Наноазбука: квантовые точки. Квантовые точки — наноразмерные сенсоры для медицины и биологии

Наноазбука: квантовые точки. Квантовые точки — наноразмерные сенсоры для медицины и биологии
Наноазбука: квантовые точки. Квантовые точки — наноразмерные сенсоры для медицины и биологии

Для того чтобы получить общее представление о свойствах материальных предметов и законах, в соответствии с которыми «живет» привычный каждому макромир, вовсе не обязательно заканчивать высшее учебное заведение, ведь ежедневно каждый сталкивается с их проявлениями. Хотя в последнее время все чаще упоминается принцип подобия, сторонники которого утверждают, что микро и макромир весьма схожи, тем не менее, разница, все же, есть. Особенно это заметно при очень незначительных размерах тел и объектов. Квантовые точки, иногда называемые наноточками, как раз представляют собой один из этих случаев.

Меньше меньшего

Давайте вспомним классическое устройство атома, например, водорода. Он включает в себя ядро, которое благодаря присутствию в нем положительно заряженного протона обладает плюсовым то есть +1 (так как водород - первый элемент в таблице Менделеева). Соответственно, на определенном расстоянии от ядра находится электрон (-1), формируя электронную оболочку. Очевидно, что если увеличить значение то это повлечет за собой присоединение новых электронов (напомним: в целом атом электрически нейтрален).

Расстояние между каждым электроном и ядром определяется уровнями энергии отрицательно заряженных частиц. Каждая орбита является постоянной, суммарная конфигурация частиц определяет материал. Электроны могут перескакивать с одной орбиты на другую, поглощая или выделяя энергию посредством фотонов той или иной частоты. На наиболее удаленных орбитах находятся электроны с максимальным уровнем энергии. Что интересно, сам фотон проявляет двойственную природу, определяясь одновременно как безмассовая частица и электромагнитное излучение.

Само слово «фотон» греческого происхождения, оно означает «частица света». Следовательно, можно утверждать, что при смене электроном своей орбиты, он поглощает (выделяет) квант света. В данном случае уместно объяснить смысл другого слова - «квант». На самом деле ничего сложного нет. Слово произошло от латинского «quantum», что дословно переводится как наименьшее значение любой физической величины (здесь - излучения). Поясним на примере, что такое квант: если бы при измерении веса наименьшей неделимой величиной являлся миллиграмм, то его можно было бы так назвать. Вот так просто объясняется, казалось бы, сложный термин.

Квантовые точки: разъяснение

Часто в учебниках можно встретить следующее определение для наноточки - это чрезвычайно маленькая частица какого-либо материала, размеры которой сопоставимы с величиной излучаемой длины волны электрона (полный спектр охватывает предел от 1 до 10 нанометров). Внутри нее значение единичного носителя отрицательного заряда меньше, чем вне, поэтому электрон ограничен в перемещениях.

Однако термин «квантовые точки» может быть объяснен иначе. Электрон, поглотивший фотон, «поднимается» на более высокую энергетическую ступень, а на его месте образуется «недостача» - так называемая дырка. Соответственно, если электрон обладает -1 зарядом, то дырка +1. Стремясь вернуться к прежнему устойчивому состоянию, электрон испускает фотон. Связь носителей зарядов «-» и «+» в данном случае носит название экситон и в физике понимается как частица. Ее размер зависит от уровня поглощенной энергии (более высокой орбиты). Квантовые точки как раз и являются этими частицами. Частота излучаемой электроном энергии непосредственно зависит от размера частицы данного материала и экситона. Стоит отметить, что в основе цветового восприятия света человеческим глазом лежит различная

LED, LCD, OLED, 4K, UHD... казалось бы, последнее, что сейчас нужно телевизионной индустрии, так это очередная техническая аббревиатура. Но прогресс не остановить, встречайте еще пару букв - QD (или Quantum Dot). Сразу отмечу, что термин «квантовые точки» в физике имеет более широкое значение, чем требуется для телевизоров. Но в свете нынешней моды на все нанофизическое маркетологи крупных корпораций с радостью начали применять это непростое научное понятие. Поэтому я решил разобраться, что же это за квантовые точки такие и почему все захотят купить QD-телевизор.

