Живой и мертвый кот шредингера играть. Теория шредингера простыми словами

Живой и мертвый кот шредингера играть. Теория шредингера простыми словами
Живой и мертвый кот шредингера играть. Теория шредингера простыми словами

«Любой, кто не шокирован квантовой теорией , не понимает её», - так сказал Нильс Бор, основатель квантовой теории.
Основа классической физики - однозначная запрограммированность мира, иначе лапласовский детерминизм, с появлением квантовой механики сменилась вторжением мира неопределенностей и вероятностных событий. И здесь, как нельзя кстати, оказались для физиков-теоретиков мысленные эксперименты. Это были пробные камни, на которых проверялись новейшие идеи.

«Кот Шрёдингера»- это мысленный эксперимент , предложенный Эрвином Шрёдингером, которым он хотел показать неполноту квантовой механики при переходе от субатомных систем к системам макроскопическим.

В закрытый ящик помещён кот. В ящике есть механизм, содержащий радиоактивное ядро, и ёмкость с ядовитым газом. Вероятность того, что ядро распадётся за 1 час, составляет 1/2. Если ядро распадается, оно приводит механизм в действие, он открывает ёмкость с газом, и кот умирает. Согласно квантовой механике, если над ядром не производится наблюдение, то его состояние описывается суперпозицией (смешением) двух состояний - распавшегося ядра и нераспавшегося ядра, следовательно, кот, сидящий в ящике, и жив, и мёртв одновременно. Если же ящик открыть, то экспериментатор может увидеть только какое-нибудь одно конкретное состояние - «ядро распалось, кот мёртв» или «ядро не распалось, кот жив».

Когда же система перестаёт существовать как смешение двух состояний и выбирает одно конкретное?

Цель эксперимента - показать, что квантовая механика неполна без некоторых правил, указывающих, при каких условиях происходит коллапс волновой функции (мгновенное изменение квантового состояния объекта, происходящее при измерении), и кот либо становится мёртвым, либо остаётся живым, но перестаёт быть смешением того и другого.

Поскольку ясно, что кот обязательно должен быть либо живым, либо мёртвым (не существует состояния, промежуточного между жизнью и смертью), то означает, что это верно и для атомного ядра. Оно обязательно будет либо распавшимся, либо нераспавшимся.

Статья Шредингера «Текущая ситуация в квантовой механике» с представлением мысленного эксперимента с котом вышла в немецком журнале «Естественные науки» в 1935 году с целью обсуждения ЭПР-парадокса.

Статьи Эйнштейна-Подольского-Розена и Шредингера обозначили странную природу «квантовой запутанности» (термин введен Шредингером), характерной для квантовых состояний, являющихся суперпозицией состояний двух систем (например, двух субатомных частиц).

Толкования квантовой механики

За время существования квантовой механики учеными были выдвинуты разные ее толкования, но наиболее поддерживаемые из всех на сегодня являются «копенгагенская» и «многомировая».

«Копенгагенская интерпретация» - это толкование квантовой механики сформулировали Нильс Бор и Вернер Гейзенберг во время совместной работы в Копенгагене (1927г.). Ученые попытались ответить на вопросы, возникающие вследствие свойственного квантовой механике корпускулярно-волнового дуализма, в частности на вопрос об измерении.

В копенгагенской интерпретации система перестаёт быть смешением состояний и выбирает одно из них в тот момент, когда происходит наблюдение. Эксперимент с котом показывает, что в этой интерпретации природа этого самого наблюдения - измерения - определена недостаточно. Некоторые полагают, что опыт говорит о том, что до тех пор, пока ящик закрыт, система находится в обоих состояниях одновременно, в суперпозиции состояний «распавшееся ядро, мёртвый кот» и «нераспавшееся ядро, живой кот», а когда ящик открывают, то только тогда происходит коллапс волновой функции до одного из вариантов. Другие догадываются, что «наблюдение» происходит, когда частица из ядра попадает в детектор; однако (и это ключевой момент мысленного эксперимента) в копенгагенской интерпретации нет чёткого правила, которое говорит, когда это происходит, и потому эта интерпретация неполна до тех пор, пока такое правило в неё не введено, или не сказано, как его можно ввести. Точное правило таково: случайность появляется в том месте, где в первый раз используется классическое приближение.

Таким образом, мы можем опираться на следующий подход: в макроскопических системах мы не наблюдаем квантовых явлений (кроме явления сверхтекучести и сверхпроводимости); поэтому, если мы накладываем макроскопическую волновую функцию на квантовое состояние, мы из опыта должны заключить, что суперпозиция разрушается. И хотя не совсем ясно, что́ значит, что нечто является «макроскопическим» вообще, про кота точно известно, что он является макроскопическим объектом. Таким образом, копенгагенская интерпретация не считает, что до открытия ящика кот находится в состоянии смешения живого и мёртвого.

