Ts диаграмма воды и водяного пара онлайн. Is (hs)-диаграмма состояния воды и водяного пара

Ts диаграмма воды и водяного пара онлайн. Is (hs)-диаграмма состояния воды и водяного пара

Описание hs-диаграммы

На hs-диаграмме изображены термодинамические процессы:

§ Изобарный процесс (p = const) - фиолетовые линии (изобары),

§ Изотермический процесс (t = const) - зеленые линии (изотермы),

§ Изохорный процесс (v = const) - красные линии (изохоры).

Степень сухости и паросодержание (х ) - розовые линии. Жирная розовая линия - степень сухости х =1. Все что ниже этой линии - зона влажного пара.

Ось «Х» - энтропия , ось «h» - энтальпия .

Семейство изобар в области насыщения представляет собой пучок расходящихся прямых, начинающихся на нижней и оканчивающихся на верхней пограничной кривой. Чем больше давление, тем выше лежит соответствующая изобара. Переход изобар из области влажного насыщенного в область перегретого пара происходит без перелома на верхней пограничной кривой.

В i, s-диаграмме водяного пара наносятся также линии постоянного паросодержания (x = const) и линии постоянного удельного объема (v = const). Изохоры идут несколько круче, чем изобары.

Состояние перегретого пара обычно определяется в технике давлением p и температурой t . Точка, изображающая это состояние, находится на пересечении соответствующей изобары и изотермы. Состояние влажного насыщенного пара определяется давлением p и паросодержанием x .

Точка, изображающее это состояние, определяется пересечением изобары и линии x = const.

Критические параметры водяного пара: t кр = 364,15 0 С, v кр = 0, 00326 м 3 /кг, р кр = 22, 129 МПа.

Как пользоваться hs-диаграммой

Для описания воспользуемся небольшой задачей. Возьмем с потолка условие.

Пусть начальные параметры пара будут: давление пара р = 120 бар, температура пара t = 550°С. Пар адиабатно расширяется в турбине до температуры, например, 400 °С.

Для примера этого будет достаточно.

Адиабатный процесс на hs-диаграмме - это вертикальная линия (горизонтальная линия - дросселирование). Это для справки.

Итак, начальное давление и температура у нас есть. Найдем эту точку на hs-диаграмме:

Нам нужна изобара , соответствующая давлению 120 бар и изотерма , соответствующая температуре 550 °С . На их пересечении и будет точка, соответствующая начальным параметрам пара в нашей задаче.

Найдя эту точку, мы уже можем определить в ней энтальпию и энтропию. Опустив на оси проекции найденной точки, узнаем значения энтальпии (ось «Y») и энтропии (ось «Х»).

i = ~3480 кДж/кг, S = 6,65 кДж/(кг К)

Далее нам нужно узнать параметры пара после адиабатного расширения. Мы знаем, что по поставленным нами условиям, пар расширился и его температура в точке 2 = 400 °С. Я уже упоминал, что на is-диаграмме адиабатный процесс изображается в виде вертикальной линии. Проведем эту линию из точки 1 (начальные параметры) до пересечения с изотермой 400 °С .

Здравствуйте! Определять параметры и функции состояния по формулам зачастую бывает затруднительно вследствие сложной зависимости теплоемкости водяного пара и теплоты парообразования от температуры и давления. Поэтому для водяного пара, на основании экспериментальных исследований составлены таблицы, отражающие зависимости важнейших параметров водяного пара. Пользуясь ими, к примеру, по известному давлению сухого насыщенного пара можно определить все остальные параметры.

Так как состояние сухого насыщенного пара однозначно определяется его давлением р или температурой насыщения Тн, то таблицы составляются по давлению или температуре. По одному из этих параметров из таблиц можно определить другие величины, характеризующие состояние сухого насыщенного пара. В таблицах перегретого пара приводятся его параметры и функции состояния в зависимости от температуры и давления пара.

Расчет процессов изменения состояния пара упрощается при переходе к графическому методу, основанному на использовании диаграмм состояния. В этом случае не требуется проводить большой объем вычислений и расчет сводится к определению параметров с помощью диаграмм. Графическим методом легко определить не только начальные и конечные параметры пара в процессе, но и все промежуточные параметры состояния, что существенно упрощает инженерные расчеты.

Преимуществом графического метода является возможность сравнительно просто проследить связь между различными величинами, это делает его незаменимым при теоретическом анализе различных процессов в тепловых двигателях. С помощью диаграммы, как и по таблицам, можно определить параметры и функции состояния водяного пара, в том числе и влажного насыщенного пара.