Сначала немного науки в упрощенном виде. «Квантовая точка» - полупроводник, электрические свойства которого зависят от его размера и формы (wiki). Он должен быть настолько мал, чтобы квантово-размерные эффекты были выраженными. А эффекты эти регулируются размером этой самой точки, т.е. от «габаритов», если это слово применимо к столь малым объектам, зависит энергия испускаемого, например, фотона - фактически цвет.


Quantum-Dot-телевизор LG, который впервые покажут на CES 2015

Еще более потребительским языком - это крошечные частицы, которые начнут светиться в определенном спектре, если их подсветить. Если их нанести и «растереть» на тонкой пленке, затем подсветить ее, пленка начнет ярко люминесцировать. Суть технологии в том, что размер этих точек легко контролировать, а значит добиться точного цвета.


Цветовой охват QD-телевизоров, согласно данным компании QD Vision, выше в 1,3 раза, чем у обычного ТВ, и полностью покрывает NTSC

На самом деле, не так уж и важно, какое имя выбрали большие корпорации, главное, что это должно дать потребителю. И тут обещание довольно простое - улучшенная цветопередача. Чтобы лучше понять, как «квантовые точки» ее обеспечат, нужно вспомнить устройство ЖК-дисплея.

Свет под кристаллом

LCD-телевизор (ЖК) состоит из трех основных частей: белая подсветка, цветовые фильтры (разделяющие свечение на красный, синий и зеленый цвета) и жидкокристаллическая матрица. Последняя выглядит как сетка из крошечных окон - пикселей, которые, в свою очередь, состоят из трех субпикселей (ячеек). Жидкие кристаллы, подобно жалюзи, могут перекрыть световой поток или наоборот открыться полностью, также есть промежуточные состояния.


Компания PlasmaChem GmbH производит «квантовые точки» килограммами и пакует их во флаконы

Когда белый свет, излучаемый светодиодами (LED, сегодня уже сложно найти телевизор с люминесцентными лампами, как это было всего лишь несколько лет назад), проходит, например, через пиксель, у которого закрыты зеленая и красная ячейки, то мы видим синий цвет. Степень «участия» каждого RGB-пикселя меняется, и таким образом получается цветная картинка.


Размер квантовых точек и спектр, в котором они излучают свет, по данным Nanosys

Как вы понимаете, для обеспечения цветового качества изображения требуются как минимум две вещи: точные цвета светофильтров и правильная белая подсветка, желательно с широким спектром. Как раз с последним у светодиодов есть проблема.

Во-первых, они фактически не белые, вдобавок, у них очень узкий цветовой спектр. То есть спектр шириной белого цвета достигается дополнительными покрытиями - есть несколько технологий, чаще других используются так называемые люминофорные диоды с добавкой желтого. Но и этот «квазибелый» цвет все же недотягивает до идеала. Если пропустить его через призму (как на уроке физики в школе), он не разложится на все цвета радуги одинаковой интенсивности, как это происходит с солнечным светом. Красный, например, будет казаться гораздо тусклее зеленого и синего.


Так выглядит спектр традиционной LED-подсветки. Как видите, синий тон гораздо интенсивней, да и зеленый с красным неравномерно покрывают фильтры жидких кристаллов (линии на графике)

Инженеры, понятное дело, пытаются исправить ситуацию и придумывают обходные решения. Например, можно понизить уровень зеленого и синего в настройках телевизора, однако это повлияет на суммарную яркость - картинка станет бледнее. Так что все производители искали источник белого света, при распадении которого получится равномерный спектр с цветами одинаковой насыщенности. Тут как раз на помощь и приходят квантовые точки.

Квантовые точки

Напомню, что если мы говорим о телевизорах, то «квантовые точки» - это микроскопические кристаллы, которые люминесцируют, когда на них попадает свет. «Гореть» они могут множеством различных цветов, все зависит от размера точки. А учитывая, что сейчас ученые научились практически идеально контролировать их размеры путем изменения количества атомов из которых они состоят, можно получать свечение именно того цвета, которого нужно. Также квантовые точки очень стабильны - они не меняются, а это значит, что точка созданная для люминесценции с определенным оттенком красного будет практически вечно сохранять этот оттенок.


Так выглядит спектр LED-подсветки с использованием QD-пленки (согласно данным компании QD Vision)

Инженеры придумали использовать технологию следующим образом: на тонкую пленку наносится «квантовоточечное» покрытие, созданное для свечения с определенным оттенком красного и зеленого. А светодиод - обычный синий. И тут кто-то сразу догадается: «все понятно - есть источник синего, а точки дадут зеленый и красный, значим мы получим ту самую модель RGB!». Но нет, технология работает иначе.