В « многомировой интерпретации» квантовой механики, не считающей процесс измерения чем-то особенным, оба состояния кота существуют, но декогерируют, т.е. происходит процесс, при котором квантово-механическая система взаимодействует с окружающей средой и приобретает информацию, имеющуюся в окружающей среде, или иначе, « запутывается» с окружающей средой. И когда наблюдатель открывает ящик, он запутывается с котом и от этого образуются два состояния наблюдателя, соответствующие живому и мёртвому коту, и эти состояния не взаимодействуют друг с другом. Тот же механизм квантовой декогеренции важен и для «совместных» историй. В этой интерпретации только «мёртвый кот» или «живой кот» могут быть в «совместной истории.

Другими словами, когда ящик открывается, Вселенная расщепляется на две разные вселенные, в одной из которых наблюдатель смотрит на ящик с мёртвым котом, а в другой - наблюдатель смотрит на живого кота.

Парадокс "друга Вигнера"

Парадокс друга Вигнера – это усложнённый эксперимент парадокса «кота Шрёдингера». Лауреат Нобелевской премии, американский физик Юджин Вигнер ввел категорию «друзей». После завершения опыта экспериментатор открывает коробку и видит живого кота. Состояние кота в момент открытия коробки переходит в состояние «ядро не распалось, кот жив». Таким образом, в лаборатории кот признан живым. За пределами лаборатории находится «друг». Друг еще не знает, жив кот или мёртв. Друг признает кота живым только тогда, когда экспериментатор сообщит ему исход эксперимента. Но все остальные «друзья» еще не признали кота живым, и признают только тогда, когда им сообщат результат эксперимента. Таким образом, кота можно признать полностью живым только тогда, когда все люди во Вселенной узнают результат эксперимента. До этого момента в масштабе Большой Вселенной кот остается полуживым и полумёртвым одновременно.

Вышеописанное применяется на практике: в квантовых вычислениях и в квантовой криптографии. По волоконно-оптическому кабелю пересылается световой сигнал, находящийся в суперпозиции двух состояний. Если злоумышленники подключатся к кабелю где-то посередине и сделают там отвод сигнала, чтобы подслушивать передаваемую информацию, то это схлопнет волновую функцию (с точки зрения копенгагенской интерпретации будет произведено наблюдение) и свет перейдёт в одно из состояний. Проведя статистические пробы света на приёмном конце кабеля, можно будет обнаружить, находится ли свет в суперпозиции состояний или над ним уже произведено наблюдение и передача в другой пункт. Это делает возможным создание средств связи, которые исключают незаметный перехват сигнала и подслушивание.

Эксперимент (который в принципе может быть выполнен, хотя работающие системы квантовой криптографии, способные передавать большие объёмы информации, ещё не созданы) также показывает, что «наблюдение» в копенгагенской интерпретации не имеет отношения к сознанию наблюдателя, поскольку в данном случае к изменению статистики на конце кабеля приводит совершенно неодушевлённое ответвление провода.

А в квантовых вычислениях состоянием «шредингеровского кота» называется особое запутанное состояние кубитов, при котором они все находятся в одинаковой суперпозиции всех нулей или единиц.

( «Кубит» - это наименьший элемент для хранения информации в квантовом компьютере. Он допускает два собственных состояния, но при этом может находиться и в их суперпозиции. При любом измерении состояния кубита он случайно переходит в одно из своих собственных состояний.)

В реалиях! Малый брат «кота Шрёдингера»

Прошло уже 75 лет с тех пор, как появился «кот Шредингера», но до сих пор некоторые из следствий квантовой физики кажутся расходящимися с нашими обыденными представлениями о веществе и его свойствах. Согласно законам квантовой механики должно быть возможным создание такого состояния «кота», когда он будет одновременно и жив, и мёртв, т.е. будет находиться в состоянии квантовой суперпозиции двух состояний. Однако на практике создание квантовой суперпозиции такого большого количества атомов пока не удаётся. Трудностью является то, что чем больше атомов находиться в суперпозиции, тем менее устойчиво это состояние, поскольку внешние воздействия стремятся его разрушить.

Физикам из Венского университета (публикация в журнале «Nature Communications », 2011г.) впервые в мире удалось продемонстрировать квантовое поведение органической молекулы, состоящей из 430 атомов и находящейся в состоянии квантовой суперпозиции. Полученная экспериментаторами молекула больше похожа на осьминога. Размер молекул составляет порядка 60 ангстрем, а длина волны де Бройля для молекулы составляла всего 1 пикометр. Такой «молекулярный осьминог» оказался способным продемонстрировать свойства, присущие коту Шрёдингера.

Квантовое самоубийство

Квантовое самоубийство - мысленный эксперимент в квантовой механике, который был предложен независимо друг от друга Г. Моравеком и Б. Маршалом, а в 1998 году был расширен космологом Максом Тегмарком. Этот мысленный эксперимент, являясь модификацией мысленного эксперимента с котом Шрёдингера, наглядно показывает разницу между двумя интерпретациями квантовой механики: копенгагенской интерпретацией и многомировой интерпретацией Эверетта.

Фактически эксперимент представляет собой эксперимент с котом Шрёдингера с точки зрения кота.

