 0,15 л/сек/м².
  3. C (высокий). Воздухопроницаемость менее 0,15 л/сек/м².

По коэффициенту внутреннего давления (плотности) различают:

  • Н-модели (нормальное давление). Предназначены для систем вентиляций и дымоотведения объектов, относящихся к категории пожароопасности класса «В» и «Г». Не требуют сильной герметизации, т.к. допускают определённый процент утечки. В качестве герметика обычно используются резиновые уплотнители.
  • П-модели (плотные). Устанавливаются на объектах, оборудованных мощным насосным оборудованием и относящихся к категории пожаро- и взрывоопасных. Характеризуются 100%-ной герметичностью шовных соединений и наличием герметичного замка в местах стыка элементов между собой.

Что лучше и где применяют?

Защитный слой цинка противостоит разрушительному влиянию открытого воздуха, влаги и ультрафиолета. Поэтому вентканалы из оцинковки активно используются как внутри помещений, так и на улице для обустройства систем:

  1. естественной и принудительной вентиляции,
  2. кондиционирования;
  3. аспирации (отведения мелких частиц, содержащихся в воздухе);
  4. дымоудаления (отведения продуктов горения);
  5. отвода отработанных газов;
  6. транспортировки газовых смесей, очистителей и увлажнителей воздуха.

Даже организация обычной вытяжки на кухне чаще всего выполняется посредством стальных воздуховодов.


При принятии решения о применении того или иного вида воздуховодов следует руководствоваться особенностями эксплуатации будущей конструкции:

  • Прямоугольные воздуховоды используются с целью экономии пространства небольших преимущественно жилых или служебных помещений (частных домов, квартир или офисов).
  • Для аспирации и транспортировки вредных газов подходят трубы круглого сечения со сварным типом шва, обеспечивающие максимальную скорость движения воздуха и полную герметичность корпуса.
  • В промышленности предпочтение отдаётся круглым формам, характеризуемым и наибольшей эффективностью и минимальной стоимостью.

Элементы системы вентиляции

Вентиляционная магистраль - это всегда сложная конструкция, состоящая из многочисленных элементов, позволяющих:

  1. менять направление контура в зависимости от конфигурации помещений;
  2. обходить выступы;
  3. соединять несколько контуров в единую сеть.

Отводы и короба

Основные элементы воздуховода, задающие его направление - короба и отводы. Первые прокладывают путь по прямой линии, вторые изменяют геометрию контура под углом в 15⁰, 30⁰, 45⁰, 60⁰ или 90⁰.

Другие фасонные элементы

Вентиляция представляет собой сложную и разветвлённую сеть каналов, смонтировать которую без соответствующих элементов проблематично. Такие комплектующие принято называть фасонными изделиями.


К их числу относятся:

  • Переходники, соединяющие между собой контуры различных диаметров - конфузоры и диффузоры. Первые сужают магистраль, вторые расширяют.
  • Тройники и воротниковые врезки, обеспечивающие примыкание друг к другу двух магистралей.
  • Крестовины, служащие для пересечения двух перпендикулярных воздушных потоков.
  • S-образные переходники (утки), соединяющие два контура, не совпадающие по оси и/или сечению.
  • Круглые ниппели и муфты, соединяющие между собой два круглых короба. Первые вставляются вовнутрь, вторые одеваются поверх труб.
  • Заглушки, устанавливаемые на торцах контура.
  • Зонт крышный, предотвращающий попадание атмосферных осадков в вентиляционную шахту.
  • Приточные и вытяжные решётки и другие фасонные части.

Размеры

ГОСТ

  1. ГОСТ 14918-80 - воздуховоды, произведённые из листа стали толщиной от 0,5 до 1 мм методом катания и предназначенные для транспортировки воздуха влажностью не более 60% и температурой менее 80⁰C.
  2. ГОСТ 5632-72 - воздуховоды, характеризуемые высокой степенью герметичности, устойчивости к коррозии и высоким температурам (около 500⁰C) и предназначенные для перемещения горячего воздуха и химических газов.

Таблица размеров весов и диаметров


Производство оцинкованных воздуховодов

Оцинкованные воздуховоды изготавливаются на специальном металлообрабатывающем оборудовании из тонколистовой холоднокатаной стали в соответствии с установленными государством стандартами (СНИП 41-01-2003 и ТУ 4863-001-75263987-2006). Раскрой металла происходит в автоматическом режиме согласно заданным программой параметрам.

  • Детали круглого сечения проходят обработку вальцами, которые задают заготовке необходимый диаметр с последующим закатыванием продольного края на фальцепрокатном станке.
  • Спирально-навивные изготавливаются по другой технологии: сталь шириной в 137 мм закручивается по спирали швом вовнутрь.

Использование высококачественной оцинковки не допускает отслоения оцинкованного покрытия от металла в местах сгиба изделия.


Технологические стандарты предписываю для каждого типа сечения использовать металл определённой толщины листа:

Средняя стоимость и где купить

Стоимость воздуховодов из оцинкованной стали зависит от размера его поперечного сечения и толщины металла. Цена при этом рассчитывается за 1 м². В среднем на рынке стоимость 1 м² изделия составляет порядка 320 рублей. Монтажные же работы обойдутся в среднем в 700 руб. за тот же квадратный метр.

Несмотря на широкую представленность воздуховодов в интернет-магазинах, покупать их стоит всё же непосредственно у производителя, способного сопроводить каждое изделие сертификатом качества.

Как подобрать?

Работа системы воздухоотведения (СВО) зависит от того насколько правильно рассчитана площадь её сечения.

S - Площадь сечения.

P - Производительность СВО.

v - Скорость движения воздушной массы (для жилых помещений применяется показатель в 3-4 м/с).

Определение производительности вентиляции предполагает определение количества воздуха, необходимого для комфортного пребывания в помещении. Рассчитывается она 2 способами:

  • По объёму необходимого воздуха:

P - Производительность СВО.

A - Количество людей, находящихся в помещении в течение часа.

n - Норма расхода воздуха по СНИП 41-01-2003 и МГСЧ 3.01.01.

  • По кратности проветривания (вентилирования):

P - Производительность СВО.

V - Объём комнаты (при равных данных, всего помещения)

k - Кратность проветривания, установленная нормативами СНИП 41-01-2003.