Нужно помнить, что «квантовые точки» находятся на одном большом листе и они не разбиты на субпиксели, а просто перемешаны между собой. Когда синий диод светит на пленку, точки излучают красный и зеленый, как уже говорилось выше, и только когда все эти три цвета смешиваются - тут-то и получается идеальный источник белого света. И напомню, что качественный белый свет позади матрицы фактически равен натуральной цветопередаче для глаз зрителя по другую сторону. Как минимум, потому что не приходится делать коррекцию с потерей или искажением спектра.

Это все еще LCD-телевизор

Широкая цветовая гамма особенно пригодится для новых 4К-телевизоров и цветовой субдискретизации типа 4:4:4, которая нас ждет в будущих стандартах. Это все прекрасно, но помните, что квантовые точки не устраняют других проблем ЖК-телевизоров. Например, практически невозможно получить идеальный черный, потому как жидкие кристаллы (те самые как бы «жалюзи», о чем я писал выше) не способны полностью блокировать свет. Они могут лишь «прикрываться», но не закрываться полностью.

Квантовые точки призваны улучшить цветопередачу, а это значительно улучшит впечатление от картинки. Но это не OLED-технология или плазма, где пиксели способны полностью прекращать подачу света. Тем не менее плазменные телевизоры ушли на пенсию, а OLED по-прежнему слишком дороги для большинства потребителей, поэтому все же приятно знать, что в скором времени производители предложат нам новый вид LED-телевизоров, который будет показывать лучше.

Сколько стоит «квантовый телевизор»?

Первые QD-телевизоры Sony, Samsung и LG обещают показать на выставке CES 2015 в январе. Однако впереди всех китайская TLC Multimedia, они уже выпустили 4K QD-телевизор и говорят, что он вот-вот появится в магазинах в Китае.


55-дюймовый QD-телевизор от TCL, показанный на выставке IFA 2014

На данный момент назвать точную стоимость телевизоров с новой технологией невозможно, ждем официальных заявлений. Писали , что стоить QD будут втрое дешевле аналогичных по функционалу OLED. К тому же технология, как говорят ученые, совсем недорогая. Исходя из этого, можно надеяться, что Quantum Dot-модели будут широко доступны и попросту заменят обычные. Однако я думаю, что сперва цены все равно завысят. Как это обычно бывает со всеми новыми технологиями.



Доброе время суток, Хабражители! Я думаю многие заметили, что все чаще и чаще стала появляться реклама о дисплеях основанных на технологии квантовых точек, так называемые QD – LED (QLED) дисплеи и несмотря на то, что на данный момент это всего лишь маркетинг. Аналогично LED TV и Retina это технология создания дисплеев LCD, использующая в качестве подсветки светодиоды на основе квантовых точек.

Ваш покорный слуга решил все же разобраться что такое квантовые точки и с чем их едят.

Вместо введения

Квантовая точка - фрагмент проводника или полупроводника, носители заряда (электроны или дырки) которого ограничены в пространстве по всем трём измерениям. Размер квантовой точки должен быть настолько мал, чтобы квантовые эффекты были существенными. Это достигается, если кинетическая энергия электрона заметно больше всех других энергетических масштабов: в первую очередь больше температуры, выраженной в энергетических единицах. Квантовые точки были впервые синтезированы в начале 1980-х годов Алексеем Екимовым в стеклянной матрице и Луи Е. Брусом в коллоидных растворах. Термин «квантовая точка» был предложен Марком Ридом.

Энергетический спектр квантовой точки дискретен, а расстояние между стационарными уровнями энергии носителя заряда зависит от размера самой квантовой точки как - h/(2md^2), где:

  1. h - приведённая постоянная Планка;
  2. d - характерный размер точки;
  3. m - эффективная масса электрона на точке
Если же говорить простым языком то квантовая точка - это полупроводник, электрические характеристики которого зависят от его размера и формы.


Например, при переходе электрона на энергетический уровень ниже, испускается фотон; так как можно регулировать размер квантовой точки, то можно и изменять энергию испускаемого фотона, а значит, изменять цвет испускаемого квантовой точкой света.