В предложенном эксперименте на участника направлено ружьё, которое стреляет или не стреляет в зависимости от распада какого-либо радиоактивного атома. Вероятность, что в результате эксперимента ружьё выстрелит и участник умрёт, составляет 50 %. Если копенгагенская интерпретация верна, то ружьё в конечном итоге выстрелит, и участник умрёт.
Если же верна многомировая интерпретация Эверетта, то в результате каждого проведенного эксперимента вселенная расщепляется на две вселенных, в одной из которых участник остается жив, а в другой погибает. В мирах, где участник умирает, он перестает существовать. Напротив, с точки зрения неумершего участника, эксперимент будет продолжаться, не приводя к исчезновению участника. Это происходит потому, что в любом ответвлении участник способен наблюдать результат эксперимента лишь в том мире, в котором он выживает. И если многомировая интерпретация верна, то участник может заметить, что он никогда не погибнет в ходе эксперимента.

Участник никогда не сможет рассказать об этих результатах, так как с точки зрения стороннего наблюдателя, вероятность исхода эксперимента будет одинаковой и в многомировой, и в копенгагенской интерпретациях.

Квантовое бессмертие

Квантовое бессмертие - мысленный эксперимент, вытекающий из мысленного эксперимента с квантовым самоубийством и утверждающий, что согласно многомировой интерпретации квантовой механики существа, имеющие способность к самосознанию, бессмертны.

Представим, что участник эксперимента взрывает ядерную бомбу вблизи себя. Практически во всех параллельных Вселенных ядерный взрыв уничтожит участника. Но, несмотря на это, должно существовать небольшое множество альтернативных Вселенных, в которых участник каким-либо образом выживает (то есть Вселенных, в которых возможно развитие потенциального сценария спасения). Идея квантового бессмертия состоит в том, что участник остаётся в живых, и тем самым способен воспринимать окружающую реальность, по меньшей мере в одной из Вселенных в множестве, пусть даже количество таких вселенных чрезвычайно мало в сравнении с количеством всех возможных Вселенных. Таким образом, со временем участник обнаружит, что он может жить вечно. Некоторые параллели с этим умозаключением могут быть найдены в концепции антропного принципа.

Другой пример вытекает из идеи квантового самоубийства. В этом мысленном эксперименте участник направляет на себя ружьё, которое может либо выстрелить, либо нет в зависимости от результата распада какого-либо радиоактивного атома. Вероятность, что в результате эксперимента ружьё выстрелит и участник умрёт, составляет 50 %. Если Копенгагенская интерпретация верна, то ружьё в конечном итоге выстрелит, и участник умрёт.

Если же верна многомировая интерпретация Эверетта, то в результате каждого проведённого эксперимента вселенная расщепляется на две вселенных, в одной из которых участник остается жив, а в другой погибает. В мирах, где участник умирает, он перестает существовать. Напротив, с точки зрения не умершего участника, эксперимент будет продолжаться, не приводя к исчезновению участника, так как после каждого расщепления вселенных он будет способен осознавать себя только в тех вселенных, где он выжил. Таким образом, если многомировая интерпретация Эверетта верна, то участник может заметить, что он никогда не погибнет в ходе эксперимента, тем самым «доказывая» свое бессмертие, по крайней мере с его точки зрения.

Сторонники квантового бессмертия указывают на то, что эта теория не противоречит никаким известным законам физики (эта позиция далека от единодушного признания в научном мире). В своих рассуждениях они опираются на следующие два спорных допущения:
- верна многомировая интерпретация Эверетта, а не Копенгагенская интерпретация, так как последняя отрицает существование параллельных вселенных;
- все возможные сценарии, в которых в ходе эксперимента участник может умереть, содержат по крайней мере малое подмножество сценариев, где участник остаётся в живых.

Возможным аргументом против теории квантового бессмертия может быть то, что второе допущение не обязательно следует из многомировой интерпретации Эверетта, и оно может вступать в противоречие с законами физики, которые, как считается, распространяются на все возможные реальности. Многомировая интерпретация квантовой физики необязательно предполагает, что «всё возможно». Она лишь указывает на то, что в определённый момент времени вселенная может разделиться на некоторое число других, каждая из которых будет соответствовать одному из множества всех возможных исходов. К примеру, считается, что второе начало термодинамики справедливо для всех вероятных вселенных. Это означает, что теоретически существование этого закона препятствует образованию параллельных вселенных, где он нарушался бы. Следствием этого может быть достижение с точки зрения экспериментатора такого состояния реальности, где его дальнейшее выживание становится невозможным, так как это потребовало бы нарушения закона физики, который, по высказанному ранее допущению справедлив для всех возможных реальностей.