Форму и диаметр

От выбранной конфигурации и размера сечения воздуховода зависит качество воздухообмена, энергоэкономичность и дизайн помещения. Поэтому к выбору воздухоносных каналов следует подходить обстоятельно:

  1. Чем меньше диаметр воздуховода, тем выше скорость движения воздушной массы. Важно руководствоваться принципом «золотой середины», т.к. чем выше скорость, тем выше уровень шума.
  2. Воздуховоды круглого сечения обеспечивают более скоростное движение воздуха, проще монтируются и стоят дешевле.
  3. Прямоугольные прочнее и гармонично вписываются в дизайн любого помещения.

Конструкцию и жёсткость

В зависимости от специфики применения конструкции бывают:

  • жёсткими, полужёсткими или гибкими;
  • стандартными или теплоизолированными;
  • огнезащитными.


Чем плотнее швы, тем прочнее соединение и длиннее период эксплуатации.

Материал

Оцинкованные вентканалы изготавливаются стандартного вида и утеплённые.

  1. В конструкции утеплённых моделей предусмотрен специальный изолирующий слой из минерального волокна, полиуретана, пеноэластомера, войлока или других материалов. Они поддерживают оптимальную температуру воздуха внутри контура, предотвращая образование и замерзание конденсата на стенках. Кроме того снижают уровень шума.
  2. Цинковое покрытие может быть односторонним или двусторонним. Вследствие образования внутри контура конденсата, двустороннее оцинкование практичнее, т.к. оберегает контур от внутрикоррозийного процесса.

Не так давно на рынке появились алюмоцинкованные воздуховоды, покрытие которых на 95% состоит из цинка и на 5% - из алюминия. Они характеризуются большей пластичностью и улучшенными антикоррозийными качествами.

Крепление

Способы фиксации воздуховодов зависят от конфигурации:

  • при круглом сечении применяются муфтовое, бандажное и ниппельное соединение элементов;
  • прямоугольные воздуховоды скрепляются посредством защёлок и монтажных уголков.

Иногда применяется сварка.

Правила монтажа вентиляции из оцинковки

Прокладка вентканалов из тонколистовой оцинкованной стали проходит поэтапно.

В современном строительстве - хоть многоэтажном, хоть коттеджном, хоть коммерческом, хоть жилом - широко применяются системы пассивной и активной вентиляции, воздушного отопления и очистки воздуха.

Если раньше для этих целей специально оставлялись пустоты в перекрытиях и стенах, то сегодня вентиляционные коммуникации прокладывают при помощи вентиляционных коробов (их также называют воздуховодами, вентиляционными трубами). Это специальные трубовидные полые конструкции, позволяющие распределять приточный и удалять загрязненный воздух.

Виды воздуховодов

Производство вентиляционных коробов может стать довольно прибыльным бизнесом, однако сначала нужно определиться с тем, какие конкретно виды конструкций вы хотите изготавливать. Классифицировать воздуховоды можно по разным признакам. Так, в зависимости от формы выделяют круглые и прямоугольные вентиляционные коробы, исходя из применяемого материала, конструкции могут быть пластиковыми, стальными (из оцинкованной или нержавеющей стали), алюминиевыми, из полиэстера, термопластика, силикона, стекловолокна и так далее.

По наличию особых свойств воздуховоды делят на огнезащитные, нержавеющие и другие, по способу соединения – на те, что имеют специальные крепления и те, что соединяются при помощи ниппелей. Основных же типов вентиляционных коробов существует два: гибкие (их еще именуют каркасными) и жесткие.

Выбираем, какие воздуховоды производить

Изготовление вентиляционных труб прямоугольной или круглой формы из алюминия или стали – самый простой вариант. Такие конструкции быстрее и легче монтируются, нежели пластиковые, а также имеют более низкую себестоимость, они не ржавеют, являются огнезащитными, обладают низким аэродинамическим сопротивлением.

Монтаж вентиляции с такими воздуховодами можно осуществлять на предприятиях, в офисах, спортивных, образовательных, культурно-развлекательных учреждениях, организациях общественного питания и вообще в любых зданиях, где есть помещения большой площади, в процессе эксплуатации которых предполагается активный воздухообмен.

Изготовление гибких вентиляционных коробов – более сложный процесс. Их можно применять лишь в специфических условиях, к примеру, в помещениях со сложной конфигурацией или таких зданиях, где монтаж вентиляции с применением крупных оцинкованных вентиляционных труб не представляется возможным. Также такие конструкции используются в помещениях, где нельзя предусмотреть системы активной вентиляции, например, вытяжки для отвода горячего воздуха и паров кислот.

Затрат на изготовление вентиляционных труб из жестких материалов потребуется меньше, но начинать производство именно с них необходимо не поэтому, а потому, что такие воздуховоды вы сможете быстрее реализовать.

Процесс производства

Конструкции любого вида изготавливаются на специальных автоматических аппаратах. По сути, процесс производства представляет собой обычные профилегибочные операции. Мы не будем в подробностях рассказывать о том, как изготовить вентиляционный короб. Ведь это делается не вручную, а при помощи технических устройств. Поэтому самая главная задача для вас, если вы хотите создать успешно функционирующее предприятие, - выбрать хорошее оборудование для производства вентиляции.

Учитываем важные параметры

При выборе основных средств руководствуйтесь главными параметрами воздуховодов: жесткостью, площадью и формой сечения (исходя из степени востребованности на рынке). Про жесткость мы уже говорили, так что с этим все понятно. Гибкие вентиляционные коробы можно реализовать дороже, нежели жесткие, но они и менее востребованы.

Что касается площади и формы сечения, то здесь дело с выбором обстоит сложнее. От того, какие конкретно конструкции вы будете применять, будут зависеть разные показатели, к примеру, скорость потока воздуха, а следовательно, и уровень шума, издаваемого этим потоком в случае превышения нормативов скорости.

Другие факторы выбора

Производство вентиляционных коробов круглой формы менее трудоемко, поскольку они крепятся при помощи ниппелей-защелок. Также такие воздуховоды быстрее и легче монтируются, потому как у них нет выступающих частей. Они отличаются прочностью и за счет своей более естественной формы создают не такое большое аэродинамическое сопротивление.

В то же время прямоугольные вентиляционные трубы демонстрируют в помещении наилучшие показатели воздушного потока в том случае, когда требуется значительная площадь поперечного сечения или когда монтаж производится в условиях повышенной сложности, к примеру, над подвесными потолками.