Типы квантовых точек

Различают два типа:
  • эпитаксиальные квантовые точки;
  • коллоидные квантовые точки.
По сути они названы так по методам их получения. Подробно говорить о них не буду в силу большого количества химических терминов (гугл в помощь) . Добавлю только, что при помощи коллоидного синтеза можно получать нанокристаллы, покрытые слоем адсорбированных поверхностно-активных молекул. Таким образом, они растворимы в органических растворителях, после модификации - также в полярных растворителях.

Конструкция квантовых точек

Обычно квантовой точкой является кристалл полупроводника, в котором реализуются квантовые эффекты. Электрон в таком кристалле чувствует себя как в трех мерной потенциальной яме и имеет много стационарных уровней энергии. Соответственно при переходе с одного уровня на другой квантовой точкой может излучать фотон. При всем при этом переходами легко управлять меняя размеры кристалла. Возможно также перекинуть электрон на высокий энергетический уровень и получать излучение от перехода между более низколежащими уровнями и как следствия получаем люминесценцию. Собственно, именно наблюдение данного явления и послужило первым наблюдением квантовых точек.

Теперь о дисплеях

История полноценных дисплеев началась в феврале 2011 года, когда Samsung Electronics представили разработки полноцветного дисплея на основе квантовых точек QLED. Это был 4-х дюймовый дисплей управляемый активной матрицей, т.е. каждый цветной пиксель с квантовой точкой может включаться и выключаться тонкоплёночным транзистором.

Для создания прототипа на кремневую плату наносят слой раствора квантовых точек и напыляется растворитель. После чего в слой квантовых точек запрессовывается резиновый штамп с гребенчатой поверхностью, отделяется и штампуется на стекло или гибкий пластик. Так осуществляется нанесение полосок квантовых точек на подложку. В цветных дисплеях каждый пиксель содержит красный, зелёный или синий субпиксель. Соответственно эти цвета используются с разной интенсивностью для получения как можно большего количества оттенков.

Следующим шагом в развитии стала публикация статьи ученными из Индийского Института Науки в Бангалоре. Где было описаны квантовые точки которые люминесцируют не только оранжевым цветом, но и в диапазоне от темно-зеленого до красного.

Чем ЖК хуже?

Основное отличие QLED-дисплея от ЖК состоит в том, что вторые способны охватить только 20-30% цветового диапазона. Так же в телевизорах QLED отпадает необходимость в использовании слоя с светофильтрами, так как кристаллы при подаче на них напряжения излучают свет всегда с четко определенной длиной волны и как результат с одинаковым цветовым значением.


Так же были новости о продаже компьютерного дисплея на квантовых точках в Китае. К сожалению, воочию проверить, в отличии от телевизора мне еще не довелось.

P.S. Стоит отметь что область применения квантовых точек не ограничивается только LED - мониторами, помимо всего прочего они могут применяться, в полевых транзисторах, фотоэлементах, лазерных диодах, так же проходят исследование возможности применение их в медицине и квантовых вычислениях.

P.P.S. Если же говорить о моем личном мнении, то я считаю, что ближайший десяток лет популярностью пользоваться они не будут, не из-за того, что мало известны, а потому, как цены на данные дисплеи заоблачные, но все же хочется надеяться, что квантовые точки найдут свое применение и в медицине, и буду использоваться не только для увеличения прибыли, но и в благих целях.