Например, при взрыве ядерной бомбы, описанном выше, достаточно трудно описать правдоподобный сценарий, не нарушающий основных биологических принципов, в котором участник останется в живых. Живые клетки просто-напросто не могут существовать при температурах, достигаемых в центре ядерного взрыва. Для того чтобы теория квантового бессмертия осталась справедливой, необходимо, чтобы либо произошла осечка (и тем самым не произошло ядерного взрыва), либо случилось какое-либо событие, которое основывалось бы на пока неоткрытых или недоказанных законах физики. Другим аргументом против обсуждаемой теории может служить наличие у всех существ естественной биологической смерти, которую невозможно избежать ни в одной из параллельных Вселенных (по крайней мере, на данном этапе развития науки)

С другой стороны, второе начало термодинамики является статистическим законом, и ничему не противоречит возникновение флуктуации (например, появление области с условиями, подходящими для жизни наблюдателя во вселенной, в целом достигшей состояния тепловой смерти; или в принципе возможное движение всех частиц, возникших в результате ядерного взрыва, таким образом, что каждая из них пролетит мимо наблюдателя), хотя такая флуктуация возникнет лишь в крайне малой части из всех возможных исходов. Аргумент, относящийся к неизбежности биологической смерти, также может быть опровергнут на основании вероятностных соображений. Для каждого живого организма в данный момент времени существует ненулевая вероятность, что он останется жив в течение следующей секунды. Таким образом, вероятность того, что он останется жив в течение следующего миллиарда лет, также отлична от нуля (поскольку является произведением большого числа ненулевых сомножителей), хотя и очень мала.

В идее квантового бессмертия проблемно то, что согласно ей самосознающее существо будет «вынуждено» переживать чрезвычайно маловероятные события, которые будут возникать в ситуациях, при которых участник, казалось бы, должен погибнуть. Даже несмотря на то, что во многих параллельных вселенных участник умирает, те немногие вселенные, которые участник способен субъективно воспринимать, будут развиваться по крайне маловероятному сценарию. Это в свою очередь может в некотором роде вызвать нарушение принципа причинности, природа которого в квантовой физике еще недостаточно ясна.

Хотя идея квантового бессмертия вытекает большей частью из эксперимента с «квантовым самоубийством», Тегмарк утверждает, что при любых нормальных условиях всякое мыслящее существо перед смертью проходит через этап (от нескольких секунд до нескольких лет)уменьшения уровня самосознания, никак не связанный с квантовой механикой, и у участника нет никакой возможности для продолжительного существования посредством перехода из одного мира в другой, дающий ему возможность выжить.

Здесь сознающий себя разумный наблюдатель лишь в относительно малом числе возможных состояний, при которых он сохраняет самосознание, продолжает оставаться в, так сказать, «здоровом теле». Возможность того, что наблюдатель, сохранив сознание, останется искалеченным, значительно больше, чем если он останется цел и невредим. Любая система (в том числе живой организм) имеет гораздо больше возможностей функционировать неправильно, чем оставаться в идеальной форме. Эргодическая гипотеза Больцмана требует, чтобы бессмертный наблюдатель рано или поздно прошёл все состояния, совместимые с сохранением сознания, в том числе и те, в которых он будет ощущать непереносимые страдания, - и таких состояний будет значительно больше, чем состояний оптимального функционирования организма. Таким образом, как считает философ Дэвид Льюис, нам следовало бы надеяться, что многомировая интерпретация неверна.

К своему стыду хочу признаться, что слышал это выражение, но не знал вообще что оно означает и хотя бы по какой теме употребляется. Давайте я вам расскажу, что вычитал в интернете про этого кота …-

«Кот Шредингера » – так называется знаменитый мысленный эксперимент знаменитого австрийского физика-теоретика Эрвина Шредингера, который также является лауреатом Нобелевской премии. С помощью этого вымышленного опыта ученый хотел показать неполноту квантовой механики при переходе от субатомных систем к макроскопическим системам.

Оригинальная статья Эрвина Шредингера вышла в свет 1935 году. В ней эксперимент был описан с использованием или даже олицетворение:

Можно построить и случаи, в которых довольно бурлеска. Пусть какой-нибудь кот заперт в стальной камере вместе со следующей дьявольской машиной (которая должна быть независимо от вмешательства кота): внутри счётчика Гейгера находится крохотное количество радиоактивного вещества, столь небольшое, что в течение часа может распасться только один атом, но с такой же вероятностью может и не распасться- если же это случится, считывающая трубка разряжается и срабатывает реле, спускающее молот, который разбивает колбочку с синильной кислотой.

Если на час предоставить всю эту систему самой себе, то можно сказать, что кот будет жив по истечении этого времени, коль скоро распада атома не произойдёт. Первый же распад атома отравил бы кота. Пси-функция системы в целом будет выражать это, смешивая в себе или размазывая живого и мёртвого кота (простите за выражение) в равных долях. Типичным в подобных случаях является то, что неопределённость, первоначально ограниченная атомным миром, преобразуется в макроскопическую неопределённость, которая может быть устранена путём прямого наблюдения. Это мешает нам наивно принять «модель размытия» как отражающую действительность. Само по себе это не означает ничего неясного или противоречивого. Есть разница между нечётким или расфокусированным фото и снимком облаков или тумана.