Изготовление вентиляционных воздуховодов круглого и прямоугольного сечения осуществляется из одних и тех же материалов: либо алюминия толщиной от полмиллиметра до миллиметра, либо оцинкованной стали. Согласно статистическим данным, объем продаж у них тоже практически равный, они пользуются одинаковым спросом.

И все же, если вы хотите сделать свой бизнес более успешным, приобретите оборудование для производства вентиляции, включающее линии для изготовления труб как круглого, так и прямоугольного сечения. Какие же машины вам потребуются?

Оснащаем цех по производству воздуховодов

Итак, технологическая линия для изготовления вентиляционных коробов любого сечения должна включать:

  • подающее устройство;
  • автомат для разматывания металлического рулонного листа;
  • аппарат для правки листа (технология допускает отклонение диагонали как заготовочного листа, так и самого воздуховода на 0,8 миллиметра – если вентиляционная труба будет иметь сильное нарушение геометрии, то от воздушного потока будет издаваться сильный шум, поэтому современная техника в обязательном порядке включает устройство правки);
  • промышленная система числового программного управления;
  • гильотина, которая отрезает готовый воздуховод.

Линия, применяемая для изготовления прямоугольных и круглых вентиляционных труб, различается только тем, что в первом случае формообразующими узлами выступают угловысечные приспособления, система нанесения жесткости ребер, автоматический листосгиб, оснащенный поворотной балкой, а во втором – прокатные ролики.

Стоимость технологической линии

Производство вентиляционных коробов – дело достаточно затратное. Линия для изготовления воздуховодов круглого сечения (при условии, что производитель отечественный) обойдется примерно в полтора миллиона рублей.

Стоимость линии для производства вентиляционных труб прямоугольного сечения будет составлять от 1,8 миллиона рублей и выше. То есть чтобы приобрести обе линии, вам нужно иметь в наличии ни много ни мало, а 3,3 миллиона рублей по самым минимальным меркам.

Срок окупаемости

Но есть и хорошая новость. Рентабельность в такой сфере бизнеса довольно высока. И если вы будете отпускать погонный метр по цене в 120-3000 рублей (в зависимости от диаметра труб), то даже при условии работы в одну смену пять дней в неделю сможете окупить затраты уже за полгода.

Перспективы развития

Производство вентиляционных коробов – бизнес перспективный. Наладив технологический процесс, можете расширить дело и заняться также изготовлением соединительной и крепежной фурнитуры для труб: заглушек, ниппелей, «зонтов», врезок, монтажной перфоленты и прочего. Такие изделия можно производить из некондиционного товара, обрезков и иных отходов.

Кроме того, старайтесь обогащать ассортимент продукции: начните изготовление жестких пластиковых, полиэстерных, силиконовых, гибких поливинилхлоридных, резиновых и других воздуховодов. Это позволит вам как минимум занять региональный рыночный сегмент в сфере вентиляционных систем.

Проработав стабильно в течение хотя бы полугода и подготовив основательно технологическую базу, можете заняться, кроме прочего, организацией услуг по проектированию и монтажу систем вентиляции. Для этого вам потребуется нанять инженеров, специализирующихся на работе по теплогазоснабжению.

Это востребованные специалисты в настоящее время, поэтому приготовьтесь, что их труд будет стоить совсем не дешево. Также в числе сотрудников вам будут нужны монтажники, но их работа ценится не так высоко, считается, что это низкоквалифицированные рабочие, а порой они могут вообще не иметь квалификации. Набрав персонал, можно предлагать услуги по установке систем вентиляции.

ВВЕДЕНИЕ

Сварка наряду с литьем и обработкой давлением является древнейшей технологической операцией, освоенной человеком в бронзовом веке во время приобретения опыта работы с металлами. Ее появление связано с необходимостью соединения различных деталей при изготовлении орудий труда, боевого оружия, украшений и других изделий.

Первым способом сварки была кузнечная, которая обеспечивала достаточно высокое по тем временам качество соединения, особенно при работе с пластичными металлами, такими, как медь. С появлением бронзы (более твердая и хуже поддается ковке) возникла литейная сварка. При литейной сварке края соединяемых деталей заформовывали специальной земляной смесью и заливали разогретым жидким металлом. Этот присадочный металл сплавлялся с деталями и, застывая, образовывал шов. Такие соединения были обнаружены на бронзовых сосудах, сохранившихся со времен Древней Греции и Древнего Рима.

С появлением железа увеличилась номенклатура используемых человеком изделий из металлов, поэтому расширился объем и области применения сварки. Создаются новые виды оружия, совершенствуются средства защиты воина в бою, появляются кольчуги, шлемы, латы. Например, при изготовлении кольчуги приходилось соединять кузнечной сваркой больше 10 тыс. металлических колец. Развиваются новые технологии литья, постепенно приобретаются знания, связанные с термообработкой стали и приданием ей различной твердости и прочности. Часто эти знания были получены случайно и не могли объяснить суть происходящих процессов.

Например, в рукописи, найденной в храме Балгона в Азии, так описывается процесс, известный нам как закалка стали: "Нагревать кинжал до тех пор, пока не засветится подобно утреннему солнцу в пустыне, потом охладить его до цвета царского пурпура, втыкая лезвие в тело мускулистого раба. Сила раба, переходя в кинжал, придает ему твердость". Тем не менее несмотря на достаточно примитивные знания, еще до нашей эры были изготовлены мечи и сабли, обладавшие уникальными свойствами и получившие название дамасских. Чтобы придать оружию высокую прочность и твердость и одновременно обеспечить пластичность, не позволявшую мечу быть хрупким и ломаться от ударов, его изготавливали слоистым. Поочередно, в определенной последовательности соединяли сваркой твердые слои из средне- или высокоуглеродистой стали и мягкие полосы из низкоуглеродистой стали или чистого железа. В результате получалось оружие, обладающее новыми свойствами, которые получить без применения сварки невозможно. Впоследствии, в Средние века, эта технология стала применяться для изготовления высокоэффективных, самозатачивающихся плугов и других орудий труда.

Кузнечная и литейная сварка длительное время оставалась основным способом соединения металлов. Эти способы хорошо вписывались в технологию производства того времени. Профессия кузнеца-сварщика была весьма почетной и престижной. Однако с развитием в XVIII в. машинного производства потребность в создании металлических сооружений, паровых машин, различных механизмов резко возросла. Известные способы сварки во многих случаях перестали удовлетворять требованиям, так как отсутствие мощных источников тепла не позволяло равномерно нагревать большие конструкции до необходимых для сварки температур. Основным способом получения неразъемных соединений в это время стала клепка.