  • 1.3.1. Интегральная и локальная плотности состояний
  • 1.3.2. Спонтанное испускание фотонов
  • 1.3.3. Тепловое излучение
  • 1.3.4. Комбинационное рассеяние
  • 1.3.5. Резонансное (релеевское) рассеяние
  • 1.4. Заключение
  • Список литературы
  • 2. Оптическое излучение в линейных и нелинейных периодических структурах
  • 2.1. Введение
  • 2.2.1. Квазиоптическое приближение
  • 2.2.2. Линзовые волноводы и лазерные резонаторы
  • 2.2.4. Мелкомасштабная самофокусировка в периодических системах
  • 2.2.5. Квазисинхронное параметрическое взаимодействие
  • 2.3. Одномодовый световод с брэгговской решеткой
  • 2.3.1. Двунаправленное распространение излучения
  • 2.3.2. Брэгговские солитоны
  • 2.3.3. Оптическая бистабильность и переключение
  • 2.3.4. Полупроводниковые микрорезонаторы
  • 2.4. Связанные световоды
  • 2.5. Двумерные фотонные кристаллы
  • 2.5.1. Неидеальные фотонные кристаллы
  • 2.5.2. Нелинейные двумерные фотонные кристаллы
  • 2.6. Заключение
  • Список литературы
  • 3. Оптика квантовых ям и сверхрешеток
  • 3.1. Классификация гетероструктур
  • 3.2. Размерное квантование электронных состояний
  • 3.3. Правила отбора при оптических переходах
  • 3.3.1. Междузонные и внутризонные оптические переходы между подзонами размерного квантования
  • 3.3.2. Поляризационные свойства оптических переходов из подзон тяжелых и легких дырок
  • 3.4. Резонансное отражение и поглощение света в структурах с квантовыми ямами
  • 3.5. Вторичное свечение гетероструктур
  • 3.6. Квантовые микрорезонаторы
  • 3.7. Заключение
  • Список литературы
  • 4. Оптика квантовых точек
  • 4.1. Введение
  • 4.1.1. Состояния размерного квантования электронных и фононных возбуждений квантовых точек
  • 4.1.2. Электрон-фононное взаимодействие в квантовых точках
  • 4.1.3. Динамика электронных возбуждений квантовой точки
  • 4.2. Оптические методы исследования квантовых точек
  • 4.2.1. Изучение энергетической структуры электронных возбуждений
  • 4.2.3. Исследование динамики элементарных возбуждений квантовых точек
  • 4.2.4. Оптическая спектроскопия одной квантовой точки
  • 4.3. Применение квантовых точек
  • 4.3.1. Лазеры на квантовых точках для волоконной связи
  • 4.3.2. Квантовые точки в биологии и медицине
  • Список литературы
  • 5. Оптические резонансные свойства металлических наночастиц
  • 5.1. Введение
  • 5.2. Резонансы Ми отдельных металлических наночастиц
  • 5.2.1. Эффект размера
  • 5.2.2. Эффекты формы
  • 5.3. Действие окружения на резонансы металлических наночастиц
  • 5.3.1. Электродинамические эффекты
  • 5.3.2. Контактные эффекты
  • 5.4. Нелинейные оптические свойства металлических наночастиц
  • 5.4.1. Генерация высших гармоник
  • 5.4.2. Оптические комбинационные процессы
  • 5.5. Неоднородные системы металлических наночастиц
  • 5.5.1. Структурные параметры неоднородных систем
  • 5.5.2. Измерение релаксационных параметров индивидуальных резонансов в неоднородных системах
  • 5.6. Применения металлических наночастиц, связанные с их оптическими свойствами
  • 5.7. Заключение
  • Список литературы
  • А.В. Федоров, А.В. Баранов

    Ln[ K(τ ) ]

    τ , пс

    Рис. 4.32. a – логарифм огибающей сигнала когерентного контроля как функция взаимной задержки между импульсами для различных относительных вкладов лоренцева однородного и гауссова неоднородного уширений (r = 2 = ! ). Сплошная линия – чисто лоренцево однородное уширение с~ 2 = 21:25 мкэВ; штриховая линия –r =1/1; пунктирная линия –r =1/2.5; штрихпунктирная –r =1/14. Абсолютные значения2 и! выбирались таким способом, чтобы HWHM фотолюминесцентной линии одиночной квантовой точки сохранялась постоянной (21:25 мкэВ) в соответствии с работой . б – контур Фойгта фотолюминесцентной линии одиночной квантовой точки, вычисленный для тех же параметров, что и в случае a.

    измерительного прибора и подгонку контуром Фойгта. Это приводит к дополнительным ошибкам. На рис. 4.32 б построены формы линий фотолюминесценции одиночной квантовой точки при тех же отношениях2 = ! , что и на рис.4.32 a. Видно, что наиболее информативная часть спектральных линий – их крылья, где трудно добиться хорошего отношения сигнал/шум. В то же время, соответствующие измененияK() наиболее отчетливы в области, где сигнал когерентного контроля может быть получен с достаточной точностью. Таким образом, метод когерентного контроля можно использовать для изучения эффектов флуктуации зарядового окружения в оптических и релаксационных процессах.

    4.3. Применение квантовых точек

    4.3.1. Лазеры на квантовых точках для волоконной связи

    Развитие оптоволоконных телекоммуникаций привело к необходимости создания эффективных полупроводниковых лазеров и оптических усилителей, работающих в спектральной области минимальных потерь волноводов (1.25– 1.65 мкм). Наибольшая длина волны, достигнутая лазерами на квантовых ямах InGaAs/GaAs, составляет 1230 нм – для устройств, генерирующих с торца , и 1260 нм для лазеров с вертикальным резонатором . Достаточно большие пороговые токи, низкая рабочая температура и невысокая

    4. Оптика квантовых точек

    температурная стабильность таких лазеров не всегда удовлетворяют требованиям, предъявляемым к высокоскоростным телекоммуникационным устройствам.