Другими словами:

  1. Есть ящик и кот. В ящике имеется механизм, содержащий радиоактивное атомное ядро и ёмкость с ядовитым газом. Параметры эксперимента подобраны так, что вероятность распада ядра за 1 час составляет 50%. Если ядро распадается, открывается ёмкость с газом и кот погибает. Если распада ядра не происходит - кот остается жив-здоров.
  2. Закрываем кота в ящик, ждём час и задаёмся вопросом: жив ли кот или мертв?
  3. Квантовая же механика как бы говорит нам, что атомное ядро (а следовательно и кот) находится во всех возможных состояниях одновременно (см. квантовая суперпозиция). До того как мы открыли ящик, система «кот-ядро» находится в состоянии «ядро распалось, кот мёртв» с вероятностью 50% и в состоянии «ядро не распалось, кот жив» с вероятностью 50%. Получается, что кот, сидящий в ящике, и жив, и мёртв одновременно.
  4. Согласно современной копенгагенской интерпретации, кот-таки жив/мёртв без всяких промежуточных состояний. А выбор состояния распада ядра происходит не в момент открытия ящика, а ещё когда ядро попадает в детектор. Потому что редукция волновой функции системы «кот-детектор-ядро» не связана с человеком-наблюдателем ящика, а связана с детектором-наблюдателем ядра.

Согласно квантовой механике, если над ядром атома не производится наблюдение, то его состояние описывается смешением двух состояний - распавшегося ядра и нераспавшегося ядра, следовательно, кот, сидящий в ящике и олицетворяющий ядро атома, и жив, и мёртв одновременно. Если же ящик открыть, то экспериментатор может увидеть только какое-нибудь одно конкретное состояние - «ядро распалось, кот мёртв» или «ядро не распалось, кот жив».

Суть человеческим языком: эксперимент Шредингера показал, что, с точки зрения квантовой механики, кот одновременно и жив, и мертв, чего быть не может. Следовательно, квантовая механика имеет существенные изъяны.

Вопрос стоит так: когда система перестаёт существовать как смешение двух состояний и выбирает одно конкретное? Цель эксперимента - показать, что квантовая механика неполна без некоторых правил, которые указывают, при каких условиях происходит коллапс волновой функции, и кот либо становится мёртвым, либо остаётся живым, но перестаёт быть смешением того и другого. Поскольку ясно, что кот обязательно должен быть либо живым, либо мёртвым (не существует состояния, промежуточного между жизнью и смертью), то это будет аналогично и для атомного ядра. Оно обязательно должно быть либо распавшимся, либо нераспавшимся ().

Еще одной наиболее свежей интерпретацией мысленного эксперимента Шредингера является рассказ Шелдона Купера, героя сериала «Теория большого взрыва» («Big Bang Theory»), который он произнес для менее образованной соседки Пенни. Суть рассказа Шелдона заключается в том, что концепция кота Шредингера может быть применена в отношениях между людьми. Для того чтобы понять, что происходит между мужчиной и женщиной, какие отношения между ними: хорошие или плохие, – нужно просто открыть ящик. А до этого отношения являются одновременно и хорошими, и плохими.

Ниже приведен видеофрагмент этого диалога «Теории большого взрыва» между Шелдоном и Пении.

Иллюстрация Шрёдингера является наилучшим примером для описания главного парадокса квантовой физики: согласно её законам, частицы, такие как электроны, фотоны и даже атомы существуют в двух состояниях одновременно («-живых»- и «-мёртвых»-, если вспоминать многострадального кота). Эти состояния называются .

Американский физик Арт Хобсон () из университета Арканзаса (Arkansas State University) предложил своё решение данного парадокса.

«-Измерения в квантовой физике базируются на работе неких макроскопических устройств, таких как счётчик Гейгера, при помощи которых определяется квантовое состояние микроскопических систем - атомов, фотонов и электронов. Квантовая теория подразумевает, что если вы подсоедините микроскопическую систему (частицу) к некому макроскопическому устройству, различающему два разных состояния системы, то прибор (счётчик Гейгера, например) перейдёт в состояние квантовой запутанности и тоже окажется одновременно в двух суперпозициях. Однако невозможно наблюдать это явление непосредственно, что делает его неприемлемым»-, - рассказывает физик.

Хобсон говорит, что в парадоксе Шрёдингера кот играет роль макроскопического прибора, счётчика Гейгера, подсоединённого к радиоактивному ядру, для определения состояния распада или «-нераспада»- этого ядра. В таком случае, живой кот будет индикатором «-нераспада»-, а мёртвый кот - показателем распада. Но согласно квантовой теории, кот, так же как и ядро, должен пребывать в двух суперпозициях жизни и смерти.

Вместо этого, по словам физика, квантовое состояние кота должно быть запутанным с состоянием атома, что означает что они пребывают в «-нелокальной связи»- друг с другом. То есть, если состояние одного из запутанных объектов внезапно сменится на противоположное, то состояние его пары точно также поменяется, на каком бы расстоянии друг от друга они ни находились. При этом Хобсон ссылается на этой квантовой теории.