Положение стало меняться в начале XX в. после создания итальянским физиком А.Вольта источников электрической энергии. В 1802 г. русский ученый В.В.Петров открыл явление электрической дуги и доказал возможность ее использования для плавления металла. В 1881г. русский изобретатель Н.Н.Бенардос предложил использовать электрическую дугу, горящую между угольным электродом и металлической деталью, для расплавления ее кромок и соединения с другой деталью. Он назвал этот способ соединения металлов "электрогефест" в честь древнегреческого бога-кузнеца. Металлические конструкции любых размеров и различной конфигурации стало возможным соединять прочным сварным швом. Так появилась электродуговая сварка - выдающееся изобретение XIX в. Она сразу же нашла применение в наиболее сложной в то время отрасли промышленности - паровозостроении. Открытие Н.Н. Бернардоса в 1888 г. усовершенствовал его современник Н.Г.Славянов, заменив неплавящийся угольный электрод плавящимся металлическим. Изобретатель предложил применять шлак, который защищал сварной шов от воздуха, делая его более плотным и прочным.

Параллельно развивалась газовая сварка, при которой для плавления металла использовалось пламя, образующееся при сгорании горючего газа (например, ацетилена) в смеси с кислородом. В конце XIX в. этот способ сварки считался даже более перспективным, чем дуговая, так как не требовал мощных источников энергии, а пламя одновременно с плавлением металла защищало его от окружающего воздуха. Это позволяло получать достаточно хорошее качество сварных соединений. Примерно в это же время для соединения стыков рельсовых путей стали применять термитную сварку. При сгорании термитов (смеси алюминия или магния с оксидом железа) образуется чистое железо и выделяется большое количество тепла. Порцию термита сжигали в огнеупорном тигле и расплав выливали в зазор между свариваемыми стыками.

Важным этапом в развитии дуговой сварки стали работы шведского ученого О. Кельберга, предложившего в 1907 г. наносить на металлический электрод покрытие, которое, разлагаясь при горении дуги, обеспечивало хорошую защиту расплавленного металла от воздуха и его легирование необходимыми для качественной сварки элементами. После этого изобретения сварка стала находить все большое применение в различных отраслях промышленности. Особое значение в это время имели работы русского ученого В.П. Вологдина, который создал первую кафедру сварки в политехническом институте г. Владивостока. В 1921 г. на Дальнем Востоке был открыт первый сварочный цех по ремонту судов, в 1924 г. с применением сварки отремонтирован крупнейший мост через реку Амур. В это же время создаются цистерны для хранения масла емкостью 2000 т, изготавливается с помощью сварки генератор для Днепрогэса, который был в два раза легче клепаного. В 1926 г. проводится первая Всесоюзная конференция по сварке. В 1928 г. в СССР насчитывалось 1200 агрегатов для дуговой сварки.

В 1929 г. в Киеве при АН УССР открылась лаборатория сварки, которая в 1934 г. преобразована в Институт электросварки. Возглавил институт известный ученый в области строительства мостов профессор Е.О.Патон, именем которого впоследствии назван институт. Одной из первых крупных работ института была разработка в 1939 г. автоматической сварки под флюсом. Она позволила повысить производительность процесса сварки в 6-8 раз, улучшить качество соединения, существенно упростить труд сварщика, превратив его в оператора по управлению сварочной установкой. Эта работа института в 1941 г. получила Государственную премию. Огромную роль автоматическая сварка под флюсом сыграла в годы Великой Отечественной войны, впервые в мире став основным способом соединения броневых листов толщиной до 45 мм при изготовлении танка Т34 и до 120 мм при изготовлении танка ИС-2. В условиях дефицита во время войны квалифицированных сварщиков повышение производительности сварки за счет автоматизации позволило в короткий срок существенно увеличить производство танков для фронта.

Значительным достижением сварочной науки и техники явилась разработка в 1949 г. принципиально нового способа сварки плавлением, получившего название электрошлаковой. Электрошлаковая сварка играет огромную роль в развитии тяжелого машиностроения, так как позволяет сваривать металл очень большой толщины (больше 1 м). Примером применения электрошлаковой сварки является изготовление на Новокрамоторском машиностроительном заводе по заказу Франции пресса, который может создавать усилие 65 000 т. Пресс имеет высоту, равную высоте 12-этажного дома, а его вес превышает в два раза вес Эйфелевой башни.

В 50-е гг. прошлого века промышленностью освоен способ дуговой сварки в среде углекислого газа, который в последнее время является самым распространенным способом сварки и применяется практически на всех машиностроительных предприятиях.

Активно идет развитие сварки и в последующие годы. С 1965 по 1985 г. объем производства сварных конструкций в СССР возрос в 7,5 раза, парк сварочного оборудования - в 3,5 раза, выпуск инженеров-сварщиков - в пять раз. Сварка стала применяться для изготовления практически всех металлических конструкций, машин и сооружений, полностью вытеснив клепку. Например, обычный легковой автомобиль имеет больше 5 тыс. сварных соединений. Трубопровод, по которому поставляется газ из Сибири в Европу, также сварная конструкция, имеющая больше 5 тыс. километров сварных швов. Без сварки не изготавливается ни одно высотное здание, телебашня или атомный реактор.

В 70-80-е гг. развиваются новые способы сварки и термической резки: электронно-лучевая, плазменная, лазерная. Эти способы вносят огромный вклад в развитие различных отраслей промышленности. Например, лазерная сварка позволяет качественно соединять мельчайшие детали в микроэлектронике диаметром и толщиной 0,01-0,1мм. Качество обеспечивается за счет острой фокусировки монохроматического лазерного луча и точнейшей дозировки времени сварки, которая может длиться 10- 6 секунды. Освоение ] лазерной сварки позволило создать целую серию новой элементной базы, что в свою очередь дало возможность изготовить новые поколения цветных телевизоров, компьютеров, систем управления и навигации. Электронно-лучевая сварка стала незаменимым техноло- гическим процессом при изготовлении самолетов сверхзвуковой авиации и аэрокосмических средств. Электронный луч позволяет сваривать металлы толщиной до 200 мм с минимальными деформациями конструкции и небольшой зоной термического влияния Сварка является основным технологическим процессом при изготовлении морских судов, платформ для добычи нефти, подводных лодок. Современная атомная подводная лодка, имеющая около 200 м и высоту 12-этажного дома, представляет собой полностью сварную конструкцию, изготовленную из высокопрочных сталей и титановых сплавов.