Наибольшее распространение получили Ts- и is-диаграммы состояния водяного пара. Так как с помощью Ts-диаграммы легко определить количество теплоты в процессе, то она и применяется в основном для теоретического анализа экономичности тепловых двигателей. При расчетах различных процессов изменения состояния используется главным образом is- диаграмма водяного пара.

На рис. 1 в координатах Ts изображен процесс парообразования при р = const (процесс abcd). Кривая аКс является пограничной кривой, а точка К - критической точкой. Начало отсчета энтропии соответствует ее значению при 273 К. Площадь под кривой процесса на is-диаграмме соответствует количеству теплоты.

Следовательно, площадь под изобарой ab эквивалентна энтальпии воды i" при температуре парообразования Tн. На изобарном участке bс, совпадающем с изотермой, происходит процесс парообразования, и площадь под прямой bс соответствует теплоте парообразования г. В изобарном процессе перегрева cd температура пара повышается до значения Т, и к пару подводится количество теплоты срm (Т-Тн). Линии постоянной степени сухости х=const, как и на всех диаграммах, сходятся в критической точке К.

На рис. 2 показаны различные процессы изменения состояния водяного пара на is-диаграмме. Область диаграммы, расположенная левее пограничной кривой еК, соответствует состоя-нию жидкости. Пограничная кривая пара Kf делит диаграмму на две области. Выше этой кривой расположена область перегретого пара, а ниже - область влажного пара. На пограничной кривой Kf пар является сухим насыщенным (х=1). Изобарный процесс изображен линией abc, изотермический - abd (в области влажного пара изотерма и изобара совпадают), изохорный - υ=const и адиабатный - gh. Кроме того, на этом рисунке показаны линии постоянной степени сухости х = const. В таблицах и на диаграммах не приводятся значения внутренней энергии газа, которую можно определить из соотношения u = i-pυ.

На рис. 3 приведена is-диаграмма водяного пара. При графическом расчете процессов по любым двум известным величинам (р, υ, Т; х, i, s) находят на диаграмме точку, соответствующую начальному состоянию пара, и все неизвестные параметры. Конечное состояние пара можно определить также по двум известным параметрам состояния. Если задан только один конечный параметр состояния, то необходимо знать еще характер процесса. В этом случае точку, характеризующую конечное состояние, находят на пересечении заданной кривой процесса и соответствующей изопараметрической кривой, например изобары.

Пример. Определить количество теплоты, сообщаемой 1 кг пара в пароперегревателе котельного агрегата. Начальные параметры пара p1 = 5 МПа и x1=0,95. Известно также, что после адиабатного расширения пара в турбине х2 = 0,87, а конечное давление пара р2=0,01 МПа.

Решение. Так как в пароперегревателе к пару подводится теплота при постоянном давлении, то количество ее равно разности начальной энтальпии i1 и энтальпии i2 пара после пароперегревателя: q=i2-i1. По начальным параметрам пара p1 и x1 на is-диаграмме находим точку А (рис. 3), которой соответствует значение энтальпии i1=2720 кДж/кг. Точку В, соответствующую состоянию пара на выходе из пароперегревателя, находим на пересечении изобары p1=5 МПа и адиабаты ВС, которая проходит через точку С. Положение точки С определяется параметрами пара р2 и x2. Энтальпия пара в точке В i2 = 3600 кДж/кг.
Количество подведенной к 1 кг пара теплоты равно q = 3600—2720=880 кДж/кг. Рассмотренный пример показывает, что is-диаграмма значительно упрощает расчеты процессов для водяного пара. Исп.литература: 1) Теплотехника и теплотехническое оборудование предприятий промышленности строительных материалов и изделий, Н.М. Никифорова, Москва, «Высшая школа», 1981. 2) Теплотехника, Бондарев В.А., Процкий А.Е., Гринкевич Р.Н. Минск, изд. 2-е,"Вышейшая школа", 1976.

Вода и. водяной пар широко применяются в энергетике, в отоплении, вентиляции, горячем водоснабжении.

Водяной пар - реальный газ. Он может быть влажным, сухим насыщенным и перегретым. Уравнения состояния реальных газов сложны, поэтому в теплотехнических расчетах предпочитают использовать таблицы и диаграммы. Особое значение для технических расчетов процессов с водяным паром имеет h,s -диаграмма водяного пара.