«-Самое интересное в теории квантовой запутанности - это то, что смена состояния обеих частиц происходит мгновенно: никакой свет или электромагнитный сигнал не успел бы передать информацию от одной системы к другой. Таким образом, можно сказать, что это один объект, разделённый на две части пространством, и неважно, как велико расстояние между ними»-, - поясняет Хобсон.

Кот Шрёдингера больше не живой и мёртвый одновременно. Он мёртв, если произойдёт распад, и жив, если распад так и не случится.

Добавим, что похожие варианты решения этого парадокса были предложены ещё тремя группами учёных за последние тридцать лет, однако они не были восприняты всерьёз и так и остались незамеченными в широких научных кругах. Хобсон , что решение парадоксов квантовой механики, хотя бы теоретические, совершенно необходимы для её глубинного понимания.

Шредингер

А вот совсем недавно ТЕОРЕТИКИ ОБЪЯСНИЛИ, КАК ГРАВИТАЦИЯ УБИВАЕТ КОТА ШРЁДИНГЕРА, но это уже сложнее …-

Как правило, физики объясняют феномен того, что суперпозиция возможна в мире частиц, но невозможна с котами или другими макрообъектами, помехами от окружающей среды. Когда квантовый объект проходит сквозь поле или взаимодействует со случайными частицами, он тут же принимает всего одно состояние - как если бы его измерили. Именно так и разрушается суперпозиция, как полагали учёные.

Но даже если каким-либо образом стало возможным изолировать макрообъект, находящийся в состоянии суперпозиции, от взаимодействий с другими частицами и полями, то он всё равно рано или поздно принял бы одно-единственное состояние. По крайней мере, это верно для процессов, протекающих на поверхности Земли.

«-Где-то в межзвёздном пространстве, может быть, кот и имел бы шанс , но на Земле или вблизи любой планеты это крайне маловероятно. И причина тому - гравитация»-, - поясняет ведущий автор нового исследования Игорь Пиковский () из Гарвард-Смитсоновского центра астрофизики.

Пиковский и его коллеги из Венского университета утверждают, что гравитация оказывает разрушительное воздействие на квантовые суперпозиции макрообъектов, и потому мы не наблюдаем подобных явлений в макромире. Базовая концепция новой гипотезы, к слову, в художественном фильме «-Интерстеллар»-.

Эйнштейновская общая теория относительности гласит, что чрезвычайно массивный объект будет искривлять вблизи себя пространство-время. Рассматривая ситуацию на более мелком уровне, можно сказать, что для молекулы, помещённой у поверхности Земли, время будет идти несколько медленнее, чем для той, что находится на орбите нашей планеты.

Из-за влияния гравитации на пространство-время молекула, попавшая под это влияние, испытает отклонение в своём положении. А это, в свою очередь, должно повлиять и на её внутреннюю энергию - колебания частиц в молекуле, которые изменяются с течением времени. Если молекулу ввести в состояние квантовой суперпозиции двух локаций, то соотношение между положением и внутренней энергией вскоре заставило бы молекулу «-выбрать»- только одну из двух позиций в пространстве.

«-В большинстве случаев явление декогеренции связано с внешним влиянием, но в данном случае внутреннее колебание частиц взаимодействует с движением самой молекулы»-, - поясняет Пиковский.

Этот эффект пока что никто не наблюдал, поскольку другие источники декогеренции, такие как магнитные поля, тепловое излучение и вибрации, как правило, гораздо сильнее, и вызывают разрушение квантовых систем задолго до того, как это сделает гравитация. Но экспериментаторы стремятся проверить высказанную гипотезу.

Подобная установка также может быть использована для проверки способности гравитации разрушать квантовые системы. Для этого необходимо будет сравнить вертикальный и горизонтальный интерферометры: в первом суперпозиция должна будет вскоре исчезнуть из-за растяжения времени на разных «-высотах»- пути, тогда как во втором квантовая суперпозиция может и сохраниться.

источники

http://4brain.ru/blog/%D0%BA%D0%BE%D1%82-%D1%88%D1%80%D0%B5%D0%B4%D0%B8%D0%BD%D0%B3%D0%B5%D1%80%D0%B0-%D1%81%D1%83%D1%82%D1%8C-%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%8B%D0%BC%D0%B8-%D1%81%D0%BB%D0%BE%D0%B2%D0%B0%D0%BC%D0%B8/

http://www.vesti.ru/doc.html?id=2632838

Вот еще немного околонаучного: вот например , а вот . Если вы еще не в курсе, почитайте про и что такое . А и узнаем, что за

Несмотря на то, что планетарная модель атома доказала свою состоятельность, существующая на тот момент теория не могла в полном объеме объяснить все процессы , которые наблюдались в реальной жизни. Оказалось, что в действительности, на микроуровне почему-то не работает классическая ньютоновская механика. Т.е. прототип модели, позаимствованный из реальной жизни, не соответствует наблюдениям ученых того времени в случае рассмотрения атома вместо нашей солнечной системы.

На основании этого концепция была существенно переработана. Появилась такая дисциплина, как квантовая механика . У истоков этого направления стоял выдающийся физик Эрвин Шредингер.