Без сварки невозможны были бы нынешние достижения в космической области. Например, окончательная сборка ракетного комплекса ведется в сварном монтажном цехе весом около 60 тыс и высотой 160 м. Система удержания ракеты состоит из сварных башен и мачт общим весом около 5 тыс. т. Все ответственные конструкции на стартовой площадке также сварные. Некоторым из них приходится работать в очень тяжелых условиях. Удар мощного пламени при старте ракеты принимает на себя сварной пламеразделитель весом 650 т, высотой 12 м. Сложными сварными конструкциями являются резервуары для хранения топлива, система подачи его в баки и сами топливные баки. Они должны выдерживать огромные переохлаждения. Например, резервуар для жидкого кислорода имеет емкость более 300 000 л. Он изготавливается с двойной стенкой - из нержавеющей и низкоуглеродистой стали. Диаметр наружного шара 22 м. Аналогично сконструированы баки для жидкого водорода. Трубопровод для подачи жидкого водорода сварен из никелевого сплава, он находится внутри другого трубоппро вода из алюминиевого сплава. Трубопроводы для подачи керосина и сверхактивного топлива сварены из нержавеющей стали, а трубопровод для подачи кислорода - из алюминия.

С помощью сварки изготавливаются многотонные БелАЗы и МАЗы, тракторы, троллейбусы, лифты, краны, скреперы, холодильники, телевизоры и другие изделия промышленности и товары народного потребления.

1. ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ

1 Описание сварной конструкции и ее назначение

Корпус вентилятора работает в особо тяжелых условиях. Подвергается непосредственному воздействию динамических и вибрационных нагрузок.

Корпус вентилятора состоит из

Поз 1 Корпус 1 шт

V =π*D*S*H = 3.14*60.5*0.8 = 151.98 куб см.

Q = ρ * V = 7,85 * 151.98 = 1193.01 гр. = 1.19 кг

Поз 2 Фланец 2 шт.

вентилятор сварка деформация дуга

V = π*(D нар 2 . - D внутр 2)*s =3,14*(64,5 2 -60,5 2)*1 =1570 куб. см

Q = ρ * V = 7.85 * 1570 = 12324,5 гр. = 12,33 кг.

Поз 3 Ухо 2 шт

V = h + l + s =10*10*0,5 = 50 куб. см

Q = ρ * V = 7,85 * 50 = 392,5 гр = 0,39 кг


Площадь поперечного сечения сварного шва

т. ш. = 0,5К² + 1,05К = 0,5 * 6² +1,05 * 6 = 24,3 кв мм

2 Обоснование материала сварной конструкции

Химический состав стали


Эквивалентное содержание углерода

Сэ = Сх + Ср

Сх -химический эквивалент углерода

Сх = С +Mn/9 + Cr/9 +Mo/12 = 0.16 +1.6/9 + 0.4/9 = 0.38

Ср - поправка к эквиваленту углерода

Ср = 0,005 * S * Сх = 0,005 * 8 * 0.38 = 0.125

Температура предварительного подогрева

Т п = 350 * = 350 * 0,25 = 126.2 град.


1.3 Технические условия на изготовление сварной конструкции

Корпус вентилятора работает в особо тяжелых условиях. Подвергается непосредственному воздействию динамических и вибрационных нагрузок.

4 Определение типа производства

Общий вес лонжерона составляет 32,07 кг. При программе выпуска 800 шт выбираем серийный тип производства


При серийном производстве тип производства характеризуется применением специализированных сборочно-сварочных приспособлений, сварка узлов производится на стационарных рабочих

5 Выбор и обоснование методов сборки и сварки

Данная конструкция изготовлена из стали 16Г2АФ которая относится к группе хорошо свариваемых сталей. При сварке требуется предварительный подогрев до 162 град и последующая термообработка.

Сталь сваривается всеми видами сварки. Толщина свариваемых деталей 10 мм что позволяет производить сварку в среде углекислого газа проволокой Св 08 Г2С

1.6 Определение режимов сварки

св= h*100 / Кп

где: h - глубина проплавления

Кп - коэффициент пропорциональности

c в =0,6*10*100/1,55 = 387 А

Напряжение на дуге

20 + 50* Iсв* 10⁻³ / d⁰² В

20 + 50 *387 *10 ⁻³ / 1,6⁰² = 20 + 15,35 = 35,35 В

Скорость сварки

V св =К н *I св / (ρ*F*100)м/час =

1*387/7,85*24,3*100 = 34,6 м/час

где К н -коэффициент наплавки г/А*час

ρ- плотность металла, принятая для углеродистых и низколегированных сталей равной 7,85 г/см3;

F - площадь поперечного сечения наплавленного металла. мм 2

7 Выбор сварочных материалов

Сталь 16Г2АФ сваривается любыми видами сварки с использованием различных видов сварочных материалов. Поэтому для сварки применяем проволоку СВ 08 Г 2 С. Проволока СВ 08 Г2С обладает хорошей свариваемостью, низким выделением сварочных аэрозолей, низкой ценой.

7.1 Расход сварочных материалов

Расход электродной проволоки при сварке в среде СО2 определяется по формуле

G э. пр. = 1,1 * М кг

М - масса наплавленного металла,

М = F * ρ * L*10 -3 кг

М т. ш. = 0,243*7,85*611,94*10 -3 = 1,16 кг

Расход электродной проволоки

G э. пр. = 1,1 * М = 1,1*1,16 = 1,28 кг

Расход углекислого газа

G со2 = 1,5*G э. пр. = 1,5*1,28 = 1,92 кг

Расход электроэнергии

W = a* G э. пр. = 8*1,28 = 10,24 кВт/час

a = 5…8 кВт * ч /кг - удельный расход электроэнергии на 1 кг наплавленного металла

8 Выбор сварочного оборудования, технологической оснастки, инструмента

СВАРОЧНАЯ СИСТЕМА MAGSTER


· Профессиональная сварочная система с вынесенным 4-х роликовым подающим механизмом знаменитого качества Lincoln Electric по цене лучших Российских аналогов.

· Сварка в защитных газах сплошными и порошковыми проволоками.

· С успехом применяется для сварки конструкционных низкоуглеродистых и нержавеющих сталей, а также для сварки алюминия и его сплавов.