В диаграмме h,S нанесена (рисунок 5.1 а), верхняя пограничная кривая (степень сухости пара X=1) соответствующая сухому насыщенному пару. Выше этой кривой располагается область перегретого пара.

Рисунок 5.1 Диаграмма hS водяного пара

Ниже влажного насыщенного пара. В область влажного насыщенного пара нанесены кривые сухости (X=0,95; Х=0,90; X=0.85 и т.д.)

В координатных, осях hS (рисунок 5.1 а) нанесены кривые простейших процессов р=сonst (изобары); v= сonst (изохоры); t =сonst (изотермы); любая вертикальная линия (рисунок 5.1 б) изображает адиабатный процесс (S=const).

В области влажного насыщенного пара изотермы (t =сonst)совпадают с кривыми изобары (р=сonst), так как парообразование происходит при постоянном давлении и при постоянной температуре. На верхней пограничной кривой направление изотермы меняется и в пограничной кривой направление изотермы меняется, и области перегретого пара изотермы отклоняются вправо и не совпадают с изобарами.

Практически применяется часть диаграммы hS , когда X 0,5, которая заключена в рамку. Эта часть диаграммы приведена на рисунке 5.1.

Состояние перегретого пара на диаграмме hS определяется двумя параметрами (р 1 и t 1 или р 1 и v 1), а влажного насыщенного пара - одним параметром и степенью сухости пара Х. По двум заданным параметрам р 1 и t 1 в области перегретого пара находим точку I (рисунок 5.1 б), соответствующую заданному состоянию водяного пара. Для этого состояния из диаграммы можно найти все другие параметры (h 1 ,s 1 ,v 1).

Значение внутренней энергии подсчитывается по формуле

(5.1)

Зная вид термодинамического процесса, двигаются по нему до пересечения с заданным конечным параметром и находят на диаграмме конечное состояние пара. Определив параметры конечного состояния, можно рассчитывать показатели процесса (работу, теплоту, изменение параметров).

Изменение внутренней энергии
и работу в любом процессе подсчитывают по формулам

∆u = u 1 – u 2 = (h 1 – h 2) - (p 1 v 1 – p 2 v 2); (5.2)

W=q - ∆u = q –(h 1 – h 2)+(p 1 v 1 -p 2 v 2). (5.3)

Рассмотрим основные задачи, решаемые по hS диаграмме.

Изохорный процесс ( v = const ). Количество теплоты, участвующей в процессе определяется по формуле (5.2) для определения изменения внутренней энергии. Работа изохорного процесса равна нулю.

Изобарный процесс (р=с onst ). Количество теплоты, участвующая в процессе определяется по формуле

(5.4)

Изменение внутренней энергии по формуле 5.2

Работу изобарного процесса можно сравнить

w = p (v 2 v 1 ) (5.5)

или по формуле (5.3).

Изотермический процесс ( T onst ). Теплоту и работу процесса находят по формуле

(5.6)

Адиабатный процесс (р v k =const ). На рисунке 5.1б представлен адиабатный процесс, протекающий без теплообмена с внешней средой. В адиабатном процессе энтропия не изменяется и очень часто этот процесс называется изоэнтропным.

Работа процесса происходит за счет изменения внутренней энергии
.

Процесс при постоянной степени сухости (Х=сonst) решается также по диаграмме hS (рисунок 5.2).

Приблизительное количество определяется по формуле

. (5.7)

Изменение внутренней энергии в процессе находят обычным способом по формуле 5.2

Работа процесса определяется по формуле (5.3).

is - диаграмма является наиболее удобной для расчетных целей. Это свя­зано с тем, что удельные количества теплоты и работы изображаются не площадями, как это имеет место в Ts- и pv - диаграммах, а отрезками линий (рис.6.4).

За начало координат в is - диаграмме принято состояние воды в тройной точке, где s 0 =0 (допущение) i o =0. По оси абсцисс откладывается удельная энтропия, а по оси ординат - удельная энтальпия. На основе данных таблиц водяного пара на диаграмму наносятся пограничные кривые жидкости (АК) и пара (KB) (соответственно нулевой х= 0и единичной х= 1степени сухости), сходящиеся в критической точке К. Пограничная кривая жидкости выходит из начала координат.