    Прогресс в изготовлении многослойных структур самоорганизованных квантовых точек соединений A3 B5 , достаточно однородных по размеру и форме при большой поверхностной плотности, привел к созданию полупроводниковых лазеров с квантовыми точками в качестве активной среды . В результате спектральная область 1.0–1.7 мкм стала доступной для генерации как для лазеров традиционной конструкции , так и для лазеров с вертикальным резонатором , использующих квантовые точки InGaAs и подложки GaAs. В частности, оба типа лазеров могут генерировать излучение с длиной волны 1.3 мкм с чрезвычайно низкими пороговыми токами и высокой выходной мощностью . Недавно был продемонстрирован широкополосный лазер на квантовых точках, излучающий на 1.5 мкм с плотностью тока всего в 70 А/см2 на один слой квантовых точек при комнатной температуре . Оптические усилители на основе квантово-точечных структур представляют интерес для высокоскоростной обработки сигналов со скоростью свыше 40 Гбит/с . Существенно, что развитые GaAs-технологии позволяют изготавливать достаточно дешевые монолитные лазеры на квантовых точках с вертикальным резонатором c распределенными брегговскими зеркалами на основе пар AlAs/GaAs и AlOx /GaAs .

    Следует отметить, что благодаря неоднородному уширению электронных переходов в квантовых точках возникает возможность расширения области непрерывной перестройки длины волны генерации. При некотором увеличении пороговых токов она может достигать 200 нм (1.033–1.234 мкм) .

    Лазеры, использующие InAs-квантовые точки и InP-подложки, также представляют интерес, поскольку они позволяют получать генерацию в более длинноволновом диапазоне (1.8–2.3 мкм), важном для применений в молекулярной спектроскопии и дистанционном контроле газовых атмосфер с помощью лидаров. В то же время, генерация излучения с длиной волны 1.9 и 2 мкм лазера с активной средой из такой гетероструктуры была получена пока только при низкой (77 К) температуре. Интересно, что генерация на длинах волн 1.6 и 1.78 мкм была также продемонстрирована для лазеров на InAs квантовых проволоках – одномерных квантовых структурах на (001)InP-подложке. И наконец, непрерывная генерация в области 2 мкм получена при комнатной температуре при использовании в качестве активной среды лазера квантовых точек на основе InAsSb, выращенных на (001)InP-подложке .

    Интенсивное развитие этого направления привело к тому, что в настоящее время некоторые типы полупроводниковых лазеров с активной средой на основе квантовых точек стали коммерчески доступны, .

    260 А.В. Федоров, А.В. Баранов

    4.3.2. Квантовые точки в биологии и медицине

    Одной из наиболее активно развивающихся областей применения полупроводниковых квантовых точек является использование коллоидных квантовых точек (полупроводниковых нанокристаллов в органических и водных растворах) в качестве люминесцентных меток для визуализации структуры биологических объектов разного типа и для сверхчувствительного детектирования биохимических реакций, которые крайне важны в молекулярной и клеточной биологии, медицинской диагностике и терапии. Люминесцентная метка представляет собой люминофор, связанный с молекулой-линковщиком, которая может селективно связываться с детектируемой биоструктурой (мишенью). Метки должны быть растворимыми в воде, иметь большой коэффициент поглощения, обладать высоким квантовым выходом люминесценции в узкой спектральной полосе. Последнее особенно важно для регистрации многоцветных изображений, когда различные мишени в клетке помечены разными метками. В качестве люминофоров меток обычно используются органические красители. Их недостатками являются низкая устойчивость к фотообесцвечиванию, не позволяющая проводить долговременные измерения, необходимость использования нескольких источников света для возбуждения различных красителей, а также большая ширина и асимметрия полос люминесценции, затрудняющие анализ многоцветных изображений.

    Последние достижения в области нанотехнологий позволяют говорить о создании нового класса люминесцентных меток, использующих в качестве люминофора полупроводниковые квантовые точки – коллоидные нанокристаллы .