Понятие суперпозиции

Главным принципом, который отличает новую теорию, является принцип суперпозиции . Согласно этому принципу, квант (электрон, фотон или протон) может находиться в двух состояниях одновременно. Если упростить понимание этой формулировки, то получится факт, который совершенно невозможно представить в нашем сознании. Квант может находиться одновременно в двух местах.

На момент появления, эта теория противоречила не только классической механике, но и здравому смыслу. Даже сейчас, образованный человек, далекий от физики, с трудом может представить себе такую ситуацию. Ведь данное понимание, в конечном счёте, подразумевает, что и самчитатель может находиться сейчас и тут, и там . Именно так человек пытается представить переход от макромира к микромиру.

Человеку, который привык испытывать на себе действие ньютоновской механики и воспринимать себя в одной точке пространства, крайне сложно было представить нахождение сразу в двух местах. Кроме того, как таковой теории и закономерностей при переходе от макро к микро не было . Не было понимания конкретных численных значений и правил.

Однако, приборы того времени позволяли уже четко фиксировать этот «квантовый диссонанс» . Лабораторные приборы подтвердили, что сформулированные постулаты действительно состоятельны и квант способен находиться в двух состояниях. Например, был зафиксирован электронный газ вокруг ядра атома.

Основываясь на этом, Шредингер сформулировал известную концепцию, которая сейчас известна как теория о коте . Целью этой формулировки было показать, что в классической теории физики образовался огромный провал, требующий дополнительного изучения.

Кот Шредингера

Мысленный эксперимент о коте заключался в том, что кота помещали в закрытый стальной ящик . Ящик был оснащен устройством с ядовитым газом и приспособлением с ядром атома .

Исходя из известных постулатов, ядро атома может распасться на составляющие в течение одного часа, но может и не распасться . Соответственно, вероятность данного события составляет 50%.

Если ядро распадается, то срабатывает счётчик-регистратор, и в ответ на данное событие происходит высвобождение ядовитого вещества из описанного ранее приспособления, которым снабжен ящик. Т.е. кот погибает от яда. Если же этого не произойдет, кот не погибает соответственно. Исходя из вероятности распада 50%, вероятность того, что кот выживает – 50%.

Исходя и квантовой теории, атом может находиться в двух состояниях сразу. Т.е. атом и распался, и не распался. Значит регистратор и сработал, разбив емкость с ядом, и не распался. Кот отравился ядом, и кот не отравился ядом одновременно.

Но представить себе такую картину, что открыв ящик, исследователь обнаружил сразу мёртвого и живого кота, просто невозможно. Кот или жив, или мёртв. В этом парадокс ситуации. Сознанию зрителя невозможно представить себе мертво-живого кота.

Парадокс заключается в том, что кот является объектом макромира . Соответственно, говорить про него, что он жив и мёртв, т.е. находится в двух состояниях сразу аналогично кванту, будет не совсем правильным.

Используя данный пример, Шредингер сконцентрировался именно на факте отсутствия четких параллелей между макро- и микромирами . Последующие комментарии, которые дали специалисты, поясняют, что рассматривать следует систему детектор излучения – кот, а не кот-зритель. В системе детектор-кот вероятно лишь одно событие.

В 1935 году великий физик, нобелевский лауреат и основоположник квантовой механики Эрвин Шрёдингер сформулировал свой знаменитый парадокс.

Учёный предположил, что если взять некого кота и поместить его в стальную непрозрачную коробку с "адской машиной", то через час он будет жив и мёртв одновременно. Механизм в коробке выглядит следующим образом: внутри счётчика Гейгера находится микроскопическое количество радиоактивного вещества, способного распасться за час лишь на один атом; при этом оно с той же вероятностью может и не распасться. Если распад всё же произойдёт, то сработает рычажный механизм и молоток разобьёт сосуд с синильной кислотой и кот погибнет; если распада не будет, то сосуд останется цел, а кот — жив и здоров.

Если бы речь шла не о коте и коробке, а о мире субатомных частиц, то учёные бы сказали, что кот и жив и мёртв одновременно, однако в макромире такое умозаключение некорректно. Так почему же мы оперируем такими понятиями, когда речь идёт о более мелких частицах материи?

Иллюстрация Шрёдингера является наилучшим примером для описания главного парадокса квантовой физики: согласно её законам, частицы, такие как электроны, фотоны и даже атомы существуют в двух состояниях одновременно ("живых" и "мёртвых", если вспоминать многострадального кота). Эти состояния называются суперпозициями .

Американский физик Арт Хобсон (Art Hobson) из университета Арканзаса (Arkansas State University) предложил своё решение данного парадокса.

"Измерения в квантовой физике базируются на работе неких макроскопических устройств, таких как счётчик Гейгера, при помощи которых определяется квантовое состояние микроскопических систем — атомов, фотонов и электронов. Квантовая теория подразумевает, что если вы подсоедините микроскопическую систему (частицу) к некому макроскопическому устройству, различающему два разных состояния системы, то прибор (счётчик Гейгера, например) перейдёт в состояние квантовой запутанности и тоже окажется одновременно в двух суперпозициях. Однако невозможно наблюдать это явление непосредственно, что делает его неприемлемым", — рассказывает физик.