· Пошаговая регулировка сварочного напряжения.

· Плавная регулировка подачи проволоки.

· Предварительная продувка газа.

· Тепловая защита от перегрузок.

· Цифровой индикатор напряжения.

· Высокая надежность и простота в управлении.

· Синергетическая система сварочного процесса - после загрузки вида проволоки и диаметра соответствие скорости подачи и напряжения устанавливается автоматически при помощи микропроцессора, (для мод. 400,500).

· Много функциональный жидкокристаллический дисплей - отображающий параметры сварочного процесса (для мод. 400, 500).

· Система водяного охлаждения (для моделей с индексом W) .

· Все модели оборудованы гнездом для подключения подогревателя газа (подогреватель поставляется отдельно).

· Разработан в соответствии с IEC 974-1. Класс защиты IP23 (работа на открытом воздухе).

· Поставляются готовыми к работе комплектами и включают в себя: источник тока, подающий механизм с транспортной тележкой, соединительные кабеля 5 м., сетевой кабель 5м., сварочная горелка " MAGNUM " длинной 4,5 м., зажим на деталь.

· AGSTER 400 plus MAGSTER 500 w plus MAGSTER 501 w Максимальная потребляемая мощность, сеть 380 в. 14,7 КВт. 17 КВт. 16 КВт. 24 КВт. 24 КВт. Сварочный ток при 35 % ПВ. 315 А. 400 А. 400 А. 500 А. 500 А. Сварочный ток при 60 % ПВ. 250 А. 350 А. 350 А. 450 А. 450 А. Сварочный ток при 100 % ПВ. 215 А. 270 А. 270 А. 350 А. 450 А. Выходное напряжение. 19-47 В. 18-40 В. 18-40 В. 19-47 В. 19-47 В. Вес без кабелей. 88 кг 140 кг 140 кг 140 кг 140 кг

· ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ МЕХАНИЗМА ПОДАЧИ ПРОВОЛОКИ

· Скорость подачи проволоки. 1-17 м/мин 1-24 м/мин 1-24 м/мин 1-24 м/мин 1-24 м/мин Диаметры проволоки. 0,6-1,2 мм 0,8-1,6 мм 0,8-1,6 мм 0,8-1,6 мм 0,8-1,6 мм Вес без горелки. 20 кг. 20 кг. 20 кг.

9 Определение технических норм времени на сборку и сварку

Расчет технических норм времени сборки и сварки узла.

Параметр

Норма времени мин

Время мин

Источник

Зачистить места под сварку от масла, ржавчины и других загрязнений.

0,3 на 1 м. шва

Установить дет поз 2 в приспособление.

Вес дет. 12,33 кг


Установить дет поз. 1 на дет поз 2


Прихватить дет поз 1 к дет поз 3 на 3 прихватки


0,09 1 прихв

Установить дет поз. 2 на дет поз 1

Вес дет. 12,33


Прихватить дет поз 2 к дет поз 1 на 3 прихватки


0,09 1 прихв

Установить 2 дет поз. 3 на дет поз 1

Вес дет. 0,39


Прихватить 2 дет поз 3 к дет поз 1 на 4 прихватки


0,09 1 прихв

Снять сборочную единицу и отложить на стол сварщика

Вес сб. ед. 32,07 кг


L шва = 1,9 м

1,72 мин / м шва


Приварить кромки дет поз 1 между собой

L шва = 0,32 м

1,72 мин / м шва


Приварить дет поз 2 к дет поз 1

L шва = 1,9 м

1,72 мин / м шва


Зачистить сварной шов от брызг.

Lзач = 4,12 м

0,4 мин/ м шва


Контроль рабочим, мастером




Снять сборочную единицу










Таблица 1

Таблица 2

Время на установку деталей (сборочных единиц) при сборке металлоконструкций под сварку

Вид сборки

Вес детали, сборочной единицы



фиксатру


Таблица 3

Время на прихватку

Толщина металла или катет, мм

Длина прихваток, мм

Время на одну прихватку, мин


Время на снятие сборочных единиц с приспособления и их укладка на место складирования


Основное время для сварки 1 м. шва

F - площадь поперечного сечения сварного шва

ρ - удельная плотность наплавленного металла, г/куб. см.

a - коэффициент наплавки

a = 17,1 г/ а* час

Т о. т.ш = = 1,72 мин/ 1 м шва

10 Расчет количества оборудования и его загрузки

Расчетное количество оборудования

С р = = = 0,09

Т ги - годовая трудоемкость операции, н-час;

Т ги = = = 308,4 н-час

Ф д о - годовой действительный фонд работы оборудования

Ф д о = (8*Д п + 7*Д с)*n*К п = (8*246 + 7*7) * 2 * 0,96 = 3872,6 час

Д п, Д с - количество рабочих дней в году соответственно с полной продолжительностью и сокращенных;

n- количество рабочих смен в сутках;

К п - коэффициент учитывающий время пребывания оборудования в ремонте (К п = 0,92-0,96).

Коэффициент загрузки

К з = = = 0,09

Ср - расчетное количество оборудования;

Спр - принятое количество оборудования Спр = 1

11 Расчет количества работающих

Численность основных рабочих занятых непосредственно выполнением технологических операций определяется по формуле

Ч о.р. = = = 0,19

Т г i - годовая трудоемкость, н-час;

Ф д р - годовой действительный фонд времени работы одного рабочего, в ч;

К в - коэффициент выполнения норм выработки (К в = 1,1-1,15)

Годовой действительный фонд времени работы одного рабочего

Ф д р = (8*Д п + 7*Д с) * К нев = (8*246 + 7*7) * 0,88 = 1774,96 час

где Д п, Д с - количество рабочих дней в году соответственно с полной продолжительностью и сокращенных;

К нев - коэффициент невыхода по уважительным причинам (К нев = 0,88)

12 Методы борьбы со сварочными деформациями

Весь комплекс мероприятий по борьбе с деформациями и напряжениями можно разделить на три группы:

Мероприятия, которые реализуются до сварки;

Мероприятия в процессе сварки;

Мероприятия, проводимые после сварки.

Меры борьбы с деформациями, применяемые до сварки, реализуются на стадии разработки проекта сварной конструкции и включают в себя следующие мероприятия.

Сварка конструкции должна иметь минимальный объем наплавленного металла. Катеты не должны превышать расчетные значения, стыковые швы по возможности должны выполняться без разделки кромок, количество и протяженность швов должны быть минимально допустимыми.