Изобары (p=const )в области влажного пара являются прямыми наклон­ными линиями, берущими начало на пограничной кривой нулевой степени сухости, к которой они касательны. В этой области изобары и изотермы сов­падают, т.е. они имеют одинаковый коэффициент наклона к оси абсцисс. Для любой изобары - изотермы

где φ - угол наклона изобар к оси s, T s - температура насыщения, неизменная для данного давления всюду между пограничными кривыми и КВ.

В области перегретого пара (правее и выше кривой х =1) изобары имеют вид кривых отклоняющихся вверх с выпуклостью, направленной вниз. Изо­термы в этой области отклоняются вправо и их выпуклость направлена вверх. Изобара АВ 1 соответствует давлению в тройной точке р 0 = 0,000611 МПа. Область диаграммы, расположенная ниже тройной точки, характери­зует различные состояния смеси пара и льда.

Между кривыми АК и KB наносится сетка линий постоянной степени су­хости (x=const )пара, сходящихся в критической точке К.

Кроме того, на диаграмму наносится сетка изохор, имеющих вид кривых, поднимающихся вверх (как в области влажного, так и в области перегретого пара) более круто, чем изобары. На is -диаграмме рис. 6.3. изохоры не при­ведены.

В практических расчетах обычно используется лишь область диаграммы, расположенная в правом верхнем углу. В связи с чем, начало координат пе­реносится из точки 0 в точку 0", что дает возможность изображать диаграмму в большем масштабе.

Диаграмма is широко применяется для расчета процессов с водяным па­ром. Общий метод состоит в следующем.

1. По заданным начальным параметрам, характеристике процесса и за­данному конечному параметру в i s-диаграмме находится график процесса.

2. По начальной и конечной точкам процесса находятся все основные па­раметры пара в этих точках.

3.Определяется изменение внутренней энергии по формуле

4.Определяется теплота процесса по формулам:

а) процесс ν = const ;

б) процесс р = const ;

в) процесс Т = const ;

г) процесс s = const q = 0.

5.0пределяется удельная работа по формуле

Все рассмотренные выше диаграммы в pv- , Ts- и is - координатах в соот­ветствующих масштабах строятся на основе таблиц параметров, полученных из опытных и теоретических данных. Наиболее точные таблицы для водяно­го пара разработаны в Московском энергетическом институте под руково­дством проф. М.П.Вукаловича .

Создание

При проведении технико-экономических расчётов для подбора оборудования в теплоэнергетике и других отраслях, и моделирования тепловых процессов, необходимы надёжные проверенные данные о теплофизических свойствах воды и водяного пара в широкой области давлений и температур .

Многолетнее международное сотрудничество в области исследования свойств воды и водяного пара, позволило разработать и внедрить международные нормативные материалы, содержащие уравнения для описания различных свойств, в специальные таблицы. На основании этих уравнений, соответствующих требованиям Международной системы уравнений для научного и общего применения (The IFC Formulation for Scientific and Generale Use), были составлены и опубликованы подробные таблицы теплофизических свойств воды и водяного пара, которые широко применяются в практике инженерных теплотехнических расчётов. Данные, полученные путём расчёта по международным уравнениям, были приняты и в СССР , и получили определение таблиц термодинамических свойств воды и водяного пара. В них также включили данные по динамической вязкости.


Wikimedia Foundation . 2010 .

Смотреть что такое "H, s-диаграмма" в других словарях:

    Для системы Fe H2O … Википедия

    Диаграмма Исикавы т. н. диаграмма «рыбьей кости» (англ. Fishbone Diagram) или «причинно следственная» диаграмма (англ. Cause and Effect Diagram), а также как диаграмма «анализа корневых причин». Один из семи основных… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звездная величина) показывает зависимость между абсолютной звёздной величиной,… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звёздная величина) показывает зависимость между абсолютной звёздной величиной,… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звездная величина) показывает зависимость между абсолютной звёздной величиной, светимостью,… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звездная величина) показывает зависимость между абсолютной звёздной величиной, светимостью,… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звездная величина) показывает зависимость между абсолютной звёздной величиной, светимостью,… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звездная величина) показывает зависимость между абсолютной звёздной величиной, светимостью,… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звездная величина) показывает зависимость между абсолютной звёздной величиной, светимостью,… … Википедия

    Диаграмма Герцшпрунга Рассела (варианты транслитерации: диаграмма Герцшпрунга Рессела, Расселла, или просто диаграмма Г Р или диаграмма цвет звездная величина) показывает зависимость между абсолютной звёздной величиной, светимостью,… … Википедия