    Синтез нанокристаллов на основе соединений A2 B6 (CdSe, CdS, CdTe, ZnS) и A3 B5 (InP и GaAs) известен достаточно давно . Еще в 1993 году был предложен высокотемпературный органометаллический синтез квантовых точек CdSe и получены нанокристаллы с хорошей кристаллической структурой и узким распределением по размерам, но с квантовым выходом, не превышающим 10%. Резкое увеличение квантового выхода квантовых точек до 85% при комнатной температуре было достигнуто, когда нанокристаллы стали покрывать тонкой (1–2 монослоя) оболочкой из другого материала с большей шириной запрещенной зоны (например, для CdSe это ZnS, CdS, CdO) . Такие структуры называются квантовые точки ядро/оболочка (core/shell QDs). Диаметр квантовых точек (от 1.5 нм и выше) можно контролировать, варьируя время реакции, проходящей при температуре около 300o С, от минут до нескольких часов или просто отбирая необходимое количество продукта через разное время после начала реакции . В результате оказалось возможным получить набор квантовых точек одного состава, но с разными размерами. Например, положение полосы люминесценции CdSe/ZnS КТ может меняться в диапазоне от 433 до 650 нм (2.862– 1.906 эВ) при ширине полосы около 30 мэВ . Использование других материалов позволяет существенно расширить спектральную область перестройки полосы люминесценции нанокристаллов (рис.4.33 ). Существенно,

    Оптика квантовых точек

    Интенсивность

    Длина волны,

    Рис. 4.33. Спектры люминесценции полупроводниковых нанокристаллов различного состава и разных размеров. Сплошные линии соответствуют нанокристаллам CdSe c диаметрами 1.8, 3.0 и 6.0 нм, пунктирные – нанокристаллам InP c диаметрами 3.0 и 4.6 нм, штриховые – нанокристаллам InAs с размерами 2.8, 3.6, 4.6 и 6.0 нм.

    что нанокристаллы демонстрируют более узкие и симметричные полосы люминесценции, чем обычные органические красители. Это является чрезвычайно важным преимуществом при анализе многоцветных изображений. На рис. 4.34 в качестве примера сопоставлены спектры люминесценции нанокристаллов CdSe/ZnS и молекул родамина 6Ж.

    Интенсивность, отн. ед.

    Родамин 6 Ж

    Квантовые точки

    Длина волны, нм

    Рис. 4.34. Сопоставление полос люминесценции квантовых точек и молекул родамина 6Ж.

    Дополнительным преимуществом является то, что нанокристаллы одного состава обычно имеют широкую полосу поглощения с высоким молярным коэффициентом экстинкции (до 10−6 см−1 М−1 ), соответствующую переходам в высокоэнергетические состояния. Ее положение слабо зависит от размера квантовой точки. Поэтому в отличие от красителей оказывается возможным

    262 А.В. Федоров, А.В. Баранов

    эффективное возбуждение люминесценции нанокристаллов разных размеров одним лазерным источником света. Однако основным преимуществом является то, что нанокристаллы имеют великолепную фотоустойчивость : они не выцветают в течение нескольких часов и даже дней, в то время как характерные времена фотообесцвечивания обычных люминофоров ограничены единицами минут (рис.4.35 AlexaFluor® 488Рис. 4.35. Фотоиндуцированная деградация люминесценции меток на основе CdSe/ZnS нанокристаллов CdSe/ZnS и традиционных молекулярных люминофоров под действием излучения ртутной лампы .

    Поверхность таких квантовых точек, полученных в результате химической реакции, покрыта гидрофобными молекулами, используемыми при синтезе, поэтому они растворимы только в органических растворителях. Поскольку биологические объекты (протеины, ДНК, пептиды) существуют только в водных растворах, были разработаны методы модификации поверхности нанокристаллов, которые делают их водорастворимыми как с положительно, так и с отрицательно заряженной поверхностью. Предложены несколько типов молекул-линковщиков, позволяющих селективно связывать нанокристаллы с анализируемыми биомолекулами. В качестве примера, на рис.4.36 приведен пример нанокристалла CdSe, покрытого оболочкой из ZnS, который ковалентно связан с протеином молекулой меркаптоуксусной кислоты .

    В самое последнее время люминесцентные метки на основе полупроводниковых квантовых точек для мишеней различного типа стали коммерчески доступными .