Хобсон говорит, что в парадоксе Шрёдингера кот играет роль макроскопического прибора, счётчика Гейгера, подсоединённого к радиоактивному ядру, для определения состояния распада или "нераспада" этого ядра. В таком случае, живой кот будет индикатором "нераспада", а мёртвый кот — показателем распада. Но согласно квантовой теории, кот, так же как и ядро, должен пребывать в двух суперпозициях жизни и смерти.

Вместо этого, по словам физика, квантовое состояние кота должно быть запутанным с состоянием атома, что означает что они пребывают в "нелокальной связи" друг с другом. То есть, если состояние одного из запутанных объектов внезапно сменится на противоположное, то состояние его пары точно также поменяется, на каком бы расстоянии друг от друга они ни находились. При этом Хобсон ссылается на этой квантовой теории.

"Самое интересное в теории квантовой запутанности — это то, что смена состояния обеих частиц происходит мгновенно: никакой свет или электромагнитный сигнал не успел бы передать информацию от одной системы к другой. Таким образом, можно сказать, что это один объект, разделённый на две части пространством, и неважно, как велико расстояние между ними", — поясняет Хобсон.

Кот Шрёдингера больше не живой и мёртвый одновременно. Он мёртв, если произойдёт распад, и жив, если распад так и не случится.

Добавим, что похожие варианты решения этого парадокса были предложены ещё тремя группами учёных за последние тридцать лет, однако они не были восприняты всерьёз и так и остались незамеченными в широких научных кругах. Хобсон отмечает , что решение парадоксов квантовой механики, хотя бы теоретические, совершенно необходимы для её глубинного понимания.

Может ли кот одновременно быть и живым и мертвым? Сколько существует параллельных вселенных? И существуют ли они вообще? Это вовсе не вопросы из области фантастики, а вполне реальные научные задачи, решаемые квантовой физикой.

Итак, начнем с Кота Шредингера . Это мысленный эксперимент, который предложил Эрвин Шредингер с целью указать на парадокс, существующий в квантовой физике. Суть эксперимента заключается в следующем.

В закрытый ящик одновременно помещен воображаемый кот, а также такой же воображаемый механизм с радиоактивным ядром и емкостью с ядовитым газом. Согласно эксперименту, если ядро распадется, то оно приведет механизм в действие: емкость с газом откроется и кот умрет. Вероятность распада ядра составляет 1 к 2.

Парадокс заключается в том, что согласно квантовой механике если над ядром не производят наблюдение, то кот находится в так называемой суперпозиции, другими словами кот одновременно находится во взаимоисключающих состояниях (он одновременно жив и мертв). Однако если наблюдающий откроет ящик, он может убедиться, что кот находится в одном конкретном состоянии: он или жив, или мертв. По мнению Шредингера, неполнота квантовой теории состоит в том, что она не уточняет, при каких условиях кот перестает быть в суперпозиции и оказывается либо живым, либо мертвым.

Данный парадокс усугубляется экспериментом Вигнера, который добавляет к уже существующему мысленному эксперименту категорию друзей. Согласно Вигнеру, во время открытия экспериментатором коробки, он узнает, жив ли кот или мертв. Для экспериментатора кот перестает быть в суперпозиции, однако для друга, который находится за дверью, и который еще не знает о результатах эксперимента, кот все еще находится где-то "между жизнью и смертью". Так можно продолжать с бесконечным количеством дверей и друзей, и согласно подобной логике, кот будет находиться в суперпозиции до тех пор, пока все люди во Вселенной не узнают, что же увидел экспериментатор, открыв ящик.

Как же объясняет подобный парадокс квантовая физика? Квантовая физика предлагает мысленный эксперимент квантового самоубийства и два возможных варианта развития событий, исходя различных интерпретаций квантовой механики.

В ходе проведения мысленного эксперимента на участника направлено ружье, которое либо выстрелит в результате распада радиоактивного атома, либо нет. Опять 50 на 50. Таким образом, участник эксперимента либо умрет, либо нет, а пока он находится, как и кот Шредингера в суперпозиции.

Данную ситуацию можно интерпретировать по-разному с точки зрения квантовой механики. Согласно копенгагенской интерпретации, ружье рано или поздно выстрелит, и участник умрет. Согласно интепретации Эверетта, суперпозиция предусматривает наличие двух параллельных вселенных, в которых одновременно существует участник: в одной из них он жив (ружье не выстрелило), во второй он мертв (оружие выстрелило). Однако если многомировая интерпретация верна, то в одной из вселенных участник всегда остается жив, что приводит к идее существования «квантового бессмертия».

Что касается кота Шредингера и наблюдателя эксперимента, то, согласно интерпретации Эверетта, он также оказывается вместе с котом сразу в двух Вселенных, то есть, выражаясь, «квантовым языком», «запутывается» с ним.

Звучит как история из фантастического романа, тем не менее, это одна из многих научных теорий, которая имеет место быть в современной физике.