Необходимо использовать способы и режимы сварки, обеспечивающие минимальное тепло вложение и узкую зону термического влияния. В этом отношении сварка в СО 2 предпочтительнее ручной сварки, а электронно-лучевая и лазерная сварка предпочтительнее дуговой.

Сварные швы должны быть по возможности симметрично расположены на сварной конструкции, не рекомендуется располагать швы вблизи друг друга, иметь большое количество пересекающихся швов, без необходимости применять несимметричную разделку кромок. В конструкциях с тонкостенными элементами швы целесообразно располагать на жестких элементах либо вблизи них.

Во всех случаях, когда есть опасения, что возникнут нежелательные деформации, проектирование ведут так, чтобы обеспечить возможность последующей правки.

Мероприятия, применяющиеся в процессе сварки

Рациональная последовательность наложения сварных швов, на конструкции и по длине.

При сварке легированных сталей и сталей с повышенным содержанием углерода это может привести к образованию трещин, поэтому жесткость закреплений должна назначаться с учетом свариваемого металла.

Предварительная деформация свариваемых деталей.

Обжатие или прокатка сварного шва, которая проводится сразу после сварки. При этом зона пластических деформаций укорочения подвергается пластической осадке по толщине.

1.13 Выбор методов контроля качества

Система операционного контроля в сварочном производстве включает четыре операции: контроль подготовки, сборки, процесса сварки и полученных сварных соединений.

.) Контроль подготовки деталей под сварку

Он предусматривает контроль обработки лицевой и обратной поверхностей, а также торцевых кромок свариваемых деталей.

Поверхности свариваемых кромок должны быть зачищены от загрязнений, консервирующей смазки, ржавчины и окалины, на ширину 20 - 40 мм от стыка.

.) Сборка - установка свариваемых деталей в соответствующее положение друг относительно друга при сварке тавровых соединений контролируют перпендикулярность свариваемых деталей. При проверке качества прихваток следует обращать внимание на состояние поверхности и высоту прихваток.

.) Контроль процесса сварки включает визуальное наблюдение за процессом плавления металла и формирования шва, контроль стабильности параметров режима и работоспособности оборудования.

.) Контроль сварных соединений. После сварки сварные соединения, как правило, контролируют визуальным способом. Осмотру подвергают сварной шов и околошовную зону. Обычно контроль проводят невооружённым глазом. При выявлении поверхностных дефектов размером меньше 0,1 мм используют оптические устройства, например, лупу 4-7 кратного увеличения.

Основными конструктивными элементами сварных швов являются:

· ширина шва;

· высота усиления и проплава;

· плавность перехода от усиления к основному металлу и др

1.14 Техника безопасности, противопожарные мероприятия и охрана окружающей среды

Вредное влияние сварки и термической резки на человека и производственный травматизм при выполнении сварочных работ вызываются различными причинами и могут привести к временной потере трудоспособности, а при неблагоприятном стечении обстоятельств - и к более тяжелым последствиям.

Электрический ток опасен для человека, причем переменный ток опаснее постоянного. Степень опасности поражения электрическим током зависит в основном от условий включения человека в цепь и напряжения в ней, так как сила тока, протекающего через организм, обратно пропорциональна сопротивлению (по закону Ома). За минимальное расчетное сопротивление человеческого организма принимают 1000 Ом. Различают два вида поражения электрическим током: электрические удары и травмы. При электрическом ударе поражаются нервная система, мышцы грудной клетки и желудочков сердца; возможны паралич дыхательных центров и потеря сознания. К электрическим травмам относят ожоги кожи, тканей мышц и кровеносных сосудов.

Световая радиация дуги воздействуя на незащищенные органы зрения в течение 10-30 с в радиусе до 1 м от дуги, может вызвать сильную резь, слезотечение и светобоязнь. Длительное действие света дуги при таких условиях может привести к более тяжелым заболеваниям - (электроофтальмия, катаракта). Вредное воздействие лучей сварочной дуги на органы зрения сказывается на расстоянии до 10 м от места сварки.

Вредные вещества (газы, пары, аэрозоль) при сварке выделяются в результате физико-химических процессов, возникающих при плавлении и испарении свариваемого металла, компонентов покрытий электродов и сварочных флюсов, а также за счет рекомбинации газов под действием высокой температуры источников сварочного тепла. Воздушная среда в зоне сварки загрязняется сварочным аэрозолем, состоящим в основном из окислов свариваемых металлов (железа, марганца, хрома, цинка, свинца и т. д.), газообразных фтористых соединений, а также окиси углерода, окислов азота и озона. Длительное воздействие сварочного аэрозоля может привести к появлению профессиональных интоксикаций, тяжесть которых зависит от состава и концентрации вредных веществ.

Взрывоопасность обусловливается применением при сварке и резке кислорода, защитных газов, горючих газов и жидкостей, использованием газогенераторов, баллонов со сжатыми газами и т. д. Взрывоопасны химические соединения ацетилена с медью, серебром и ртутью. Опасность представляют собой обратные удары в газовой сети при работе с горелками и резаками низкого давления. При ремонте бывших в эксплуатации резервуаров и другой тары для хранения горючих жидкостей необходимы специальные меры для предотвращения взрывов.

Тепловые ожоги, ушибы и ранения вызваны высокой температурой источников сварочного тепла и значительным нагревом металла при сварке и резке, а также ограниченной возможностью обзора окружающего пространства в связи с производством работ с использованием щитков, масок и очков со светозащитными стеклами.

Неблагоприятные метеорологические условия воздействуют на сварщиков (резчиков) - строителей и монтажников более половины времени года, поскольку работать им приходится преимущественно на открытом воздухе.

Повышенная пожарная опасность при сварке и резке обусловливается тем, что температура плавления металла и шлаков значительно превышает 1000° С, а жидкие горючие вещества, дерево, бумага, ткани и другие легковоспламеняющиеся материалы загораются при 250-400° С.


2. МЕРЫ ОБЕСПЕЧЕНИЯ ЭЛЕКТРОБЕЗОПАСНОСТИ

Необходимо надежно заземлять корпус сварочного аппарата или установки, зажимы вторичной цепи сварочных трансформаторов, служащие для подключения обратного провода, а также свариваемые изделия и конструкции.