    Для использования квантовых точек in vivo необходимо предпринять меры, уменьшающие их токсичность. В этих целях предложено помещать квантовые точки в инертные полимерные сферы с диаметрами 50–300 нм и уже их использовать в качестве люминофоров в случаях, когда относительно большие размеры наносфер не препятствуют их применению. Исполь-

    Любое вещество микроскопического размера — это наночастица, материал, используемый исследователями нанотехнологий для разработки и создания новых технологий, основанных на применении элементов в этой крошечной форме. Читаем внимательно, потому что надо будет немного вникнуть в суть текста.

    Квантовые точки — это наночастицы, изготовленные из любого полупроводникового материала, такого как кремний, селенид кадмия, сульфид кадмия или арсенид индия, которые светятся определенным цветом после освещения светом.

    Цвет, которым они светятся, зависит от размера наночастицы. Путем размещения квантов разного размера можно добиться наличия красного , зеленого и синего цвета в каждом пикселе экрана дисплея, что даст возможность создания полного спектра цветов в этих пикселях (любой существующий цвет получается путем смешивания этих цветов).

    Когда квантовые точки освещаются УФ светом, некоторые из электронов получают достаточную энергию, чтобы освободиться от атомов. Эта способность позволяет им перемещаться вокруг наночастицы, создавая зону проводимости, в которой электроны могут свободно перемещаться по материалу и проводить электричество.


    Когда электроны опускаются на внешнюю орбиту вокруг атома (валентной зоны), они испускают свет. Цвет этого света зависит от разности энергий между зоной проводимости и валентной зоной.

    Чем меньше наночастица, тем выше разность энергий между валентной зоной и зоной проводимости, что приводит к более глубокому синему цвету. Для большей наночастицы разница в энергии между валентной зоной и зоной проводимости ниже, что смещает свечение в сторону красного .

    Квантовые точки и дисплеи

    Для ЖК-дисплеев преимущества многочисленны. Давайте рассмотрим самые важные и интересные особенности, которые получили ЖК-экраны от квантовых точек.

    Более высокая пиковая яркость

    Одной из причин, по которой производители так «млеют» от квантовых точек — это возможность создавать экраны с гораздо большей пиковой яркостью, чем при использовании других технологий. В свою очередь, повышенная пиковая яркость дает гораздо большие возможности для использования HDR и Dolby Vision.

    Dolby Vision — это стандарт видеоизображения, который имеет расширенный динамический диапазон, то есть очень большую разницу света между самой яркой и самой темной точкой на экране, что делает изображение более реалистичным и контрастным.


    Если вы не в курсе, то разработчики постоянно пытаются сыграть Господа Бога и создать то, что создал он (ну или кто там все это создал вокруг нас, может быть вселенная?), только перенести это на экран.

    То есть, например, обычное небо в ясный день имеет яркость примерно 20000 нит (ед. измерения яркости), в то время как лучшие телевизоры могут предоставить яркость около 10 меньше. Так вот, стандарт Dolby Vision пока впереди планеты всей, но до Создателя им еще очень далеко:)

    Соответственно, экраны на квантовых точках — это еще один шаг к более яркому изображению. Возможно мы когда-нибудь сможем увидеть практически настоящий рассвет и/или закат, а может и другие неповторимые чудеса природы, не выходя из дома.

    Лучшая цветопередача

    Еще одно большое преимущество квантовых точек — улучшение цветовой точности. Так как в каждом пикселе есть КТ красного, синего и зеленого цвета, это дает возможность получить доступ к полной палитре цветов, что, в свою очередь, позволяет добиться невероятного количества оттенков любого цвета.

    Улучшенное время автономной работы мобильных устройств

    Экраны на квантовых точках обещают иметь не только превосходного качества изображения, но и обладать исключительно низким энергопотреблением.

    Квантовые точки и Samsung QLED

    Телевизоры на квантовых точках от Samsung, или просто , на самом деле не совсем на квантовых точках в правильном понимании этой технологии. QLED — это скорее гибрид, что-то среднее между квантовыми точками и экранами LED. Почему? Потому, что в этих телевизорах до сих пор используется светодиодная подсветка, а в настоящем экране на квантовых точках свет должен создаваться именно точками.


    Поэтому, пусть даже новые телевизоры от южнокорейского гиганта и показывают лучше, чем обычные LED-экраны, они все же не телевизоры на квантовых точках, а телевизоры с квантовыми точками вместо светофильтра.

    Комментарии:

    Иван Иванович