2.Запрещается использовать в качестве обратного провода сварочной цепи контуры заземления, трубы санитарно-технических устройств, металлоконструкции зданий и технологического оборудования. (При строительстве или ремонте можно применять в качестве обратного провода сварочной цепи металлические конструкции и трубопроводы (без горячей воды или взрывоопасной среды) и только в случаях, когда их сваривают.)

4. Необходимо защищать сварочные провода от повреждений. При прокладке сварочных проводов и при каждом их перемещении не допускать повреждения изоляции; соприкосновений проводов с водой, маслом, стальными канатами, рукавами (шлангами) и трубопроводами с горючими газами и кислородом, с горячими трубопроводами.

Гибкие электропровода управления схемой сварочной установки при значительной их протяженности необходимо помещать в резиновые рукава или в специальные гибкие многозвенные конструкции.

6.Ремонтировать сварочное оборудование имеет право только электротехнический персонал. Запрещается ремонтировать сварочное оборудование, находящееся под напряжением.

При сварке в особо опасных условиях (внутри металлических емкостей, котлов, сосудов, трубопроводов, в туннелях, в замкнутых или подвальных помещениях с повышенной влажностью и т.д.):

сварочное оборудование должно находиться за пределами этих емкостей, сосудов и т.д.

электросварочные установки необходимо оснащать устройством автоматического отключения напряжения холостого хода или ограничения его до напряжения 12В в течение не более 0,5с после прекращения сварки;

выделять страхующего рабочего, который должен находиться вне емкости, для наблюдения за безопасностью работы сварщика. Сварщик снабжается монтажным поясом с веревкой, конец которой длиной не менее 2 м должен быть в руках страхующего. Возле страхующего должен быть аппарат (рубильник, контактор) для отключения сетевого напряжения от источника питания сварочной дуги.

Нельзя допускать к дуговой сварке или резке сварщиков в мокрых рукавицах, обуви и спецодежде.

9. Шкафы, пульты и станины контактных сварочных машин, внутри которых расположена аппаратура с открытыми токоведущими частями, находящимися под напряжением, должны иметь блокировку, обеспечивающую снятие напряжения при их открывании. Педальные пусковые кнопки контактных машин необходимо заземлять и контролировать надежность верхнего ограждения, предупреждающего непроизвольные включения.

10. При поражении электрическим током необходимо:

срочно отключить ток ближайшим выключателем или отделить пострадавшего от токоведущих частей, используя сухие подручные материалы (шест, доску и др.) после чего положить его на подстилку;

немедленно вызвать медицинскую помощь, учитывая, что промедление свыше 5-6 мин может привести к непоправимым последствиям;

при бессознательном состоянии и отсутствии дыхания у пострадавшего освободить его от стесняющей одежды, открыть рот, принять меры против западания языка и немедленно приступить к выполнению искусственного дыхания, продолжая его до прибытия врача или восстановления нормального дыхания.


3. ЗАЩИТА ОТ СВЕТОВОЙ РАДИАЦИИ

Для защиты глаз и лица сварщика от световой радиации электрической дуги применяют маски или щитки, в смотровые отверстия которых вставляют защитные стекла-светофильтры, поглощающие ультрафиолетовые лучи и значительную часть световых и инфракрасных лучей. От брызг, капель расплавленного металла и других загрязнений светофильтр снаружи защищают обычным прозрачным стеклом, устанавливаемым в смотровое отверстие перед светофильтром.

Светофильтры для дуговых способов сварки подбирают в зависимости от вида сварочных работ и силы тока сварки, пользуясь данными табл. 3. При сварке в среде защитных инертных газов (особенно сварке алюминия в аргоне) необходимо использовать более темный светофильтр, чем при сварке открытой дугой при той же силе тока.

Таблица 3. Светофильтры для защиты глаз от излучения дуги (ОСТ 21-6-87)

2. Для защиты окружающих работников от световой радиации сварочной дуги применяют переносные щиты или ширмы из несгораемых материалов (при непостоянном рабочем месте сварщика и больших изделиях). В стационарных условиях и при сравнительно небольших размерах свариваемых изделий сварку выполняют в специальных кабинах.

3. Для ослабления контраста между яркостью света дуги, поверхностью стен цеха (или кабин) и оборудования их рекомендуется окрашивать в светлые тона с рассеянным отражением света, а также обеспечивать хорошую освещенность окружающих предметов.

При поражении глаз световой радиацией дуги следует немедленно обратиться к врачу. При невозможности получения быстрой медицинской помощи делают примочки на глаза со слабым раствором питьевой соды или чайной заваркой.

Защита от вредных газовых выделений и аэрозоля

Для защиты организма сварщиков и резчиков от вредных газов и аэрозолей, выделяющихся в процессе сварки необходимо применять местную и общеобменную вентиляцию, подачу в зону дыхания чистого воздуха, а также малотоксичные материалы и процессы (например, использовать электроды с покрытием рутилового типа, сварку покрытыми электродами заменять на механизированную сварку в углекислом газе и т. д.).

2. При сварке и резке мелких и средних изделий на постоянных местах в цехах или мастерских (в кабинах) необходимо использовать местную вентиляцию с неподвижным боковым и нижним отсосом (стол сварщика). При сварке и резке изделий на фиксированных местах в цехах или мастерских необходимо использовать местную вентиляцию с заборной воронкой, закрепленной на гибком рукаве.

Вентиляцию следует выполнять приточно-вытяжной с подачей свежего воздуха на сварочные участки и подогревом его в холодное время.

При работах в замкнутых и полузамкнутых пространствах (резервуары, баки, трубы, отсеки листовых конструкций и т.д.) необходимо применять местный отсос на гибком рукаве для вытяжки вредных веществ непосредственно от места сварки (резки) или обеспечивать общеобменную вентиляцию. При невозможности осуществить местное или общее вентилирование чистый воздух принудительно подают в зону дыхания рабочего в количестве (1,7-2.2) 10-3м3 в 1с, используя для этой цели маску или шлем специальной конструкции.

ЛИТЕРАТУРА

1. Куркин С. А., Николаев Г. А. Сварные конструкции. - М.: Высшая школа, 1991. - 398с.

Белоконь В.М. Производство сварных конструкций. - Могилев, 1998. - 139с.

Блинов А.Н., Лялин К.В.Сварные конструкции - М.: - "Стройиздат", 1990. - 352с

Маслов Б.Г. Выборнов А.П. производство сварных конструкций -М,: Издательский центр "Академия", 2010. - 288 с.

Похожие работы на - Технология изготовления корпуса вентилятора